Foundations for Learning in the
Age of Big Data

Maria-Florina (Nina) Balcan
Carnegie Mellon University



Brief Overview

This lecture series: theoretical foundations for learning in the
age of big data.

Lectures 1 & 2: Foundations of classic ML.

* Generalization guarantees. Sample complexity for
supervised classification

Lectures 3: Active Learning.

Lectures 4: Distributed Learning.



Supervised Classification. Example: Spam Detection

Decide which emails are spam and which are important.
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Nina:
You might have already ssen this announcement, but I would like to
personally congratulate you for your outstanding dissertation. I would
like to invite you to return to CHU to give a distinguished lecture
sometime in the winter of 2010. Catherine Copetas will work out the
timing for you. You'll get to use the new Rashid Audicorium—-—-a big
improvement over Wean 7500.
Best of wishes to you at Georgia Tech.
- Randy
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PAC/SLT models for Supervised Learning

X - feature/instance space; distribution D over X
eg.,X=R4orX=1{0,1}4
« Algo sees training sample S: (x;,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D
- labeled examples - drawn i.i.d. from D and labeled by target ¢
- labels € {-1,1} - binary classification

» Algo does optimization over S, find hypothesis h. <

* Goal: h has small error over D. _ -
I X
errp (h) — PrD(h(x) == C*(x)) nstance space
X~

Bias: fix hypoThesis space H [whose complexity is not too large]
 Readlizable: ¢* € H.
« Agnostic: ¢* "close to" H.



PAC/SLT models for Supervised Learning

« Algo sees training sample S: (x,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D

Does optimization over S, find hypothesis h € H.

Goal: h has small error over D.
True error: errp(h) = PrD(h(x) * c* (X))
.

How often h(x) # c*(x) over future
instances drawn at random from D

But, can only measure:
Training error: errs(h) = izi [(h(x) # c*(x;))

How often h(x) # c*(x) over training
instances

Sample complexity: bound err,(h) in terms of errg(h)



Sample Complexity for Supervised Learning

Consistent Learner
* Input: Si(%1,c*(xy)),..., (X,* (X))
- Output: Find h in H consistent with the sample (if one exits).

Bound only Togarithmic in [H[, Tinear in 1/¢
1

T heorem

m > % [In(|H|) + In

labeled examples are sufficient so that (with prob. 1 —é,)all h € H with

errp(h) 2 € have errg(h) > 0. Probability over different samples of m

training examples

So, if ¢* € Hand can find consistent fns, then only need this many
examples to get generalization error < € with prob. > 1 -6




Supervised Learning: PAC model (Valiant)

- X - instance space, e.g., X = {0,1}" or X = R4
* S{(x;, ¥;)} - labeled examples drawn i.i.d. from some
distr. D over X and labeled by some target concept ¢’

- labels € {-1,1} - binary classification

* Algorithm A PAC-learns concept class H if for any
target c* in H, any distrib. D over X, any ¢, 6 > O:
- A uses at most poly(d,1/¢,1/5 size(c*)) examples and running

time.
- With probab. 1-5, A produces h in H of error at - ¢.



Sample Complexity: Finite Hypothesis Spaces
Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

T heorem

s o +in(2)

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > & have errg(h) > 0.

2) Statistical Learning Way:

With probability at least 1 — §, for all h € H s.t. errg(h) = 0 we have

errp(h) < é(ln |H| + In (%))



Sample Complexity: Uniform Convergence
Agnostic Case

Empirical Risk Minimization (ERM)
Input: Si (xq,c*(x)),..., (X.c* (X))

* Output: Find h in H with smallest errg(h)

T heorem

m z@m(wn +n (2]

labeled examples are sufficienfk.t. with probab. > 1 -4, all h € H

have h) — h)| <e.
lerrp(h) —errg(h)| <e 1/€¢# dependence [as opposed

tol/e for realizable]



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

1/e* dependence as opposed to 1/¢
Theorem for realizable], but 961’ fOI"

> : {In(|H|) Tn (?)] something stronger.
labeled examples are suffictent s.t. with probab. > 1 -9, all h € H
have |errp(h) — errg(h)| < e.

2) Statistical Learning Theory style:

\/% as opposed fo % for
With prob. at least 1 — &, for all h € H: realizable

(, _— £1\ )
errp(h) < errg(h) +@ (Z[H]) + In \EU>




What if H is infinite?

+
E.g., linear separators in R¢ +
+

E.g., thresholds on the real line |

E.g., infervals on the real line




Effective number of hypotheses

* H[S] - the set of splittings of dataset S using concepts from H.

+ H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S]]

|S|=m



Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S] H[m] < 2™
|S|=m
E.g.. H= Thresholds on the real line - } +
W
- - - —~
O—O0——0——79 |H[S]| =5
_ _ n n
- + + +
+ + + +

In general, if |S|=m (@l distinct), |[H[S]| = m + 1 « 2™



Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max |H|S]| H[m] < 2™

+
E.g., H= Intervals on the real line i i

- _|_ -

() () I ()
/ / N\ I

In general, |S|=m (all distinct), H{m] = m(“;rl) +1 = 0(m?) « 2m

There are m+1 possible options for the first part, m left for the second part, the
order does not matter, so ((m+1) choose 2) + 1 (for empty interval).



Effective number of hypotheses

* H[S] - the set of splittings of dataset S using concepts from H.
* H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S]| H[m] < 2™

Definition: H shatters S if |H[S]| = 25



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > § l0g2(2H([2m]) + 1092 @)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

* Not too easy to interpret sometimes hard to calculate
exactly, but can get a good bound using "VC-dimension

If Hlm] = 2™, thenm > =(...) ®

« VC-dimension is roughly the point at which H stops looking
like it contains all functions, so hope for solving for m.



Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

o)
then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

m > é [|092(2H[2m]) T 1092 (l)]

Sauer's Lemma: H[m] = O(mVCdim(H))

Theorem
m = O G [VC’dim(H) log (é) + log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Shattering, VC-dimension
Definition: H shatters S if |H[S]| = 2/5I.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways, all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vaphik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo



Shattering, VC-dimension

Definition: VC-dimension (Vapnhik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H|).



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g.. H= Thresholds on the real line SEEEL.
w
VCdim(H) =1 \j} 5

E.g.. H= Intervals on the real line

VCdim(H) = 2 O

O

5

QO+
O




Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
_ H” -t - | |
| | | |

VCdim(H) > 2k A sample of size 2k shatters
o (treat each pair of points as a separate
case of intervals)

VCdim(H) < 2k + 1

|
R
|

+
o
—
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Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) = 3 >(




Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive
and outside points as hegative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other ®
two as negative.

Fact: VCdim of linear separators in R¢ is d+1



Sauer's Lemma

Sauer's Lemma:
Let d = VCdim(H)
* m <d, then Him] = 2™

» m>d, then H[m] = O(m%)



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > § [|092(2H[2m]) +logz (%)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

Sauer's Lemma: H[m] = O(mV¢dim()

T heorem
1 _ 1 1
m= O (— [VC’dzm(H) 09 (—) + log (-)D
£ € )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem

=0 (2 [rcununyon () +is(2)

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

E.g., H= linear separators inRY  m =0 Gg G) + log (%)D

Sample complexity linear in d

So, if double the number of features, then I only need
roughly twice the number of samples to do well.



Data Dependent Generalization Bounds

« Distribution/data dependent. Tighter for nice distributions.

« Apply to general classes of real valued functions & can be used to
recover the VC-bounds for supervised classification.

« Prominent technique for generalization bounds since 2000.

Covering Numbers Generalization Bounds

See Anthony-Bartlett, "Neural Network Learning: Theoretical
Foundations”, 1999.

Rademacher Complexity Generalization Bounds

See Bousquet-Boucheron-Lugosi, "Introduction to Statistical
Learning Theory", 2014,



Summary

« PAC/SLT models for supervised learning.

* Notion of sample complexity.

« Shattering, VC dimension as measure of complexity,
Sauer's lemma, form of the VC bounds .



