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Viazovska’s solution of the 8-dimensional sphere packing problem
introduced an amazing special function, but it left many questions
unanswered:

Where did this function come from? What does it mean?

Is there a broader theory?

What else can one prove using these techniques?

Today we’ll place this special function in the context of an
interpolation theorem, and see how that theorem implies a broad
generalization of sphere packing optimality.



Key question

How do particles arrange themselves under a repulsive force?

Infinitely many particles in Euclidean space.

Easy to guess the answer in R1 (equally spaced) or R2 (hexagonal).

What about higher dimensions, or proofs?



Setting

Classical point particles in Rd .

Locations specified by discrete, closed subset C of Rd .

Pair potential function p, such as p(r) = 1/r s with s > 0 or
p(r) = e−αr

2
with α > 0. (Decreasing ⇔ repulsive.)

If |C| <∞, potential energy is∑
x ,y∈C
x 6=y

p(|x − y |).

We care mainly about |C| =∞, so we must normalize to consider
the average energy per particle.



Energy

C has density ρ if

lim
r→∞

∣∣C ∩ Bd
r (0)

∣∣
vol
(
Bd
r (0)

) = ρ,

where Bd
r (x) is a ball of radius r about x .

The lower p-energy of C is

Ep(C) := lim inf
r→∞

1∣∣C ∩ Bd
r (0)

∣∣ ∑
x ,y∈C∩Bd

r (0)
x 6=y

p
(
|x − y |

)
.

Call it the energy if the limit exists.



A lattice Λ has density
1

vol(Rd/Λ)

and p-energy ∑
x∈Λ\{0}

p(|x |)

(if absolutely convergent).

Lattices are among the simplest ways to arrange particles, but not
necessarily optimal.



More generally, a periodic configuration C =
⋃
· Nj=1(Λ + vj) has

density
N

vol(Rd/Λ)

and p-energy

1

N

N∑
j ,k=1

∑
x∈Λ\{vk−vj}

p(|x + vj − vk |)

(again if absolutely convergent).

The non-periodic case is also important, but periodic
configurations are more familiar.



Ground state energy

Definition. A configuration C in Rd of density ρ is a ground state,
or minimizes energy, for potential p if

1. its p-energy exists, and

2. all other configurations in Rd with density ρ have lower
p-energy at least Ep(C).

Sphere packing is a limiting case. It amounts to maximizing the
minimal distance between particles at a fixed particle density, and
that is energy minimization for a steep potential.

Crystallization problem in mathematical physics (for classical,
mesoscale materials):

Why do particles often arrange themselves
periodically at zero temperature?



Difficulty

Ground states are a mystery.

We can’t predict ground states in most cases.

We can’t even predict qualitative features, such as whether there
should be a periodic ground state.

It’s easy to make false conjectures.

Even in low dimensions, such as R2, we generally can’t explain
what is seen in simulations.



Number theory

A lattice Λ has an Epstein zeta function

ζΛ(s) =
∑

x∈Λ\{0}

1

|x |2s

(for Re(s) > d/2) and theta series

ΘΛ(z) =
∑
x∈Λ

eπiz|x |
2

(for Im(z) > 0).

The energy of Λ under r 7→ 1/r s is ζΛ(s/2), and under r 7→ e−αr
2

is ΘΛ(iα/π)− 1.

Thus, minimizing lattice energy amounts to finding extreme values
of number-theoretic special functions.



Universal optimality

When is a ground state independent of the potential function?

Which potential functions are reasonable to consider?

A function p : (0,∞)→ R is completely monotonic if it is C∞ and
for all k , (−1)kp(k) ≥ 0. Nonnegative, decreasing, convex, etc.

Definition. A configuration C is universally optimal if it is a ground
state for all completely monotonic functions of squared distance.
E.g., inverse power laws or Gaussians.

In fact, Gaussians span the cone of completely monotonic
functions of squared distance (Bernstein’s theorem), so

C is universally optimal iff it is a ground state for all Gaussians.

Equivalently, we can fix a Gaussian and vary the particle density.



Low dimensions

Theorem (Ventavogel and Nijboer, 1979). Z is universally optimal
in R.

Conjecture. The hexagonal lattice A2 is universally optimal in R2.

Proved optimal among lattices by Montgomery in 1988, but not
known in general.

Previously, no ground state was known for any nice, decreasing
potential function in dimension greater than 1. (No inverse power
law, no Gaussian, etc.)

Dealing with long-range interactions is tough.



Three dimensions

Consider the potential function r 7→ e−πr
2
. What happens at

density ρ? Universal optimality fails.

Conjecture. Among lattices, the face-centered cubic lattice A3 is
optimal for ρ ≤ 1, and the body-centered cubic A∗3 is optimal for
ρ ≥ 1.

Same energy when ρ = 1 by Poisson summation.
How does the phase transition near ρ = 1 behave?

Stillinger (1976): phase coexistence, with lower energy when

0.99899854 . . . < ρ < 1.00100312 . . . .

At ρ = 1, improve energy by 0.0004%. Not periodic.

Is this the full answer? No idea. It deserves further exploration.



Main theorem: universal optimality in R8 and R24

Theorem. The E8 root lattice in R8 and the Leech lattice in R24

are universally optimal, and unique among periodic packings for
potentials under which they have finite energy.

Also seems to be true for the hexagonal lattice in R2, but we don’t
know how to prove it.

Simulations suggest universal optimality generally fails.
Dimensions 1, 2, 8, and 24 seem very special.



Harmonic analysis

Recall that a Schwartz function f : Rd → R is a smooth function
whose partial derivatives (of all orders) decay faster than
1/any polynomial. Think “nice function.”

As always, we normalize the Fourier transform by

f̂ (y) =

∫
Rd

f (x)e−2πi〈x ,y〉dx .

Schwartz functions are closed under the Fourier transform, as are
radial functions (i.e., functions where f (x) depends only on |x |).

The proof of universal optimality will require a new understanding
of radial Schwartz functions on R8 and R24.



Linear programming bound

Proposition (Cohn and Kumar, 2007). Let p : (0,∞)→ R be any
function, and ρ > 0. If f : Rd → R is a Schwartz function such
that

1. f (x) ≤ p(|x |) for all x ∈ Rd \ {0} and

2. f̂ (y) ≥ 0 for all y ∈ Rd ,

then every subset of Rd of density ρ has lower p-energy at least
ρf̂ (0)− f (0).

In other words, f satisfying inequalities (1) and (2) certifies a lower
bound for energy.

Without loss of generality, we can take f to be radial: average all
of its rotations about the origin.



How can we choose the best f for a given d , p, and ρ?
Nobody knows, except for d ∈ {1, 8, 24}.

Numerics for potential p(r) = e−πr
2

and density ρ = 1 in Rd :

d LP bound Current record

1 0.08643481 . . . 0.08643481 . . . (equal)
2 0.15959526 . . . 0.15959526 . . . (conj. equal)
3 0.22321782 . . . 0.23153532 . . .
4 0.27956960 . . . 0.28576449 . . .
5 0.33011740 . . . 0.34868410 . . .
6 0.37587226 . . . 0.38874675 . . .
7 0.41756856 . . . 0.42445404 . . .
8 0.45576289 . . . 0.45576289 . . . (equal)

24 0.79965280 . . . 0.79965280 . . . (equal)

Based on numerical search to optimize f approximately.



Theorem (Cohn and Kumar, 2007). The LP bound proves
universal optimality for Z in R1.

Ground states in one dimension are not exciting,
but they are harder to analyze than they sound.

Conjecture (Cohn and Kumar, 2007). The LP bound proves
universal optimality for the hexagonal lattice A2 in R2.

Still not known!

Theorem. The LP bound proves universal optimality for E8 in R8

and the Leech lattice in R24.

Why is this easier for R8 and R24 than R2?



Proof of LP bound for lattice Λ in Rd

Poisson summation says∑
x∈Λ

f (x) = ρ
∑
y∈Λ∗

f̂ (y).

Thus,

Ep(Λ) =
∑

x∈Λ\{0}

p(|x |)

≥
∑

x∈Λ\{0}

f (x) because f (x) ≤ p(|x |)

= −f (0) + ρ
∑
y∈Λ∗

f̂ (y) by Poisson summation

≥ ρf̂ (0)− f (0). because f̂ (y) ≥ 0

The proof for non-lattices is similar in spirit.



When does f prove a sharp bound for energy?
To avoid any loss in the inequalities, we need

1. f (x) = p(|x |) for all x ∈ Λ \ {0}, and

2. f̂ (y) = 0 for all y ∈ Λ∗ \ {0}.
Furthermore, these inequalities must hold to order two. I.e., the
radial derivatives satisfy f ′(x) = p′(|x |) and f̂ ′(y) = 0.

For E8 and the Leech lattice, we have Λ∗ = Λ,
with vector lengths

√
2n for n ≥ n0,

where n0 = 1 for d = 8 and n0 = 2 for d = 24.

In other words, for n ≥ n0 we need

f
(√

2n
)

= p
(√

2n
)
,

f ′
(√

2n
)

= p′
(√

2n
)
,

f̂
(√

2n
)

= 0,

f̂ ′
(√

2n
)

= 0.



Can we reconstruct a radial f from this information?
I.e., from knowing f

(√
2n
)
, f ′
(√

2n
)
, f̂
(√

2n
)
, and f̂ ′

(√
2n
)

for all integers n ≥ n0.

My intuition said no, but Viazovska conjectured yes.
We prove this conjecture.



Interpolation theorem

Theorem. Let (d , n0) be (8, 1) or (24, 2). Then every radial
Schwartz function f on Rd is uniquely determined by the values
f
(√

2n
)
, f ′
(√

2n
)
, f̂
(√

2n
)
, and f̂ ′

(√
2n
)

for integers n ≥ n0.

Specifically, there exists an interpolation basis an, bn, ãn, b̃n for
n ≥ n0 such that for every radial Schwartz function f and x ∈ Rd ,

f (x) =
∞∑

n=n0

f
(√

2n
)
an(x) +

∞∑
n=n0

f ′
(√

2n
)
bn(x)

+
∞∑

n=n0

f̂
(√

2n
)
ãn(x) +

∞∑
n=n0

f̂ ′
(√

2n
)
b̃n(x).



We construct the interpolation basis explicitly. This gives the
optimal auxiliary function f via

f (x) =
∑
n≥n0

(
p
(√

2n
)
an(x) + p′

(√
2n
)
bn(x)

)
.

To describe the interpolation basis, we use the generating functions

F (τ, x) =
∑
n≥n0

an(x) e2πinτ + 2πiτ
∑
n≥n0

√
2n bn(x) e2πinτ

and

F̃ (τ, x) =
∑
n≥n0

ãn(x) e2πinτ + 2πiτ
∑
n≥n0

√
2n b̃n(x) e2πinτ

for x ∈ Rd and Im(τ) > 0.

Note that f (x) = F (τ, x) for the complex Gaussian p(r) = eπiτ r
2
,

since p
(√

2n
)

= e2πinτ and p′
(√

2n
)

= 2πiτ
√

2ne2πinτ .



The Fourier transform of x 7→ eπiτ |x |
2

is x 7→ (i/τ)d/2eπi(−1/τ)|x |2 .
In particular, the interpolation formula for complex Gaussians
amounts to

F (τ, x) + (i/τ)d/2F̃ (−1/τ, x) = eπiτ |x |
2
.

(They span a dense subspace of radial Schwartz functions.)

These generating functions are not quite Fourier series, because
they involve both e2πinτ and τe2πinτ , but they satisfy

F (τ + 2, x)− 2F (τ + 1, x) + F (τ, x) = 0,

F̃ (τ + 2, x)− 2F̃ (τ + 1, x) + F̃ (τ, x) = 0.

If F and F̃ satisfy these three functional equations and suitable
smoothness and growth conditions,

then the interpolation theorem follows.



Recall the weight k slash operator from modular forms: for

γ =

(
a b
c d

)
∈ SL2(Z),

we define the action f |kγ of γ on a function f by

(f |kγ)(z) = (cz + d)−k f

(
az + b

cz + d

)
.

We often write |zk or |τk to indicate which of several variables is
being used.

This action of SL2(Z) will play a key role in analyzing the
functional equations for F and F̃ .

For even weight, −I acts trivially and we really have an action of
PSL2(Z) = SL2(Z)/{±I}.



The group SL2(Z) is generated by

T =

(
1 1
0 1

)
and

S =

(
0 −1
1 0

)
,

which act by linear fractional transformations as z 7→ z + 1 and
z 7→ −1/z .

Note that

(i/τ)d/2F̃ (−1/τ, x) = F̃ (τ, x)|τd/2S ,

F (τ + 1, x) = F (τ, x)|τd/2T ,

F (τ + 2, x) = F (τ, x)|τd/2T
2.



Extend the slash action linearly to the group algebra

R = C[PSL2(Z)]

consisting of formal linear combinations of elements of PSL2(Z).

Then the function equations for F and F̃ amount to

F (τ, x) + F̃ (τ, x)|τd/2S = eπiτ |x |
2
,

F (τ, x)|τd/2(T − I )2 = 0,

F̃ (τ, x)|τd/2(T − I )2 = 0.

We use the first equation to eliminate F̃ , so all we need to do is
solve the remaining equations for F .



After we eliminate F̃ , the functional equations amount to

F |τd/2(T − I )2 = 0,

F |τd/2S(T − I )2 = eπiτ |x |
2 |τd/2S(T − I )2.

In other words, they specify the action of the right ideal
I := (T − I )2R + S(T − I )2R of the ring R.

One can show that dimC(R/I) = 6, so the I action provides
substantial information about F (but not quite everything).



To determine F explicitly, we use a Laplace transform.
We write

F (τ, x) = eπiτ |x |
2

+ 4 sin2(π|x |2/2)

∫ ∞
0

K (τ, it)e−π|x |
2t dt

for some kernel K (τ, z). (Motivation: force F to agree with
complex Gaussian at desired points.)

The functional equations then amount to saying that
K (τ, z) is annihilated by I under |τd/2,

and has poles with certain residues when z ∈ SL2(Z) · τ .

Why is this helpful? The only remnant of the inhomogeneity of the
functional equations is the specified residues.



We can now write down the kernel K explicitly using

1. modular forms for SL2(Z) and Γ(2),

2. the quasimodular form E2,

3. a holomorphic logarithm of the Hauptmodul λ for Γ(2), and

4. lots of algebra in R = C[PSL2(Z)].

Once we have the kernel, we can prove the interpolation theorem
by verifying analytic continuation and growth bounds.

Proving universal optimality requires some additional inequalities
(namely f (x) ≤ p(|x |) and f̂ (y) ≥ 0), which can be verified by
unpleasant calculations.



Open questions

What happens in R2? This case matters for real-world physics.

The analogous interpolation theorem does not seem to be true in
R2. Can it be salvaged? (For comparison, R1 is very different from
R8 or R24.)

Can one give a simpler proof of the interpolation theorem, if one
doesn’t care about writing down an explicit interpolation basis?

How does the interpolation theorem generalize? Which
values/derivatives of f and f̂ suffice to reconstruct a radial
Schwartz function?
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