Supersingular Isogeny Graphs in Cryptography

Kristin Lauter – Facebook AI Research
Park City Mathematics Institute
2021 Online Series—Lecture 1
July 26, 2021

TA: Jana Sotakova

Cryptography:

- The science of keeping secrets!
- But more than that...
 - Confidentiality
 - Authenticity
- Tools:
 - Encryption/Decryption
 - Digital signatures
 - Key exchange

Public Key Cryptography

- <u>Key exchange</u>: two parties agree on a common secret using only publicly exchanged information
- Signature schemes: allows parties to authenticate themselves
- Encryption: preserve confidentiality of data
- Examples of public key cryptosystems:

RSA, Diffie-Hellman, ECDH, DSA, ECDSA

Applications:

- Secure browser sessions (https: SSL/TLS)
- Signed, encrypted email (S/MIME)
- Virtual private networking (IPSec)
- Authentication (X.509 certificates)

Public Key Cryptography deployed today:

Security is based on hard math problems:

- Factoring large integers
- Discrete logarithm problem in (Z/pZ)*
- Discrete logarithm problem in elliptic curve groups
- Weil pairing on elliptic curves

Elliptic Curve Cryptography

- p a large prime of cryptographic size
- Elliptic Curve defined by short Weierstrass equation:

$$E_1: y^2 = x^3 + ax + b$$

• Labeled by j-invariants: isomorphism invariant over F_nbar

$$j(E_1) = 1728*4a^3/(4a^3+27b^2)$$

- Algebraic group with group law (chord and tangent method)
- Supersingular elliptic curves modulo p: no p-torsion points over F_p bar Isomorphism class has a representative defined over $GF(p^2)$ (or GF(p)) Endomorphism ring isomorphic to maximal order in definite quaternion algebra

What do we mean by "hard" math problem?

Input represented by *m* bits:

Then the best known attack on the system runs in exponential time in m.

exponential time in m $O(2^m)$

sub-exponential time in m $O(e^{c^*m^1/3} (\log m)^2/3)$

polynomial time in m O(polynomial in m)

Example: to factor n = p*q where m = log n, trial division takes exponential time

The Quantum threat:

Polynomial time Quantum algorithms for attacking current systems!

```
m = # bits
```

- Shor's algorithm for factoring 4m³ time and 2m qbits
- ECC attack requires 360m³ time and 6m qbits
 [Proos-Zalka, 2004]

Conclusion:

- RSA: m = 2048
- Discrete log m = 2048
- Elliptic Curve Cryptography m = 256 or 384

are not resistant to quantum attacks once a quantum computer exists at scale!

Timeline for Elliptic Curve Cryptography

- (2006) Suite B set requirements for the use of Elliptic Curve Cryptography
- (2016) CNSA requirements increase the minimum bit-length for ECC from 256 to 384. Advises that adoption of ECC not required.
- (2017) NIST international competition to select post-quantum solutions: 5-year PQC Competition

Post-quantum cryptography

Submissions to the NIST PQC competition based on hard math problems:

- Code-based cryptography (McEliece 1978)
- Multivariate cryptographic systems (Matsumoto-Imai, 1988)
- Lattice-based cryptography (Hoffstein-Pipher-Silverman, NTRU 1996)
- Supersingular Isogeny Graphs (Charles-Goren-Lauter 2005)
- Challenge! Need to see if these new systems are resistant to *both* classical and quantum algorithms!

Supersingular Isogeny Graphs

New hard problem introduced in 2005: [Charles-Goren-Lauter]

• Finding paths between nodes in a Supersingular Isogeny Graph

Graphs: G = (V, E) = (vertices, edges)

- k-regular, undirected graphs, with optimal expansion
- No known efficient routing algorithm

Application: Cryptographic Hash functions

A hash function maps bit strings of some finite length to bit strings of some fixed finite length

$$h: \{0,1\}^n \rightarrow \{0,1\}^m$$

- easy to compute
- unkeyed (do not require a secret key to compute output)
- Collision resistant
- Uniformly distributed output

Collision-resistance

- A hash function h is *collision resistant* if it is computationally infeasible to find two distinct inputs, x, y, which hash to the same output h(x) = h(y)
- A hash function h is *preimage resistant* if, given any output of h, it is computationally infeasible to find an input, x, which hashes to that output.

Application: cryptographic hash function [CGL'06]

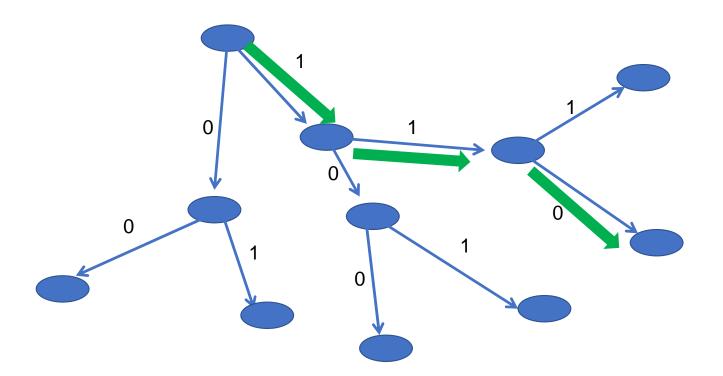
- k-regular graph G
- Each vertex in the graph has a label

Input: a bit string

- Bit string is divided into blocks
- Each block used to determine which edge to follow for the next step in the graph
- No backtracking allowed!

Output: label of the final vertex of the walk

Walk on a graph: 110



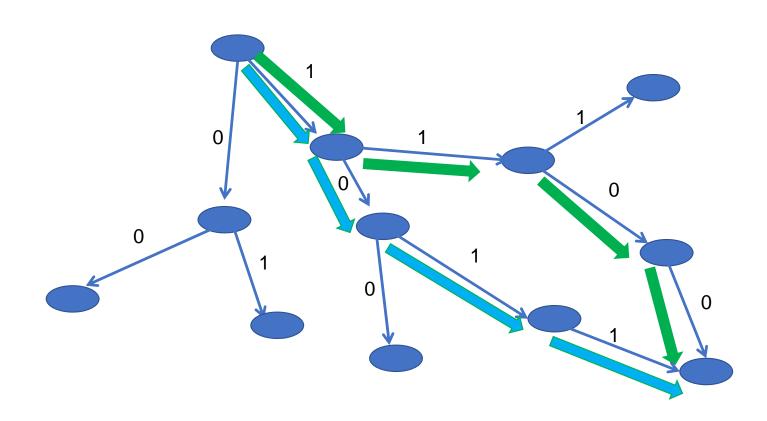
Simple idea

- Random walks on *expander* graphs are a good source of pseudo-randomness
- Are there graphs such that finding collisions is hard? (i.e. finding distinct paths between vertices is hard)
- Bad idea: hypercube (routing is easy, can be read off from the labels)

What kind of graph to use?

- Random walks on expander graphs mix rapidly: ~log(p) steps to a random vertex, p ~ #vertices
- Ramanujan graphs are optimal expanders
- To find a collision: find two distinct walks of the same length which end at same vertex

Colliding walks: 1100 and 1011



Graph of supersingular elliptic curves modulo p with isogeny edges (Pizer/Mestre graphs)

- Vertices: supersingular elliptic curves mod p
 - Curves are defined over GF(p²) (or GF(p))
- Labeled by j-invariants
 - $E_1 : y^2 = x^3 + ax + b$
 - $j(E_1) = 1728*4a^3/(4a^3+27b^2)$
- Edges: Isogenies between elliptic curves

Supersingular Isogeny Graphs: edges

• Edges: degree ℓ isogenies between elliptic curves

- $k = \ell + 1 regular$
- Undirected if we assume p == 1 mod 12
- Graph is Ramanujan (Deligne, ...)

Isogenies

- The degree of a separable isogeny is the size of its kernel
- To construct an ℓ -isogeny from an elliptic curve E to another, take a subgroup-scheme C of size ℓ , and take the quotient E/C.
- Formula for the isogeny and equation for E/C were given by Velu.

One step of the walk: $(\ell=2)$

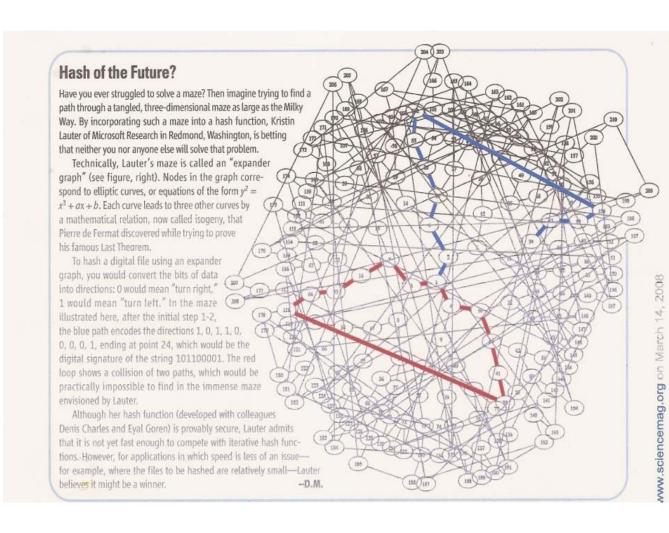
```
E<sub>1</sub>: y^2 = x^3 + ax + b

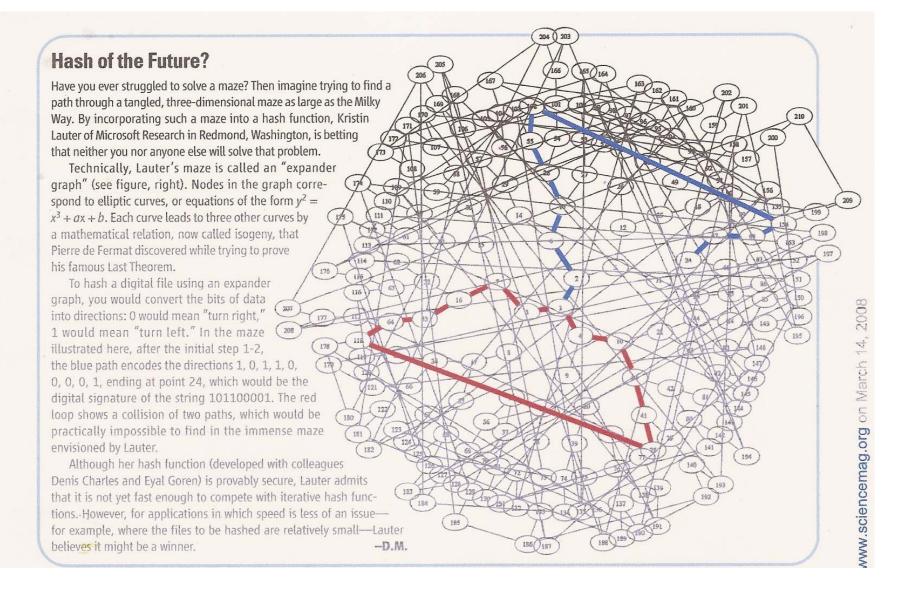
• j(E_1)=1728*4a^3/(a^3+27b^2)

• 2-torsion point Q = (r, 0)
```

E₂ = E₁ /Q (quotient of groups) • E₂: $y^2 = x^3 - (4a + 15r^2)x + (8b - 14r^3)$. E₁ \rightarrow E₂ (x, y) \rightarrow (x +(3r² + a)/(x-r), y - (3r² + a)y/(x-r)²)

Science magazine 2008





History

- Charles-Goren-Lauter presented at NIST 2005 competition,
 - IACR eprint 2006, published J Crypto 2009
- Later in 2006, two papers on eprint, never published:
 - Couveignes, ordinary case (Hard Homogeneous Spaces)
 - Rostovtsev-Stolbunov, ordinary case (Encryption)
- Ordinary case is very different for many reasons:
 - Volcano structure of graph
 - Action of an abelian class group

Supersingular Isogeny Graphs in Cryptography

PCMI Lecture #2

Kristin Lauter

Facebook AI Research/University of Washington

TA: Jana Sotakova

Outline:

- First lecture: cryptography, quantum threat, hash function, SIG
- Second lecture: expander graphs, Ramanujan property, key exchange, generic attacks
- Third lecture: quaternion algebras, KLPT, signatures

Expander graphs

G = (V,E) a graph with vertex set V and edge set E.

A graph is k-regular if each vertex has k edges coming out of it.

Def: An expander graph with N vertices has expansion constant or Cheeger constant, c > 0, if for any subset U of V of size

$$|U| \leq N/2$$
,

the boundary of U, $\Gamma(U)$:= neighbors of U not in U, satisfies

$$|\Gamma(U)| \ge c|U|$$
.

Expansion constant

The adjacency matrix $A(\ell) = (a_{ii})$ is defined by

a_{ii} := # edges from ith vertex to jth vertex in the ℓ-isogeny graph

The adjacency matrix of an undirected graph is symmetric, and therefore all its eigenvalues are real.

For a connected k-regular graph, the largest eigenvalue is k, and all others are strictly smaller

$$k > \mu_1 \ge \mu_2 \ge \cdots \ge \mu_{N-1}$$

Then the expansion constant c can be expressed in terms of the eigenvalues as follows:

$$c \ge 2(k - \mu_1)/(3k - 2\mu_1)$$

Therefore, the smaller the eigenvalue μ_1 , the better the expansion constant.

Ramanujan graphs

Theorem (Alon-Boppana)

X_m an infinite family of connected, k-regular graphs, (with the number of vertices in the graphs tending to infinity), then

$$\lim\inf\mu_1(X_m)\geq 2\sqrt{(k-1)}$$

Definition: A *Ramanujan graph* is a k-regular connected graph satisfying

$$\mu_1 \leq 2\sqrt{(k-1)}$$

In our case

$$k = \ell + 1$$

Ramanujan property

 $S_2(p)$ = vector space of weight-2 cusp forms of level p

Action of Hecke operator T_{ℓ} given by the Brandt matrix $B(\ell)=A(\ell)$

[Mestre, La Methode des graphes] English translation: https://wstein.org/papers/rank4/mestre-en.pdf

Eigenvalues of this matrix satisfy the Ramanujan condition

For higher-dimensional analogue, see [CGL'07]:

https://www.math.mcgill.ca/goren/PAPERSpublic/FinalRamanujan.pdf

Approximating the uniform distribution

For non-back-tracking walks on a 3-regular graph, if there are no collisions, then you reach

2ⁿ vertices after n steps

So for optimal expander graphs, we expect diameter to be roughly

log(|G|)

Also note: most pairs of vertices are not connected by paths which are significantly shorter than log(|G|).

Applications of SIG

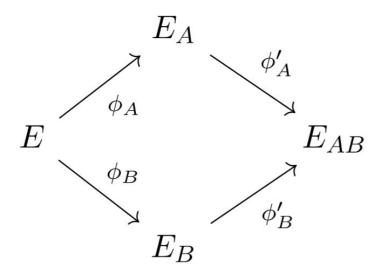
Proposed as basis for other cryptosystems:

Key exchange: Jao-De Feo 2011

Encryption: Jao-De Feo-Plut, 2014

Signatures: Galbraith-Petit-Silva 2016, SQIsign 2020

Key Exchange [Jao-DeFeo-Plut'11]



Key Exchange set-up

E: supersingular elliptic curve over GF(p^2)

$$p = \ell_A{}^m \ \ell_B{}^n + 1$$

$$\ell_A \text{ and } \ell_B \text{ distinct primes} \qquad \text{(e.g. } \ell_A = 2 \text{ and } \ell_B = 3\text{)}$$

A and B want to exchange a key.

Public parameters:

A picks
$$P_A$$
, Q_A such that $\langle P_A, Q_A \rangle = E[\ell_A^m]$
B picks P_B , Q_B such that $\langle P_B, Q_B \rangle = E[\ell_B^n]$

Key Exchange (continued)

Secret parameters:

A picks two random integers m_A, n_A

A uses Velu's formulas to compute the isogeny

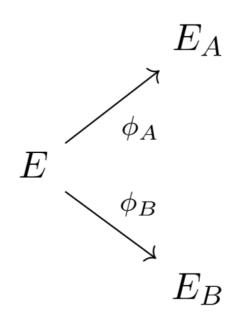
$$\varphi_A : E \longrightarrow E_A := E/ < m_A P_A + n_A Q_A >$$

B picks two random integers m_B, n_B

B uses Velu's formulas to compute the isogeny

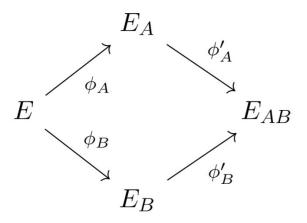
$$\phi_{\rm B}$$
 : E \longrightarrow E_B := E/ < m_BP_B + n_BQ_B >

A and B have constructed the following diagram.



To complete the diamond, A and B exchange information:

A computes the points $\phi_A(P_B)$ and $\phi_A(Q_B)$ and sends $\{\phi_A(P_B), \phi_A(Q_B), E_A\}$ to B B computes the points $\phi_B(P_A)$ and $\phi_B(Q_A)$ and sends $\{\phi_B(P_A), \phi_B(Q_A), E_B\}$ to A



The j-invariant of the curve $\mathbf{E}_{\mathbf{AB}}$ is the shared secret.

Security of Key Exchange: relies on CGL path-finding problem

If you can find the path between E and E_{A} .

then you can break the Key Exchange.

Note that the walks on each stage of the Key Exchange protocol are of length roughly ½ the diameter!

- Thus the probability that there exists a path between any 2 nodes is roughly $p^{(-1/2)}$
- So if you can find any path, it is overwhelming likely to be the path used in the Key Exchange.

Reduction result from WIN4 paper 2017 [Costache-Feigon-Lauter-Massierer-Puskas]

Theorem 5.3 [CFLMP18] Assume as for the Key Exchange set-up that $p = \ell_A^n \cdot \ell_B^m + 1$ is a prime of cryptographic size, i.e. $\log(p) \geq 256$, ℓ_A and ℓ_B are small primes, such as $\ell_A = 2$ and $\ell_B = 3$, and $n \approx m$ are approximately equal. Given an algorithm to solve Problem 3.1 (Path-finding), it can be used to solve Problem 3.2 (Key Exchange) with overwhelming probability. The failure probability is roughly

$$\frac{\ell_A^n + \ell_A^{n-1}}{p} \approx \frac{\sqrt{p}}{p}.$$

Hard Problems in SIG?

- **Problem 1 (collisions)** Produce a pair of supersingular elliptic curves, E₁ and E₂, and two distinct isogenies of degree ℓⁿ between them.
- **Problem 2 (cycles)** Given E, a supersingular elliptic curve, find an endomorphism $f: E \to E$ of degree ℓ^{2n} , not the multiplication by ℓ^n map.
- **Problem 3 (paths)** Given two supersingular elliptic curves, find an isogeny of degree ℓⁿ between them.

Hardness: Generic attacks

The best known classical attacks are generic square root attacks: heuristic running time is exponential: V(|G|)

Birthday attack: randomly walk from the two endpoints until you find a collision

Generic Square Root Attack

