My [algebraic] methods are really methods of working and thinking; this is why they have crept in everywhere anonymously. - Emmy Noether

Problem Set 8

PCMI USS, Summer 2023

1. (a) Let $V=\mathbf{C}^{4}$ with basis $|0\rangle,|1\rangle,|2\rangle,|3\rangle$. Write down the matrix (yellow) for the Fourier transform F_{4}.
(b) Let $\alpha, \beta \in \mathbf{C}$. Consider the vector

$$
|\psi\rangle=x_{0}|0\rangle+x_{1}|1\rangle+x_{2}|2\rangle+x_{3}|3\rangle,
$$

where $x_{0}=\alpha, x_{1}=\beta, x_{2}=\alpha, x_{3}=\beta$. You might say that $|\psi\rangle$ has period 2 since its coefficients satisfy

$$
x_{j}=x_{j+2}
$$

for $j=0, \ldots, 3$, with addition of indices is taken modulo 4 . Compute $F_{4}|\psi\rangle$. What is special about it?
(c) Now take a vector $|\psi\rangle \in \mathbf{C}^{4}$ with period 1. Explain why this means $x_{0}=x_{1}=$ $x_{2}=x_{3}$. Compute $F_{4}|\psi\rangle$.
(d) Can you have a vector $|\psi\rangle \in \mathbf{C}^{4}$ with period 3? Explain why you might rather say that such a vector has period 1 .
(e) Now let $N=8$. For $|\psi\rangle \in \mathbf{C}^{8}$, what are the possible periods for $|\psi\rangle$? For each period p, apply the Fourier transform F_{8} to a vector of that period, and make observations about the vector you get. (If you're working in a group, different group members could try different periods.)
(f) Suppose you're given a state $|\psi\rangle \in \mathbf{C}^{8}$ and told that this state (a) might be a random state, or (b) might have period 4 . What might you do quantumly to have a good shot at finding out which? Probabilitywise, how good can you do?
(g) (For thought) What do you think happens when $N=2^{n}$ for a general n. What about N that are not powers of 2 ?
2. (Character Basics) Let G be a finite abelian group. Recall that a character of G is a homomorphism from G into \mathbf{C}^{\star}, the group of nonzero complex numbers under multiplication. That is

Definition 1 Let G be an abelian group. A function $\chi: G \rightarrow \mathbf{C}^{\star}$ is called a character of G if

$$
\chi\left(g_{1}+g_{2}\right)=\chi\left(g_{1}\right)+\chi\left(g_{2}\right)
$$

for all $g_{1}, g_{2} \in G$.
(a) Show that if χ is a character of G, then $\chi(0)=1$. (0 denotes the additive identity of G.)
(b) Show that $\chi(-g)=1 / \chi(g)$ for all $g \in G$.
(c) For a positive integer n and $g \in G$, we use $n g$ to denote the result of adding g to itself n times. If χ is a character of G, explain why

$$
\chi(n g)=\chi(g)^{n} .
$$

Does this equation make sense for negative values of n ?
(d) Show that if $g \in G$ has order n, then $\chi(g)$ is an nth root of unity.
(e) Show that for any $g \in G, \chi(-g)=\overline{\chi(g)}$.
(f) Let $G=\mathbb{Z}_{N}$ be group of integers mod N under addition. Let $\omega=e^{2 \pi i / N}$. Show that for any $k \in\{0, \ldots, N-1\}$, the function χ_{k} defined for $j \in \mathbb{Z}_{N}$ by

$$
\chi_{k}(j)=\omega^{k j}
$$

is a character of Z_{N}.
(g) Show conversely that if χ is any character of Z_{N}, then $\chi=\chi_{k}$ for some k.
(h) Can you find all the characters of $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$?
(i) (For thought) How about $G=\left(\mathbb{Z}_{2}\right)^{n}$? Other abelian groups?

3. (Orthogonality of Characters)

(a) Prove the Orthogonality of Characters:

Theorem 2 Let G be a finite abelian group, and let χ_{1}, χ_{2} be characters of G. Then

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{1}(g) \overline{\chi_{2}(g)}= \begin{cases}0 & \text { if } \chi_{1} \neq \chi_{2} \\ 1 & \text { if } \chi_{1}=\chi_{2}\end{cases}
$$

(b) Use this theorem to prove that an abelian group G with n elements can have at most n distinct characters.
(c) It turns out that if G has n elements, then G has exactly n distinct characters! This is harder to prove. Try it if you're good at group theory and up for a challenge.
4. (Uncertainty Principle for the Fourier Transform) In this problem, you will prove a version of the Uncertainty Principle for the Fourier Tranform. Roughly, the idea is that it is impossible for both $|\psi\rangle$ and its Fourier transform $F|\psi\rangle$ to be highly concentrated on a small number of basis states. To this end, we define the support of a state $|\psi\rangle \in \mathbf{C}^{N}$ as follows: if $|\psi\rangle=\sum_{j} x_{j}|j\rangle$, then $\operatorname{Supp}(|\psi\rangle)$ is the set of indices j such that $x_{j} \neq 0$. Thus the size $\mid \operatorname{Supp}(|\psi\rangle) \mid$ is the number of nonzero coordintates of $|\psi\rangle$ in the standard basis. The uncertainty principle then states that

Theorem 3 For any state $|\psi\rangle \in \mathbf{C}^{N}$,

$$
\mid \operatorname{Supp}(|\psi\rangle)|\cdot| \operatorname{Supp}(F|\psi\rangle) \mid \geq N
$$

See if you can prove this. Find your own proof, or use the following outline as a guide.
(a) The ∞-norm

$$
\|w\|_{\infty}
$$

of a vector $w \in \mathbf{C}^{n}$ is the maximum absolute value of the components of v. Prove that

$$
\left.\| F|\psi\rangle \|_{\infty} \leq \frac{1}{\sqrt{N}} \right\rvert\, \operatorname{Supp}(|\psi\rangle)|\cdot\| \| \psi\rangle \|_{\infty}
$$

(b) Now prove the same inequality with $|\psi\rangle$ and $F|\psi\rangle$ reversed.
(c) Combine your inequalities to bring it home.
(d) What properies of F did you use? Does you proof actually yield an uncertainty principle for other unitary operators?
(e) Explain why the theorem shows that it is impossible for both $|\psi\rangle$ and its Fourier transform $F|\psi\rangle$ to be highly concentrated on a small number of basis states. How does this ressemble any other form of the Uncertainty Principle that you know? It is actually true, but quite a bit harder to show (and a more recent result), that the sum of the supports is at least $N+1$. Is this stronger than the above theorem in all cases? If you generalaized to other unitaries U in part (d), does the stronger additive statement apply to all such U ?

