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• Generalization guarantees. Sample complexity for 

supervised classification

Brief Overview

Lectures 1 & 2: Foundations of classic ML.

This lecture series: theoretical foundations for learning in the

age of big data.

Lectures 3: Active Learning.

Lectures 4: Distributed Learning.



Supervised Classification. Example: Spam Detection

Goal: use emails seen so far to produce good prediction 
rule for future data.

Not spam spam

Decide which emails are spam and which are important.

Supervised classification



• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels 2 {-1,1} - binary classification
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• Realizable: 𝑐∗ ∈ 𝐻. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

Bias: fix hypothesis space H [whose complexity is not too large]

• Agnostic: 𝑐∗ “close to” H. 



• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

Training error: errS h =
1

m
σi I h xi ≠ c∗ xi

True error: errD h = Pr
x~ D

(h x ≠ c∗(x))

• Does optimization over S, find hypothesis ℎ ∈ 𝐻.

PAC/SLT models for Supervised Learning

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over future 
instances drawn at random from D 

• But, can only measure:

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over training 
instances

Sample complexity: bound 𝑒𝑟𝑟𝐷 ℎ in terms of 𝑒𝑟𝑟𝑆 ℎ



Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

So, if c∗ ∈ H and can find consistent fns, then only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿

Probability over different samples of m 
training examples

Bound only logarithmic in |H|, linear in 1/𝜖



Supervised Learning: PAC model (Valiant)

• X - instance space, e.g., X = 0,1 n or X = Rd

• Sl={(xi, yi)} - labeled examples drawn i.i.d. from some 
distr. D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

• Algorithm A PAC-learns concept class H if for any 
target c* in H, any distrib. D over X, any ,  > 0:

- A uses at most poly(d,1/,1/,size(c*)) examples and running 
time.
- With probab. 1-, A produces h in H of error at · .



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

1) PAC: How many examples suffice to guarantee small error whp. 

2) Statistical Learning Way:

errD(h) ≤
1

m
ln H + ln

1

𝛿
.

With probability at least 1 − 𝛿, for all h ∈ H s.t. errS h = 0 we have



Sample Complexity: Uniform Convergence

Agnostic Case

Empirical Risk Minimization (ERM)

• Output: Find h in H with smallest errS(h)

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

1/𝜖2 dependence [as opposed 
to1/𝜖 for realizable]



Sample Complexity: Finite Hypothesis Spaces

Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h +
1

2m
ln (2 H ) + ln

1

𝛿
.

With prob. at least 1 − 𝛿, for all h ∈ H:

1/𝜖2 dependence [as opposed to 1/𝜖

for realizable], but get for 
something stronger.

1

𝑚
as opposed to 

1

𝑚
for 

realizable



What if H is infinite?

E.g., linear separators in Rd
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E.g., intervals on the real line

a b

+- -

E.g., thresholds on the real line
w

+-



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

H m = max
S =m

|H[S]|



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

H m = max
S =m

|H[S]|

E.g., H= Thresholds on the real line

- - - +

In general, if |S|=m (all distinct), |H S | = m + 1 ≪ 2m

|H S | = 5

- - - -

w
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H[m] ≤ 2m



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

E.g., H= Intervals on the real line

- - + -

In general, |S|=m (all distinct), H m =
m m+1

2
+ 1 = O(m2) ≪ 2m

- - - -

+- -

There are m+1 possible options for the first part, m left for the second part, the 
order does not matter, so ((m+1) choose 2) + 1 (for empty interval).

• H[m] - max number of ways to split m points using concepts in H

H m = max
S =m

|H[S]| H[m] ≤ 2m



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

Definition: H shatters S if |H S | = 2|𝑆|.

H m = max
S =m

|H[S]| H[m] ≤ 2m



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

• Not too easy to interpret sometimes hard to calculate 
exactly, but can get a good bound using “VC-dimension

• VC-dimension is roughly the point at which H stops looking 
like it contains all functions, so hope for solving for m.

If H m = 2m, then m ≥
m

ϵ
(… . ) 

H[m] - max number of ways to split m points using concepts in H



Sample Complexity: Infinite Hypothesis Spaces

Sauer’s Lemma: H m = O mVCdim H

H[m] - max number of ways to split m points using concepts in H



Shattering, VC-dimension

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2|𝑆| possible ways, all possible ways of 
classifying points in S are achievable using concepts in H.

Definition:

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞

VC-dimension (Vapnik-Chervonenkis dimension)

H shatters S if |H S | = 2|𝑆|.



Shattering, VC-dimension

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞

VC-dimension (Vapnik-Chervonenkis dimension)

To show that VC-dimension is d:

– there is no set of d+1 points that can be shattered.

– there exists a set of d points that can be shattered

Fact: If H is finite, then VCdim(H) ≤ log(|H|).



Shattering, VC-dimension

E.g., H= Thresholds on the real line

VCdim H = 1
w

+-

If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Intervals on the real line +- -

+ -

VCdim H = 2

+ - +



Shattering, VC-dimension
If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Union of k intervals on the real line

+- -

VCdim H = 2k

+ - +

+ - + -
…

VCdim H < 2k + 1

VCdim H ≥ 2k A sample of size 2k shatters
(treat each pair of points as a separate
case of intervals)

+



E.g., H= linear separators in R2

Shattering, VC-dimension

VCdim H ≥ 3



Shattering, VC-dimension

VCdim H < 4

Case 1: one point inside the triangle formed by 
the others. Cannot label inside point as positive 
and outside points as negative.

Case 2: all points on the boundary (convex hull).  
Cannot label two diagonally as positive and other 
two as negative.

Fact: VCdim of linear separators in Rd is d+1

E.g., H= linear separators in R2



Sauer’s Lemma 
Sauer’s Lemma:

• m ≤ d, then H m = 2m

• m>d, then H m = O m𝑑

Let d = VCdim(H)



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Sauer’s Lemma: H m = O mVCdim H



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

E.g., H= linear separators in Rd

Sample complexity linear in d

So, if double the number of features, then I only need 
roughly twice the number of samples to do well.



• Distribution/data dependent. Tighter for nice distributions.

• Apply to general classes of real valued functions & can be used to 
recover the VC-bounds for supervised classification.

See  Bousquet-Boucheron-Lugosi, “Introduction to Statistical 
Learning Theory”, 2014.

• Prominent technique for generalization bounds since 2000.

Rademacher Complexity Generalization Bounds 

Data Dependent Generalization Bounds

Covering Numbers Generalization Bounds 

See Anthony-Bartlett, “Neural Network Learning: Theoretical 
Foundations”, 1999.



Summary

• Shattering, VC dimension as measure of complexity, 
Sauer’s lemma, form of the VC bounds .

• Notion of sample complexity.

• PAC/SLT models for supervised learning.


