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Abstract

In these notes, we will consider the Hamiltonian analysis of Yang-Mills theory and

some variants of it in three dimensions using the Schrödinger representation. This

representation, although technically more involved than the usual covariant formu-

lation, may be better suited for some nonperturbative issues. I will review string ten-

sion, Casimir energy, and comment on a few other questions.

(To be revised)
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1 Introduction

Gauge theories have a foundational role in physics since they are the basic paradigm for
the formulation of the Standard Model (SM) of fundamental particles and their inter-
actions. The great success of the SM therefore makes it imperative that we understand
the structure of gauge theories in different environments and kinematic regimes. Co-
variant perturbation theory for gauge theories is by now a well-developed and powerful
technique and it is adequate for the analysis of the electroweak sector of the SM for
most questions of interest. The situation for the strong nuclear forces, described by
Quantum Chromodynamics (QCD), is very different. The high energy regime of QCD
(energies & 10 GeV) can be analyzed using perturbation theory by virtue of asymptotic
freedom. But the low energy regime, where the interaction strength is large and where
perturbation theory is no longer applicable, remains a real challenge. Decades of work
have led to a fairly good qualitative understanding of the low energy regime of non-
abelian gauge theories, but quantitative analysis of important questions such as how
quarks bind together to form hadrons, what the nucleonic and nuclear matrix elements
for the electroweak transitions of hadrons are, etc., is difficult. Lattice gauge theory,
combined with large scale numerical simulations, has been the reliable workhorse for
most questions of a nonpertrubative nature and, indeed, it has produced a number of
useful results. However, it is important to correlate these results with an analytical ap-
proach to arrive at a complete or more comprehensive understanding of the physics of
gauge theories.

In this review/lectures, we will try to develop an approach which is very differ-
ent from covariant perturbation theory, namely, the Schrödinger representation in field
theory where we use Hamiltonians and seek wave functionals which are solutions of
the Schrödinger equation. Although this representation goes back to the early days of
field theory, and has the conceptual simplicity of elementary quantum mechanics, it has
rarely been used because of many perceived difficulties. Nevertheless, it may be more
suitable for certain types of questions in field theory. To cite an elementary example,
recall that a spacetime approach in terms of path integrals can be used to work out the
bound state energy levels and transition matrix elements for the Hydrogen atom, but it
is much simpler to use the Hamiltonian and the Schrödinger equation.

We will only be considering the application of this method to the three (or 2+1)
dimensional Yang-Mills (YM) theory. However, it is useful to start with a few general
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observations. Consider a simple scalar field theory with a classical action of the form

S =

∫ [
1

2
∂µφ ∂

µφ− m2

2
φ2 − λφ4

]
(1.1)

In the canonical quantization of this theory, we start with the equal-time commutation
rules, say at time t = 0,

[φ(~x, 0), φ(~y, 0)] = 0

[φ(~x, 0), π(~y, 0)] = i δ(~x− ~y) (1.2)

[π(~x, 0), π(~y, 0)] = 0

where π(~x, 0) = φ̇(~x, 0). This suggests that we can define a set of φ-diagonal states |ϕ〉
obeying φ(~x, 0) |ϕ〉 = ϕ(~x) |ϕ〉, where ϕ(~x) is a c-number function. A Schrödinger wave
function for a state |α〉 will take the form

Ψα[ϕ] = 〈ϕ|α〉 (1.3)

It is a functional of ϕ. The commutation rules (1.2) can then be represented as

〈ϕ|φ(~x, 0) |α〉 = ϕ(~x) Ψα[ϕ]

〈ϕ|π(~x, 0) |α〉 = −i δ

δϕ(~x)
Ψα[ϕ] (1.4)

This is the Schrödinger representation of the commutation rules.

The Hamiltonian corresponding to the action (1.1) has the form

H =

∫ [
1

2
π2 +

1

2
φ(−∇2 +m2)φ+ λφ4

]
(1.5)

The idea is that we can use this to write down and solve the Schrödinger equation. The
vacuum state of the theory, represented by the wave functional Ψ0[ϕ], would thus satisfy

HΨ0[ϕ] =

∫ [
−1

2

(
δ2

δϕ(~x)δϕ(~x)

)
+

1

2
ϕ(x)ω2(x, y)ϕ(y) + λϕ4(x)

]
Ψ0[ϕ]

= 0 (1.6)∫

x,y

ϕ(x)ω2(x, y)ϕ(y) ≡
∫

x

ϕ(x)(−∇2 +m2)ϕ(x)

where we have used the Schrödinger representation to write H as a functional differen-
tial operator which can act on Ψ0[ϕ].
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A number of potential problems are evident at this stage. As with any field the-
ory, we need regularization and renormalization. In covariant perturbation theory, the
regularized action has the form

S =

∫ [
Z3

[
1

2
∂µφ ∂

µφ− m2

2
φ2 +

δm2

2
φ2

]
− Z1λφ

4

]
(1.7)

where Z1, Z3 and δm2 will depend on the regularization parameter Λ (upper cutoff
on momenta) and are chosen so as to render all correlation functions finite as Λ →
∞. The situation in the Schrödinger representation is more complicated. We have
functional derivatives at the same point ~x in the δ2/δϕ2-term, so it needs regularization
and a Z-factor. A similar statement applies to the ϕ(−∇2ϕ)-term. The mass term will
need an additive renormalization as well, so we need a term 1

2
δm2ϕ2. And finally we

need regularization and a Z-factor for the interaction term. At this stage, we could
envisage independent regularizations for the terms δ2/δϕ2 and ϕ(−∇2ϕ), since we have
a separation of space and time and Lorentz invariance is not manifest. The requirement
of Lorentz invariance will relate the Z-factors for these two terms. The regularization
must be so chosen as to ensure this, Lorentz invariance is not automatic as in covariant
perturbation theory. This is one of the complications of the Schrödinger representation
for field theories.

There is one other issue associated with Poincaré invariance. One of the commuta-
tion rules for the Poincaré algebra is

[Ki, Pj] = i δijH (1.8)

where Pj is the total momentum and Ki is the generator of Lorentz boosts. Taking
the expectation value of this with the vacuum state shows that if the vacuum is to be
Lorentz invariant, we must have 〈0|H |0〉 = 0. So, for maintaining Poincaré invariance,
H must be redefined by subtracting a certain c-number term to ensure this; this is the
version of the familiar normal ordering in the present context.

In addition to the Hamiltonian, we must ensure that the wave functionals are well-
defined. In general, this will require additional counterterms. One way to understand
the genesis of such counterterms is to think of the wave function at time t1 as defined
by a path integral over the region t < t1 as in

Ψ[ϕ, t1] =

∫
[Dϕ̃] eiS[ϕ̃,t1,t0] Ψ[ϕ′, t0], ϕ̃(~x, t1) = ϕ(~x), ϕ̃(~x, t0) = ϕ′(~x) (1.9)

In the course of carrying out calculations using this form, we will be renormalizing an
action defined on a spacetime region with boundaries (the time-slices at t0 and t1) and
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it will require counterterms on the boundaries. These take the form

Ψ→ exp

[
i

∫
Z5ϕ∂0ϕ + ∆ϕ2

]
Ψ (1.10)

The Hamiltonian itself takes the form

H =

∫
1

2

[
− 1

Z3Z0

(
δ2

δϕ(~x)δϕ(~x)

)

reg

+ Z3Z0

(
(∇ϕ)2 + (m2 − δm2)ϕ2

)
reg

]

+

∫
Z1

(
λϕ(x)4

)
reg
− E0 (1.11)

The factor Z0 is related to Z5 in (1.10). The boundary counterterms are another com-
plication, in general, for the Schrödinger representation.

With the formalism as outlined above, and using a point-splitting regularization,
Symanzik was able to prove the renormalizability of the φ4-theory in the Schrödinger
representation [1]. (While renormalizability of this theory in the covariant formalism
was relatively straightforward, before Symanzik’s work, there was even a general feeling
that the theory was not renormalizable in the Schrödinger representation. There is some
new physics which emerges in this formalism as well. Symanzik used the Schrödinger
representation to analyze Casimir energies. Further, the additional Z-factor introduced
by Symanzik can also be related to a new critical exponent, see [2].)

A useful observation worth mentioning at this stage is that the vacuum wave func-
tional for the free theory (with λ = 0) is given by

Ψ0[ϕ] =


det

(√
k2 +m2

π

)

reg




1
2

exp

(
−1

2

∫

x,y

ϕ(x)
[√
k2 +m2

]
x,y,reg

ϕ(y)

)
(1.12)

with E0 = 1
2

[√
k2 +m2

]
x,x,reg

.

Given the additional complications with regard to regularization and renormaliza-
tion, compared to covariant perturbation theory, one might wonder whether it is worth
the trouble to pursue the Schrödinger representation in field theory. For certain ques-
tions of a nonperturbative nature, the answer seems to be a qualified yes. The kinetic
operator in the Hamiltonian may be viewed as the Laplace operator on the infinite-
dimensional space of field configurations and if we have some knowledge of the geom-
etry and topology of this space, it can shed light on the spectrum of the Hamiltonian.
A key inspirational paper in this context was by Feynman, who analyzed Yang-Mills
theory in 2+1 dimensions [3]. These theories are rather optimal candidates for the

6



Schrödinger representation since there is no renormalization of the coupling constant,
so some of the aforementioned problems can be avoided. Feynman tried to argue that
the space of gauge-invariant configurations (gauge potentials modulo gauge transfor-
mations) is compact and hence can lead to a discrete spectrum for the Laplacian and
ultimately a mass gap for the theory. This is not quite true, the configuration space is
not compact, as shown by Singer, who however argued that the curvature of the space
is positive [4].1

Feynman’s arguments and Singer’s analysis were carried out before we had an exact
expression for the volume element for the configuration space. What we shall do here
is to revisit this problem in the light of later developments. We will see that, modulo
certain approximations and caveats as explained in detail below, there are a few key
quantitative (and encouraging) results which emerge from our analysis:

1. There is an analytic formula for the string tension which compares very favorably
with numerical estimates from lattice simulations.

2. One can calculate the Casimir energy for a parallel plate arrangement; this too
compares very favorably with the lattice simulations.

There are also some additional insights obtained regarding supersymmetric theories,
entanglement, etc., which we will comment on later.

Unlike the 1+1 dimensional cases, the 2+1 dimensional Yang-Mills theories have
propagating degrees of freedom, so one might consider them to be closer to the 4d Yang-
Mills theories, which is an added motivation for analyzing these theories. But they are
also relevant for the high temperature (T) limit of 4d Yang-Mills theories. In this limit,
the 4d (or 3+1 dimensional) theory reduces to a (Euclidean) 3d Yang-Mills theory with
coupling constant e2 = g2T, where g is the coupling constant of the 4d-theory. Electric
fields and time-dependent processes become irrelevant. The mass gap of the 3d theory,
from the point of view of the 4d theory, becomes the magnetic mass since it controls
the screening of magnetic fields in the gluon plasma [6]. So the identification of the
propagator mass in the 3d theory (either analytically or via the lattice simulation of the
Casimir effect) can be useful for the 4d theory at high temperatures.

Three dimensional space is also famous as the home ground of the 3d Chern-Simons
(CS) theory, with all its ramifications, knot theory, conformal field theory, etc. For the

1Feynman’s analysis was modeled on his earlier very successful analysis of superfluid Helium. The comparison

of the two cases and some of the nuances of the gauge theory are outlined in [5].
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CS theory also, a beautiful analysis can be carried out in the Schrödinger representation,
see [7].

In the following there are some sections or subsections marked with an asterisk; they
capture the logical flow of the main arguments and the most interesting results. The
remaining sections can be bypassed in a first reading. A return to this introduction may
also be useful after reading through some of the following sections.

2 The gauge principle

The quintessential example of a gauge theory is quantum electrodynamics describing
the interaction of electrons and positrons with the electromagnetic field. The starting
point for this theory is the Lagrangian

L(ψ, ψ̄, A) = ψ̄ [iγµ(∂µ − iAµ)−m]ψ − 1

4e2
FµνF

µν (2.1)

where ψ is a 4-component spinor field in four dimensions representing the electron-
positron field, ψ̄ = ψ†γ0, and Aµ is the vector potential for the electromagnetic field.
Also Fµν is the field strength tensor defined as Fµν = ∂µAν − ∂νAµ. The components of
Fµν are related to the electric (Ei) and magnetic (Bi) fields as F0i = Ei, Fij = εijkBk.
The charge of the electron is e and its mass is m. Also, γµ are the Dirac γ-matrices
obeying2

γµ γν + γν γµ = 2 ηµν 1 (2.2)

The key property of the Lagrangian (2.1) for our analysis is gauge invariance. If we
make a change of variables as

ψ → ψg = g ψ, ψ̄ → ψ̄g = ψ̄ g

Aµ → Agµ = g Aµ g
−1 − i∂µg g−1 = Aµ + ∂µθ, (2.3)

where g = eiθ, we find

L(ψg, ψ̄g, Ag) = L(ψ, ψ̄, A) (2.4)

Notice that Fµν (i.e., Ei, Bi) is unchanged by the transformation (2.3). Classically the
motion of a charged particle is governed by the Lorentz force law which involves only
Ei, Bi. Hence, classically the entire dynamics is insensitive to the transformation (2.3).

2Our conventions and specific realizations are discussed in Appendix A.
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Therefore, the gauge degree of freedom, namely θ(x), represents a redundancy in the
dynamical variables used to describe the theory. Going to the quantum theory, notice
that we can set Ag to zero along a line by defining θ(x) as

θ(x) =

∫ x

x0,C

dxµAµ =

∫ x

x0,C

A (2.5)

where C denotes a path connecting the point xµ0 to xµ. In this case, ψ acquires a phase
factor eiθ = ei

∫
C A. Thus, in the quantum theory (where phases are important and have

observable consequences), we would need Aµ rather than just Fµν . But this statement
needs qualification. If we consider deforming the path C to another path C ′ with the
same end points, we get

ei
∫
C A = ei

∫
C−C′ A ei

∫
C′ A

= ei
∫
Σ F ei

∫
C′ A (2.6)

where Σ is a surface with C − C ′ as its boundary, i.e., ∂Σ = C − C ′. (Here −C ′ denotes
C ′ traversed in the opposite direction from xµ to xµ0 .) Then by choosing C ′ as a fixed
standard path, we can obtain the phase ei

∫
C A for any path C in terms Fµν again, and

hence it is insensitive to the gauge transformation, when only phase differences are
observable. (One might even use a C ′ in a region where A = 0.)

An exception to this can arise if there are noncontractible paths in the space under
consideration, in other words, if the fundamental homotopy group Π1 of the space is
nonzero. This may arise due to an intrinsic nontrivial topology, or because certain
regions are inaccessible to the particle/field ψ. In such cases, we might have different
phases associated with different homotopy classes of paths, i.e., with different elements
of Π1. This will be in addition to the factor ei

∫
Σ F which can relate phases for different

paths within the same homotopy class. The conclusion is that, even in the quantum
theory, apart from cases of nontrivial topology (specifically Π1) for space, all dynamics
can be obtained in terms of Fµν (and other fields) which are insensitive to the gauge
transformation. Thus we do have a true redundancy of description. The transformation
(2.3) is often referred to as a gauge transformation and the invariance in (2.4) as gauge
symmetry. But it is different from the usual Noetherian symmetries; it is actually a
redundancy in the field variables used to describe the theory.

The function g = eiθ is an element of the group U(1), so the gauge symmetry in
(2.3), (2.4) is a U(1) gauge symmetry. The generalization of this to an arbitrary Lie
group G is as follows. Consider a set of fields ψi, i = 1, 2, · · · , N which transform as an
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N -dimensional representation R of the group G; i.e.,

(ψi)g = gij ψj (2.7)

We define a covariant derivative Dµψ as

(Dµψ)i = ∂µψ
i + (Aµ)ij ψj (2.8)

where Aµ is an element of the Lie algebra of G, with (Aµ) as its matrix representative in
the chosen representation R. Thus, if {T a} denote a basis for the Lie algebra of G, with
a = 1, 2, · · · ,dimG, realized as matrices in the representation R,

(Aµ)ij = −iAaµ (T a)ij (2.9)

We also define the gauge transform of A as

Agµ = g Aµ g
−1 − ∂µg g−1 (2.10)

This is also in the matrix notation. The derivative Dµψ is covariant in the sense that

(Dg
µψ

g)i =
[
∂µ(gψ) + (g Aµ g

−1 − ∂µg g−1)(gψ)
]i

= gij(∂µψ + Aµψ)j = gij(Dµψ)j (2.11)

As a particular case, if the fields transform according to the adjoint representation of
the group, (T a)ij = −ifaij, where faij are the structure constants of the Lie algebra of
G in the chosen basis. Thus they are given by [T a, T b] = ifabcT c. In this case (Dµψ)a =

∂µψ
a + fabcAbµψ

c.

The commutator of covariant derivatives defines the field strength tensor as

[Dµ, Dν ] = Fµν = (−iT a)F a
µν

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν (2.12)

By construction, Fµν transforms homogeneously under gauge transformations as

F g
µν = g Fµν g

−1 (2.13)

If we have a unitary representation of the group on the fields ψ, we have ψ̄g = ψ̄g† =

ψ̄g−1, so that a Lagrangian consistent with gauge invariance is

L(ψ, ψ̄, A) = ψ̄ [iγµDµ −m]ψ − 1

4e2
F a
µνF

aµν (2.14)
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This is the kind of Lagrangian we use for coupling of quarks to the gluons (particles
corresponding to Aaµ) in quantum chromodynamics (QCD). The left and right chiral
components of the fermion field couple to the gauge field in an identical fashion, so
the coupling is vectorial in nature. The Standard Model also involves chiral or axial
couplings of the quarks and leptons to various gauge fields. Most of of our analysis
will be for the pure gauge theory, and when we discuss gauge fields in interaction with
matter, we will mostly consider vectorial couplings. The action for the gauge field part
of the Lagrangian (2.14) is the Yang-Mills action

SY-M = − 1

4e2

∫
dtdµF a

µνF
aµν

=
1

2e2

∫
dtdµ (Ea

i E
a
i −Ba

i B
a
i ) (2.15)

where dµ is the volume element for the spatial manifold. For the special case of a
U(1) gauge theory where dimG = 1, this action agrees with the action for the electric
and magnetic fields in electrodynamics. The nonabelian analogs of these fields can be
written out as

Ea
i = F a

0i =
∂Aai
∂t
− ∂iAa0 + fabcAb0A

c
i

=
∂Aai
∂t
− (DiA0)a (2.16)

Ba
i =

1

2
εijkF

a
jk =

1

2
εijk(∂jA

a
k − ∂kAaj + fabcAbjA

c
k) (3+1 dim)

Ba =
1

2
εjkF

a
jk =

1

2
εjk(∂jA

a
k − ∂kAaj + fabcAbjA

c
k) (2+1 dim)

The equations of motion for the Y-M theory are

(DiEi)
a = 0

∂Ea
i

∂t
=




−εijk(DjBk)

a 3+1 dim

−εij(DjB)a 2+1 dim
(2.17)

The first of these is the Gauss law familiar from electrodynamics, now generalized to
the nonabelian case. The second is an equation of motion, in the sense of defining
time-evolution, for the field Ea

i .

Our aim is to consider the Hamiltonian formulation of the Y-M theory using the
functional Schrödinger formulation. From now on, unless specifically indicated, we
will consider 2 + 1 dimensions. As a first step, by extending the action in (2.15) to a

11



general curved manifold with metric gµν as F a
µνF

aµν → √−g gµαgνβF a
µνF

aαβ and taking
the variation with respect gµν , we find the energy-momentum tensor for the theory as

Tµν =
1

e2

[
−F a

µαη
αβF a

βν +
1

4
ηµνF a

αβF
aαβ

]
(2.18)

This identifies the Hamiltonian as

H =

∫
dµT00 =

1

2e2

∫
dµ (E2 +B2) (2.19)

To obtain the Poisson brackets, or the commutations rules for the fields in the quantum
theory, we need the canonical structure for the fields. From the term involving time-
derivatives of the fields in (2.15), we can identify this as

Ω =
1

e2

∫
dµ δEa

i δA
a
i =

∫
dµ δΠa

i δA
a
i , Πa

i =
Ea
i

e2
(2.20)

This is to be interpreted as a differential two-form in the space of field configurations
(Ea

i , A
a
i ); we use δ to denote the exterior derivative on the space of fields. On the spatial

manifold at a fixed time, Ea
i is to be treated as an independent variable since it involves

the time-derivative of Aai . It is proportional to the canonical momentum Πa
i conjugate

to Aai . The equal-time commutation rules defined by (2.20) are

[Aai (x), Abj(y)] = 0

[Ea
i (x), Eb

j (y)] = 0

[Ea
i (x), Abj(y)] = −i e2δijδ

abδ(2)(x− y) (2.21)

The commutation rules (2.21) show that Πa
i is the variable canonically conjugate to

Aai . There is no variable conjugate to Aa0. Put another way, the canonical momentum
for Aa0 is zero. If we augment Ω by the addition of a term

∫
δΠa

0 δA
a
0, then we must carry

out a reduction of the phase space by setting Πa
0 to zero as a constraint, Πa

0 ≈ 0 (in the
sense of Dirac’s theory of constraints). As a conjugate constraint, we can use Aa0 ≈ 0.
Thus the pair (Πa

0, A
a
0) will be eliminated from the theory.

The Hamiltonian equations of motion which follow from the canonical brackets are
obtained as

∂Aai
∂t

= Ea
i

∂Ea
i

∂t
= −εij(DjB)a (2.22)
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Notice that the first of these equations requires Aa0 = 0 for consistency with the def-
inition in (2.16). If we did not set Aa0 to zero, we would need to add a term to the
Hamiltonian to obtain the result (2.16). The canonical Hamiltonian and the Hamilto-
nian defined by T00 would differ by terms proportional to the constraint. With Aa0 = 0,
the first of the equations in (2.22) reproduces the definition of Ea

i . The second equation
agrees with the second of the Lagrangian equations of motion in (2.17).

In terms of the canonical momentum, the first of the Lagrangian equations in (2.17)
reads (DiΠi)

a = 0, so it does not involve time-derivatives. Therefore it cannot be re-
produced as a Hamiltonian equation of motion. For equivalence of the Hamiltonian
formulation to the Lagrangian given as (2.17), we have to impose (DiΠi)

a = 0 as an
additional condition. It should be viewed as a constraint on the phase space variables
or on the initial data.

We have restricted the field variables (by use of the freedom of gauge transforma-
tions) to some extent by setting Aa0 = 0. But the theory would still allow for gauge
transformations g which do not depend on time, so that they preserve the condition
Aa0 = 0. The constraint DiEi = 0 may be viewed as the statement of this residual gauge
freedom. We can then choose a constraint conjugate to DiEi, say ∇ · A ≈ 0 for ex-
ample, and carry out a further canonical reduction to obtain Ω on the reduced phase
space (where DiEi = 0 and ∇iAi = 0). We can then formulate Poisson brackets and
commutators in terms of this reduced Ω. This is the approach of gauge-fixing, ∇iAi = 0

being the gauge-fixing condition. Alternatively, in the quantum theory we can impose
DiEi = 0 not as an operator condition but as a condition on states or wave functions.
This is the approach we will be pursuing.

As is well-known, conditions imposed in terms of operators should be understood
as valid with suitable smearing using test functions. The nature of the test functions is
crucial to determining the physical consequences of the theory. We consider the smeared
operator

G0(θ) =

∫
dµ θa(DiΠi)

a (2.23)

If we impose the condition

G0(θ)Ψ = 0 (2.24)

on the wave functions Ψ in the theory, for consistency, we will also need the commutator
[G0(θ), G0(θ′)] to vanish on Ψ. From the canonical commutation rules (2.21) it is easy
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to check that

[G0(θ), G0(θ′)] = iG0(θ × θ′) + i

∮

∂V

(θ × θ′)aΠa
i dSi (2.25)

(θ × θ′)a ≡ fabcθbθ′c

We see that we cannot consistently impose (2.24) unless Πa
i vanishes fast enough as we

approach ∂V or at spatial infinity. This would in turn amount to requiring all charges to
vanish (this will be clearer soon), which is not something we can impose a priori in the
theory. The only other option is to require the test functions to vanish on ∂V . In this
case, the surface term in (2.25) will vanish and we have a closed algebra for the G0(θ)’s
and the condition (2.24) can be consistently imposed. In terms of its action on fields,
we find

eiG0(θ)

[∫
dµAai vi

]
e−iG0(θ) =

∫
dµAai vi + i[G0(θ),

∫
dµAai vi] + · · ·

=

∫
dµAai vi +

∫
dµ θa(∇ivi)− fabc

∫
dµAbiθ

cvi + · · ·

=

∫
dµAai vi −

∫
dµ (Diθ)

avi + · · ·+
∮

∂V

θavidSi

=

∫
dµ (Ai −Diθ)

avi, if θa → 0 on ∂V (2.26)

For the electric field we find

eiG0(θ)

[∫
dµEa

i wi

]
e−iG0(θ) =

∫
dµEa

i wi + fabc
∫
dµ θbEc

iwi + · · · (2.27)

(In (2.26) and (2.27), vi and wi are test functions for Aai and Ea
i .) The right hand

sides of these equations are of the form of infinitesimal gauge transformations (2.10),
(2.13) with g = e−it

aθa ≈ 1 − itaθa. This means that the operator G0(θ) will generate
infinitesimal gauge transformations of (Aai , E

a
i ) provided θa vanishes at spatial infinity

(or on the boundary of the spatial volume under consideration). Since the Hamiltonian
is invariant under gauge transformations, [G0(θ),H] = 0, and hence the requirement
G0(θ)Ψ = 0 will be preserved under time-evolution as well. The closed algebra (2.25)
is a statement of the group property that a sequence of infinitesimal transformations of
the form (2.26), (2.27) can be used to generate a finite transformation. We can now
define an infinite dimensional group G∗ as follows:

G∗ = {Set of g(x) : Space → G such that g(x)→ 1 on ∂V } (2.28)

If we consider all of R2, we may define G∗ as

G∗ = {Set of g(x) : R2 → G such that g(x)→ 1 as |~x| → ∞} (2.29)
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The condition (2.24) is the statement that all wave functions in the theory are invariant
under gauge transformations g ∈ G∗. In this sense, G∗ is the true gauge group of the
theory. To distinguish wave functions or states which are more general and do not
necessarily obey (2.24), we refer to states satisfying (2.24) as “physical states”.

Given that states or wave functions obey (2.24), for the matrix element of an opera-
tor O we can write

〈Ψ1| O |Ψ2〉 = 〈Ψ1| eiG0(θ)Oe−iG0(θ) |Ψ2〉
= 〈Ψ1| O |Ψ2〉+ i 〈Ψ1| [G0(θ),O] |Ψ2〉+ · · · (2.30)

This will give an inconsistent result unless we have [G0(θ),O] = 0. Therefore, we can
say that an operator O is an observable and can have well-defined matrix elements only
if it weakly commutes with G0(θ), i.e., if 〈Ψ1| [G0(θ),O] |Ψ2〉 = 0, for all physical states
Ψ1, Ψ2.

We now turn to another set of transformations of interest. Towards this, we first
consider transformations of the type (2.10), (2.13) where g ∈ G is a constant not
necessarily equal to one on the spatial manifold; i.e., the transformations are

Ai → g Aig
−1, Ei → g Eig

−1 (2.31)

The Hamiltonian (2.19) is clearly invariant under these. Further, this is not a gauge
transformation and cannot be removed by the choice of a suitable element of G∗ since
elements of G∗ must become the identity on ∂V or at spatial infinity. By choice of the
action of G0(θ), we can go from g to g′(x)g where g′(x) → 1 on the boundary. But
the value of the combined transformation g′(x)g still has the value g (which is not
necessarily the identity) on the boundary. So these transformations (2.31) generate a
Noether-type symmetry and the states of the system can be classified by representations
of the groupG. In fact the transformations (2.31) with constant g’s correspond to charge
rotations and the states in the various irreducible representations of G correspond to
states with different possible charges.

It is also useful to consider another set of operators

G(θ) = −
∫
dµ (Diθ)

aΠa
i (2.32)

These coincide with G0(θ) for those test functions θa which vanish on ∂V , but, in gen-
eral, we can consider G(θ) even for those functions θa which do not vanish on ∂V .
(Notationally, we distinguish the two by using the subscript on G0(θ) to indicate that it
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is for the case when θa → 0 on ∂V .) It is easy enough to check that

i[G(θ),

∫
dµAai vi] =

∫
dµ (Ai −Diθ)

avi

[G(θ), G(θ′)] = i G(θ × θ′) (2.33)

So G(θ) does generate gauge transformations (as in (2.10), (2.13)) even for θa 6= 0 on
∂V . (But recall that these are not true gauge transformations as they are not elements
of G∗.) We can use the freedom of gauge transformations by G0(θ′) to change the value
of θ everywhere except on the boundary. Thus G(θ) is characterized by the boundary
value θ (modulo the action of G0(θ′)). The commutation rules also give

G0(θ′)G(θ) Ψ = G(θ)G0(θ′) Ψ + iG0(θ′ × θ) Ψ

= 0 (2.34)

so that G(θ)Ψ are also states compatible with the requirement of (2.24). In other words,
the action ofG(θ) on Ψ’s will generate physical states in the theory. Among the operators
G(θ) there are the ones mentioned earlier where θa on ∂V or spatial infinity is a constant
(that is, independent of angular directions), but not necessarily the identity. These
generate charge rotations and hence they lead to the charged states of the theory. More
generally, the operators G(θ) for those θ which may have nontrivial angular dependence
or is a nonconstant function on ∂V generate observable dynamical degrees of freedom
localized on the boundary. They are usually referred to as edge states. Notice that
[G0(θ), G(θ)] = 0.

The fact that the wave functions corresponding to physical states are gauge invari-
ant means that their normalization has to be defined with a gauge-invariant volume
element. Since Aai at different spatial points commute, we can consider A-diagonal
wave functions Ψ(A). (We can equally well consider E-diagonal ones, but for the mo-
ment we stay with Ψ(A).) Thus Ψ∗1Ψ2 for physical states will be gauge-invariant and
integration over all configurations A will clearly diverge. To define the proper volume
element, we start by defining

A = { Set of all gauge potentials such that Fij → 0 as |~x| → 0} (2.35)

We impose a mild condition on the gauge potentials. Also, here, by gauge potential
we mean a Lie-algebra valued one-form on the spatial manifold, A = (−ita)Aai dxi. This
space is actually an affine space, i.e., any two points onA can be connected by a straight
line as

A(τ) = A(1) (1− τ) + A(2) τ (2.36)
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where τ is a real parameter 0 ≤ τ ≤ 1. The straight line (2.36) connects A(1) at τ = 0 to
A(2) at τ = 1. The key point here is that, for any value of τ , A(τ) transforms as a gauge
potential,

Ag(τ) = g A(τ) g−1 − dg g−1 (2.37)

Hence the entire straight line is in A. Because of this property, the topology of the A is
trivial, it is a flat contractible space. We can then consider the space C = A/G∗ which
is the space of all gauge potentials modulo gauge transformations. The configurations
of the form Ag = gAg−1 − dgg−1, for g ∈ G∗, give the orbit of A under the action of G∗.
So C will also be referred to as the space of G∗-orbits in A, or the gauge-orbit space, for
short. This is the space of physical configurations and the reduced phase space may be
viewed as the cotangent space of C. The wave functions are defined as functions on C.
Therefore the inner product for states should be defined with an integration measure
(or the volume element) for the space C. Expressed mathematically,

〈1|2〉 =

∫
dµ(C) Ψ∗1 Ψ2 (2.38)

A similar statement can be made if we choose to represent states by wave functions
which are functions of E as well.

The Hamiltonian (2.19) in terms of its action on Ψ can be written as

HΨ =
1

2

∫
dµ

[
−e2 δ2

δAai δA
a
i

+
BaBa

e2

]
Ψ (2.39)

where we have used the functional Schrödinger representation of Ea
i ,

Ea
i = −ie2 δ

δAai
(2.40)

The functional differential operator, or the kinetic energy term in (2.39) is the functional
Laplace operator on the space A. But since it acts on Ψ’s which are gauge-invariant, it
can be viewed as the Laplace operator on the space C.

We are now in a position to assemble the ingredients needed for the Hamiltonian
formulation of the theory. Firs of all, the Hamiltonian has the form

H =
1

2

∫
dµ

[
−e2∆C +

B2

e2

]
Ψ (2.41)

where ∆C is the Laplace operator on the configuration space C. The wave functions
themselves are gauge-invariant, i.e., defined as functions on C. Their inner product for
states |1〉 and |2〉 is given by (2.38), where dµ(C) is the volume element on C.
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Thus the key ingredients we need to calculate are the Laplacian ∆C and the volume
element dµ(C). Both of these have to be defined with suitable regularizations, as for
any field theory. Further, as mentioned in section 1, since we are using the Hamiltonian
approach, we do not have manifest Lorentz invariance. So we do have to verify that the
regularizations are compatible with Lorentz invariance.

3 Confinement

One of the key features of a nonabelian gauge theory is the confinement of particles or
fields in nontrivial representations of the gauge group. As indicated in the last section,
a priori we should allow for charged states which are generated by G(θ) which was de-
fined in (2.32). Confinement refers to the statement that, in the nonabelian Yang-Mills
theory, the dynamics is such that there are no charged states in the physical spectrum.
Put another way, such states have infinite energy and therefore cannot be dynamically
excited. Although this is not a proven fact, there are strong indications to support the
idea of confinement. However, a direct analysis of the spectrum of the Hamiltonian,
with a view to elucidating confinement, has not yet been successful. A possible strategy
would then be to look for observables which can serve as useful diagnostics of confine-
ment and to try to calculate them in some way. The most important among these is the
Wilson loop operator defined by

WR(C) = Tr

[
P exp

(
−
∮

C

Aµdx
µ

)]
(3.1)

Here Aµ = −itaAaµ and ta, which are the generators of the Lie algebra, are in the
representation R. This is indicated by the subscript on W (C). The integral is over a
closed curve C. Since Aµ at different points along the curve or for different choices
of µ do not commute in general, there has to be an ordering prescription in how the
line integral is evaluated. This is taken to be path-ordering, by which we mean the
following. Let us parametrize the curve as xµ(τ), 0 ≤ τ ≤ 1, and divide the interval of τ
into a sequence of infinitesimal segments ε1, ε2, · · · , εn, with n → ∞ and εk → 0 in the
end as usual. Then the path-ordered integral from xµ = xµ(0) to yµ = xµ(1) is given by

W (y, x, C) = P exp

(
−
∫ y

x

Aµdx
µ

)

= exp

(
−
∫ εn

εn−1

Aµ
dxµ

dτ
dτ

)
exp

(
−
∫ εn−1

εn−2

Aµ
dxµ

dτ
dτ

)
· · ·

· · · exp

(
−
∫ ε2

ε1

Aµ
dxµ

dτ
dτ

)
(3.2)

18



For the closed curve, we have yµ = xµ and we take the trace of the resulting expression.
For an open interval, we have the gauge transformation property

[
P exp

(
−
∫ y

x

Agµdx
µ

)]ij
=

[
g(y) P exp

(
−
∫ y

x

Aµdx
µ

)
g−1(x)

]ij
(3.3)

This shows that once we close the curve and take the trace, we get a gauge-invariant
quantity. The Wilson loop operators are thus observables of the theory. In fact, by
choosing all possible closed curves, we get an over-complete set of observables. All
other observables can be constructed from WR(C).

The Wilson loop operator is important for another reason as well. The expectation
value of WR(C) is related to the interaction energy of a heavy particle-antiparticle pair
belonging to the representation R and its conjugate. Such a pair can be used as a probe
into the dynamics of the gauge theory. They are taken to be heavy so that their own
dynamics is trivial and does not complicate the interpretation of the result, since the
focus is on the gauge theory.

In order to relate WR(C) to the energy of a particle-antiparticle pair, we will start
by considering the process where we start with a heavy static particle-antiparticle pair
separated by a spatial distance L at a certain time x0. We will use φ and φ† as the
annihilation and creation operators for the particle; χ and χ† will play a similar role for
the antiparticle. Since these are taken to be heavy, the action for these fields is just the
usual nonrelativistic action, but we can even omit the (∇2/2M)-part. Thus

S(φ, χ) =

∫
d4x

[
iφ†D0φ+ iχ†D0χ

]
(3.4)

where D0φ = ∂tφ + A0φ and D0χ = ∂t + A∗0χ are the covariant derivatives of φ and χ,
respectively. This is in accordance with the fact that the fields transform under gauge
transformations as φ→ gφ, χ→ g∗χ. We start with a gauge-invariant state correspond-
ing to the particle-antiparticle pair separated by a spatial distance L. This state can be
represented as

F †(x0, x1, x1 + L) |0〉 = φ†i(x)W ij(x, y) χ†j(y) |0〉 (3.5)

where x = (x0, x1), y = (x0, x1 + L) and W ij(x, y) is as in (3.2) over, say, a straight
line segment. We have taken the separation of the pair to be along the x1-direction, for
simplicity.

Let H be the Hamiltonian for the Yang-Mills theory coupled to these matter fields φ,
χ. As usual, we can set A0 to zero; the A0-dependent terms in (3.4) are then zero but
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will contribute to H via the Gauss law, which now takes the form

(DiEi)
a

e2
+ φ†taφ+ χ†(−t̃a)χ = 0 (3.6)

Here t̃a is the transpose of ta, corresponding to the conjugate representation. (ta → −t̃a
is the conjugation operation in the Lie algebra.)

We now consider the time-evolution of the state (3.5) by an imaginary amount −iT
and then take its overlap with (3.5). The amplitude for this is given by

〈0|F e−HTF †|0〉 ≈ N e−E(L)T (3.7)

where N is some prefactor related to the normalization of F , and E(L) is the energy of
the pair. We are interested in taking T to be large, so that E(L) will be the energy of
the lowest energy state which can be created by F †. Since the particles are heavy and
static, E(L) is basically just the interaction energy of the pair due to the gauge field.

By the usual technique of the slicing of the time-interval, we can represent this
amplitude as a Euclidean functional integral

〈0|F e−HTF †|0〉 =

∫
[dAdφ dχ] exp [−SE(A, φ, χ)]

χi(y′)W ∗ji(y′, x′)φj(x′) φ†r(x)W rs(x, y)χ†s(y) (3.8)

where x′ = (x0 + T, x1), y′ = (x0 + T, x1 + L). The (φ, χ)-part of the Euclidean action
which appears in this functional integral is given by

SE(φ, χ) =

∫
dµ

[
φ†
∂φ

∂τ
+ χ†

∂χ

∂τ

]
(3.9)

This leads to the propagators

〈φi(x)φ†j(x′)〉 = δij θ(τ − τ ′) δ(~x− ~y)

〈χi(x)χ†j(x′)〉 = δij θ(τ − τ ′) δ(~x− ~y) (3.10)

where θ(τ − τ ′) is the step function and τ denotes the Euclidean time-coordinate. The
amplitude in (3.8) then reduces to

〈0|F e−HTF †|0〉 =

∫
[dA] e−SYM W ij(y′, x′) W ji(x, y)

=

∫
[dA] e−SYM WR(C)
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= 〈WR(C)〉 (3.11)

where C is the rectangle with vertices x, y, x′, y′. Since A0 = 0, we can put in the two
time-like segments for free to complete the loop. Comparing this expression with (3.7),
we see that

〈WR(C)〉 ≈ N e−E(L)T (3.12)

This shows that the Euclidean expectation value of a large Wilson loop can be used to
identify the interaction energy of a heavy static particle-antiparticle pair. Even though
we used the A0 = 0 gauge, WR(C) is gauge-invariant, and so are energies of gauge-
invariant states. Thus the result holds true in general.

If the interaction energy E(L) increases with the separation L, say, E(L) → ∞ as
L → ∞, then it will cost arbitrarily large energy to remove a charged particle from its
conjugate to an arbitrarily far away point, if the pair is created by any process. This is
what we expect if there is confinement. In the case of nonabelian gauge theories, the
expectation is that the interaction energy will grow linearly with L, i.e., E(L) = σL. The
coefficient σ is known as the string tension. In terms of the Wilson loop, this statement
is expressed as

〈WR(C)〉 ≈ N exp(−σ LT )

≈ N exp(−σ AC) (3.13)

where AC is the area of the minimal surface whose boundary is C.

The use of the term “string tension” is related to the following qualitative picture of
confinement. If we consider a heavy particle-antiparticle pair, the expectation is that
the chromoelectric flux lines connecting the particle and the antiparticle are collimated
to a thin tube of flux, which we refer to as the string, by the properties of the vacuum.
Since the energy of a string would increase linearly with the length, the proportionality
factor being the tension of the string, this picture would explain the linear rise of the
potential.

Equation (3.13) shows that the area-law behavior of the expectation value 〈WR(C)〉
can be used as a test of confinement. This works for all representations which can-
not be screened. Since the average in 〈WR(C)〉 is done with the Yang-Mills action,
the theory allows for the dynamical generation of gluons, which belong to the adjoint
representation of the group G. Thus when we impart energy to a particle-antiparticle
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pair, separating the constituents, E(L) can grow to a point where it becomes possi-
ble to create a number of gluons spontaneously. If the representation R is such that
R ⊗ (Adjoint) (or R ⊗ Adjoint ⊗ Adjoint · · · ) contains the trivial representation, (these
are called screenable representations), then the pair-configuration can decompose into
a particle-gluon(s) state (of zero charge) and an antiparticle-gluon(s) state (also of
zero charge). The interaction energy between these composites is no longer E(L),
since each has zero charge, so they can be separated far from each other. Correspond-
ingly, 〈WR(C)〉 will not exhibit an area law. Thus, while confinement continues to be
true (since the particle-gluon(s) state and the antiparticle-gluon(s) state each has zero
charge), the expectation value of the Wilson loop is no longer a good diagnostic tool.

The picture in terms of the string of flux connecting the particle-antiparticle pair is
that the string breaks by the spontaneous production of gluons, which leads to new
composites of zero charge and hence there is no longer any string of flux connecting
these states.

From the argument given above, we see that, strictly speaking, 〈WR(C)〉 is useful
only for nonscreenable representations, namely, those for whichR⊗Adjoint⊗Adjoint · · ·
does not contain the trivial representation. Nevertheless, our argument with E(L)

shows that we should expect the area law to hold until E(L) becomes large enough
to create a pair of gluons. So for a limited range of L, the area law for 〈WR(C)〉 can still
be obtained and can still be useful.

4 *Parametrization of gauge fields

We will now consider a special parametrization for the gauge fields which will facilitate
working out the Hamiltonian and the volume element dµ(C) in terms of manifestly
gauge-invariant variables [8], see also [9]. We are primarily interested in Yang-Mills
theories on flat (2 + 1)-dimensional space, so the spatial manifold is R2. The two spatial
coordinates x1, x2 can be combined into the complex combinations z = x1 − ix2, z̄ =

x1 + ix2, with the corresponding derivatives

∂ ≡ ∂z =
1

2
(∂1 + i∂2), ∂̄ ≡ ∂z̄ =

1

2
(∂1 − i∂2) (4.1)

As explained before, we can take A0 = 0. For the Abelian gauge theory, for the spatial
components of A, we can use the Hodge decomposition

Ai = −i(∂iϕ+ εij∂jχ) (4.2)
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for real functions ϕ and χ on R2. We use antihermitianAi so that the covariant derivative
is (∂i + Ai), similar in form to what is usually used for the nonabelian case. For the
complex components, we can write

A ≡ Az =
1

2
(A1 + iA2) = −∂zΘ, Θ = χ+ iϕ (4.3)

with Ā ≡ Az̄ = −(Az)
†.

The gauge potentials for the nonabelian case are of the form Ai = (−ita)Aai . We
will consider the gauge group SU(N) for simplicity, so that ta may be taken as N × N
hermitian traceless matrices. For a small neighborhood around A = 0, the fields may be
considered as Abelian and we expect a result similar to (4.3). We may thus write

A ≡ Az = −∂zΘ +O(Θ2) (4.4)

where Θ is also an N × N traceless matrix. Because it is complex, we may regard it as
the group parameter of an element of SL(N,C) (represented as an N ×N matrix). The
expression (4.4) is then of the form of a pure gauge near the identity in SL(N,C), i.e.,
for an element M = eΘ ≈ 1 + Θ. We can then “integrate” (4.4) (i.e., compose it with a
series of infinitesimal group translations in SL(N,C)) and write it in the form

A = −∂M M−1, M ∈ SL(N,C) (4.5)

With Az̄ = −(Az)
†, the full parametrization is thus

A = −∂M M−1, Ā = M †−1∂̄M † (4.6)

While we have obtained this result for the group SU(N), it is easy to see how it will
generalize. For a Lie group G, Θ is combination of the generators of the group with
complex coefficients, so the parametrization (4.6) will hold in general with M as an
element of the complexification GC of the group G.

In (4.2), the term ∂iϕ denotes the gauge transformation for the group U(1). More
generally, for the nonabelian case, gauge transformations take the form3

M → gM, g ∈ SU(N) (or more generally ∈ G) (4.7)

The gauge invariant degrees of freedom are thus given by

H = M †M (4.8)

3There are other ways to parametrize A’s. One could even use Az = −∂zΘ, without any further terms of

order Θ2. In this case, Θ will transform in a rather complicated way under gauge transformations. The simple

transformation law (4.7) is the real advantage of using the SL(N,C) version.
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The factors of g and g† in the transformation of M , M † cancel out and H is invariant.
Since M modulo the SU(N) transformations g define SL(N,C)/SU(N), the gauge-
invariant degrees of freedom can be taken as the set of mappings from R2 to this
coset space SL(N,C)/SU(N) (or more generally to GC/G). The hermitian matrix H

parametrizes the coset SL(N,C)/SU(N).

The advantage of the parametrization (4.6) is precisely that the gauge transforma-
tions take the homogeneous form in (4.7), as left translations by G on the matrix M , so
that we can easily identify all gauge-invariant degrees of freedom.

There is another way to argue for the parametrization (4.6). We can obtain a similar
parametrization on S2 viewed as the complex projective space CP1, and then take a
large radius limit to get the result (4.6) for R2. (The parametrization of gauge fields for
this case has been worked out in [10].) The space CP1 ∼ S2 is equivalent to the coset
space SU(2)/U(1). We can thus use an element u of SU(2) as coordinates for CP1, with
the identification u ∼ uh, h ∈ U(1) ⊂ SU(2). Local coordinates z, z̄ can be related to
this using the parametrization

u =
1√

1 + z̄z

(
1 z

−z̄ 1

)(
eiα/2 0

0 e−iα/2

)
(4.9)

The U(1) angle α can be eliminated via the identification u ∼ uh. We can define three
coordinates xa by uσ3u−1 = −σa xa; For the parametrization (4.9),

x1 =
z + z̄

1 + z̄z
, x2 = i

z − z̄
1 + z̄z

, x3 =
z̄z − 1

1 + z̄z
(4.10)

These correspond to the embedding of S2 in R3, with a stereographic projection onto
the complex plane, with the south pole mapped to z = 0 and the north pole mapped to
|z| → ∞. The coordinates cover S2 except for a small region around the north pole. (A
second coordinate patch can be used around the north pole, by choosing eiα/2 =

√
z/z̄

(away from the south pole, so z 6= 0). Effectively this amounts to an inversion of z. The
two coordinate patches will give full coverage of the sphere.) The metric on the coset
space SU(2)/U(1) is the Fubini-Study metric for CP1 given by

ds2 =
dz dz̄

(1 + z̄z)2
(4.11)

We now consider unitary irreducible representations (UIR) of SU(2). A basis for the
Lie algebra of SU(2) in the defining 2× 2 matrix representation is given by σa/2, so that
we may write u as

u = eiσaθ
a/2 (4.12)
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where the parameters θa can be taken as functions of z, z̄, α or vice versa. Let Ta denote
the generators of the group σa/2 in an arbitrary representation. Then a general UIR is
specified by the spin value s, defined by TaTa = s(s+ 1). The matrix corresponding to u
is given by

D(s)
m,m′(u) = 〈s,m| û |s,m〉 , û = eiTaθ

a

(4.13)

The states within the representation are labeled by m, m′ which are the eigenvalues of
T 3 and take the values m,m′ = −s,−s+ 1, · · · , s.

The matrix-valued functions D(s)
m,m′(u) form a complete set for SU(2), so that any

function on SU(2) can be expanded as

f(u) =
∑

s,m,m′

C
(s)
mm′ 〈s,m| û |s,m′〉 (4.14)

The action of the U(1) transformation u→ uh, h = eiθσ
3/2 is represented as

f(uh) =
∑

s,m,m′

C
(s)
m,m′ 〈s,m| ûeiT3θ3 |s,m′〉 =

∑

s,m,m′

C
(s)
m,m′ 〈s,m| û |s,m′〉 eim

′θ3

(4.15)

Functions on the coset SU(2)/U(1) must be invariant under these transformations.
Therefore they have a similar mode expansion with the state on the right side |s,m′〉
having m′ = 0. Thus, a function on CP1 has the expansion,

f(u) =
∑

s,m

C(s)
m 〈s,m| û |s, 0〉 (4.16)

The coefficients C(s)
m define the function.

To define derivative operators, we define the right translation operators Ra by

Ra u = u
σa
2

(4.17)

This can be lifted to any representation by using û and Ta in this equation. Further, the
left-invariant one-forms Ea on SU(2) are given by

u−1du = −iσa
2
Ea
kdθ

k

E1 = i
dz − dz̄
1 + z̄z

, E2 = −dz + dz̄

1 + z̄z
, E3 = i

zdz̄ − z̄dz
1 + z̄z

(4.18)

E1, E2 are the frame fields for the coset space CP1. From this equation, we see that we
can realize Ra as the differential operators

Ra = i(E−1)ka
∂

∂θk
(4.19)
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In particular, we find

R+ = (R1 + iR2) = (1 + z̄z)∂, R− = (R1 − iR2) = −(1 + z̄z)∂̄ (4.20)

From (4.19) we see that R3 generates the U(1) transformation on the right of u. It corre-
sponds to the isotropy group and is thus the analog of the Lorentz group for Minkowski
space. In particular, while functions are invariant under R3, vectors should transform
nontrivially, with the same transformation properties as R±. Since [R3, R±] = ±R±, a
vector corresponding to holomorphic components will have the mode expansion

A+ =
∑

s,m

a(s)
m 〈s,m| û |s, 1〉 (4.21)

Since the state |s, 1〉 can be obtained from |s, 0〉 as |s, 1〉 ∼ R+ |s, 0〉, we can write (4.21)
as

A+ = R+

∑

s,m

a(s)
m 〈s,m| û |s, 0〉 = −R+Θ (4.22)

where Θ is the function −∑s,m a
(s)
m 〈s,m| û |s, 0〉. This A+ is written using a tangent

frame. Using (4.20) and going to the coordinate frame, (4.22) becomes

A = −∂Θ (4.23)

This is adequate for an Abelian gauge potential, with Ā = −(A)†. The generalization to
the nonabelian case follows the arguments given after (4.3) and we arrive at

A = ∂MM−1, Ā = M †−1∂̄M † (4.24)

These are still on the space CP1 in terms of components in the coordinate frame. (For
the components in the tangent frame, these will be multiplied by (1 + z̄z).) If we now
scale z → z/r and take the large r limit, CP1 approximates to the flat space R2 and we
recover the parametrization (4.6) for the flat case as well.

We close this section with a comment on what we shall refer to as the holomorphic
ambiguity or holomorphic invariance. From the definition in (4.6) it is clear that, for
a given A, M is not unique. It is easy to see that M and MV̄ , where V̄ = V̄ (z̄) is
an SL(N,C)-matrix whose matrix elements are antiholomorphic functions, lead to the
same potential. Similarly, M † and V (z)M † lead to the same Ā, where V is holomorphic
in its dependence on the coordinates. For the two-sphere or for the Riemann sphere,
the only (nonsingular and globally defined) antiholomorphic/holomorphic function is
a constant by Liouville’s theorem, Thus V̄ has to be constant. We can eliminate the
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ambiguity by requiring a condition like M → 1 at spatial infinity. In general, this is not
adequate. The (M,M †) or H = M †M corresponding to given potentials (A, Ā) can have
singularities. To avoid these and obtain a nonsingular description, one has to resort
to a patchwise definition of (M,M †) with transition functions on the intersections of
coordinate patches. Notice that (A, Ā) are themselves defined only patchwise in general,
with gauge transformations acting as the transitions on intersections. By using H which
is gauge-invariant we avoid this issue, but we may still need to modify (M,M †) or H
as we move from one coordinate patch to another. The values on coordinate patches
U1 and U2 will be related on the intersection by M1 = M2V̄12, etc., or H1 = V12H2V̄12.
Since this is an ambiguity of choice of field variables, all observable results must be
invariant under this. In particular, we will choose regularizations in such a way as to
preserve this invariance. This holomorphic ambiguity in the choice of H and the need
for antiholomorphic/holomorphic transition functions also play a role in connection
with the Gribov problem, we discuss this briefly in section 6.

5 *The volume element for the gauge-orbit space

The next logical step for us should be to make the change of variables from A, Ā to M
and M † and obtain the volume element of the configuration space C. Our strategy will
be to start with the space of gauge potentials A and divide out the volume of gauge
transformations. (The calculation we present is from [11, 9, 12]. See also [13] for
more details regarding regularization.) As mentioned earlier, A is an affine space and
we would expect the metric on this space to be the standard flat Euclidean one. We
can confirm that this is indeed the relevant metric for the dynamics by considering the
Yang-Mills action. With A0 = 0, we have

SY-M =

∫
dtd2x

[
1

2

∂Aai
∂t

∂Aai
∂t
− 1

2
B2

]
(5.1)

A field theory can be thought of as describing the dynamics of a point-particle moving
in an infinite dimensional ambient space of fields. Thus comparing (5.1) to the action
for a point-particle, namely,

S =

∫
dt

[
1

2
gµν

dxµ

dt

dxν

dt
− V

]
, (5.2)

we see that (5.1) does indeed correspond to the case where the ambient space has the
Euclidean metric

ds2 =

∫
d2x (δAai δA

a
i ) = −8

∫
d2xTr(δA δĀ) (5.3)
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This is our starting point. Now we can use the parametrization (4.6) to write

δA = −
(
∂(δMM−1) + [−∂MM−1, δMM−1]

)

= −D(δMM−1) (5.4)

δĀ = D̄(M †−1δM †)

where D, D̄ denote covariant derivatives Dφ = ∂φ + [A, φ], D̄φ = ∂̄φ + [Ā, φ]. Using
these expressions we find

ds2 = 8

∫
d2xTr

[
D(δMM−1)D̄(M †−1δM †)

]

= 8

∫
d2xTr

[
(δMM−1)(−DD̄)(M †−1δM †)

]
(5.5)

As shown in section 4, M and M † can be thought of as elements of SL(N,C). The
Cartan-Killing metric for SL(N,C) viewed as the complexification of SU(N) is of the
form Tr(δMM−1M †−1δM †). Extending this to SL(N,C)-valued functions on R2, the
metric is given as

ds2
SL(N,C) = 2

∫
d2xTr(δMM−1M †−1δM †) (5.6)

Given the structure of (5.5), the volume element for A can be written as

dµ(A) = det(−DD̄) dµ(M,M †) (5.7)

where dµ(M,M †) is the volume element associated with the metric (5.6) for M , M †.
(There are some constant multiplicative factors which are irrelevant for us, since we
will be using this to normalize the wave functions. Any such factor will cancel out in
matrix elements.)

There are two further simplifications to be done. We must write dµ(M,M †) in terms
of H = M †M and a unitary part which corresponds to the SU(N) gauge degrees of
freedom. Secondly, we have to calculate the Jacobian determinant det(−DD̄) arising
from the change of variables from A, Ā to M , M †.

The volume element for SL(N,C) is given by the top-rank differential form con-
structed from dMM−1 and M †−1dM †. It is given by

dV (M,M †) ∝ εa1...an(dMM−1)a1 ∧ · · · ∧ (dMM−1)an

×εb1...bn(M †−1dM †)b1 ∧ · · · ∧ (M †−1dM †)bn (5.8)
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where n = dimG = N2−1. (Again we use a proportionality relationship, some constant
numerical factors, which are irrelevant for us, are ignored.) The components indicated
are of the form (dMM−1)a = 2Tr(tadMM−1), (M †−1dM †)b = 2Tr(tbM

†−1dM †).

We now use a polar decomposition for the matrices M , M †, given as M = Uρ,
M † = ρU †, where ρ is hermitian and U is unitary. Since gauge transformations act on
M as M g = gM , we see that U corresponds to the gauge degree of freedom in M . By
direct substitution of M = Uρ, (5.8) becomes

dV (M,M †) ∝ εa1...an(dρρ−1 + ρ−1dρ)a1 ∧ ... ∧ (dρρ−1 + ρ−1dρ)an

×εb1...bn(U−1dU)b1 ∧ ... ∧ (U−1dU)bn

∝ εa1...an(H−1dH)a1 ∧ ... ∧ (H−1dH)andVU (5.9)

Here dVU is the Haar measure for SU(N). If we parametrize H as H = etkϕ
k in terms of

the real functions ϕk we can also write the H-dependent terms in (5.9) as

εa1...an(H−1dH)a1 ...(H
−1dH)an = (det r) dϕ1dϕ2 · · · dϕn (5.10)

where H−1dH = dϕarak(ϕ) tk. Thus is the volume element for SL(N,C)/SU(N) ob-
tained by reduction from the Cartan-Killing metric for SL(N,C).

An important feature of (5.9) is that the volume of SU(N), namely, dVU factors out
from the terms involving H. There is no obstruction to this, because SL(N,C)/SU(N)

is a contractible space.

Upon taking the product of dVU and the expression in (5.10) over all points of space
to convert to a functional integration measure for SL(N,C)-valued fields, we can write

dµ(M,M †) =
∏

x

dV (M,M †) =
[
(det r) dϕ1dϕ2 · · · dϕn

] ∏

x

dVU

= dµ(H) dµ(U) (5.11)

dµ(H) =
∏

x(det r)dϕ1dϕ2 · · · dϕn is the Haar measure for hermitian matrix-valued
fields. We also note that dµ(U) =

∏
x dVU gives the volume of G∗. The volume ele-

ment in (5.7) can now be written as

dµ(A) = det(−DD̄) dµ(H) dµ(U) (5.12)

It is now straightforward to factor out the volume of gauge transformations (dµ(U))
and write the volume element for C = A/G∗ as

dµ(C) =
[
dµ(A)/dµ(U)

]
= det(−DD̄) dµ(H) (5.13)
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The real advantage of our parametrization (4.6) is in this expression where we can
factor out the volume of gauge transformations exactly. What remains is to calculate
the determinant of the operator (−DD̄). Towards this, we start with

Γ = log det D̄ = Tr log D̄ (5.14)

Taking a variation of Ā we find

δΓ = Tr(D̄−1δĀ) =

∫
d2xTr

[
(D̄−1)x,yδĀ(y)

]
y→x (5.15)

(Here Tr on the right hand side denotes the trace over the Lie algebra while Tr on the
left hand side of (5.15) denotes the full functional trace.) We see from this equation
that the result for δΓ will depend on the coincident point limit of the Green’s function
D̄−1. It is easy to verify that

Ḡ(x, y) = (∂̄)−1
x,y =

1

π(x− y)
, x = x1 − ix2, y = y1 − iy2

G(x, y) = (∂)−1
x,y =

1

π(x̄− ȳ)
(5.16)

For the gauge-covariant Green’s functions we then find

(D̄−1)x,y = M †−1(x)

[
1

π(x− y)

]
M †(y)

(D−1)x,y = M(x)

[
1

π(x̄− ȳ)

]
M−1(y) (5.17)

The coincident point limit of D̄−1 is singular and so we need regularized expressions in
place of (5.17). We will take up this issue in more detail later, but for now, notice that
for small infinitesimal but nonzero separations

(D̄−1)x,y ≈
1

π(x− y)
+

1

π
∂M †−1M †(y) +

x̄− ȳ
π(x− y)

∂̄M †−1M †(y) + · · · (5.18)

Since Tr δĀ = 0, the use of this expression in (5.15) gives

δΓ =
1

π

∫
d2xTr

[
(∂M †−1M †)δĀ(y)

]
+

x̄− ȳ
π(x− y)

∫
d2xTr

[
∂̄M †−1M †δĀ(y)

]
+· · · (5.19)

If we now take the limit y → x in a rotationally symmetric fashion, (so that (x̄− ȳ)/(x−
y)→ 0), we find

δΓ = − 1

π

∫
d2xTr

[
M †−1∂M †)δĀ

]
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=
1

π

∫
d2xTr

[
D̄(M †−1∂M †)M †−1δM †] (5.20)

We define the Wess-Zumino-Witten action for a matrix-valued field M as

Swzw(M) =
1

2π

∫
Tr
(
∂M ∂̄M−1

)
+

i

12π

∫
Tr
(
M−1dM

)3
(5.21)

The first term on the right hand side involves the integral over the 2-manifold while
the last term is the integral of the 3-form over a 3-manifold whose boundary is the
2-manifold of interest. By direct calculation

Swzw(NM) = Swzw(N) + Swzw(M)− 1

π

∫
Tr
(
N−1∂̄N ∂MM−1

)
(5.22)

This result is known as the Polyakov-Wiegmann identity [14]. The key point about it is
the chiral splitting in the last term; N has only the antiholomorphic derivative, M has
only the holomorphic derivative. By taking NM →M †(1 + θ), we find

Swzw(M †(1 + θ))− Swzw(M †) = − 1

π

∫
Tr
(
M †−1∂̄M † ∂θ

)

=
1

π

∫
Tr
(
∂(M †−1∂̄M †) θ

)

=
1

π

∫
Tr
(
D̄(M †−1∂M †)M †−1δM †) (5.23)

where we have used the identity

∂(M †−1∂̄M †)− D̄(M †−1∂M †) = 0 (5.24)

and the fact that θ = M †−1δM †. Comparing with (5.20), we see that we can identify

δΓ = 2 cA δSwzw(M †) (5.25)

where cA is the value of the quadratic Casimir operator in the adjoint representation.
The trace in (5.20) is over the adjoint representation, while we wrote the WZW action
using traces in the fundamental representation. The identity Tr(tatb)A = 2 cA Tr(tatb)F

leads to the factor 2cA in (5.25). The integrated version of (5.25) gives the result

Γ = Tr log D̄ = 2 cA Swzw(M †), (5.26)

up to an additive constant. Although we used a simple expansion of D̄−1, what we
have is really an anomaly calculation, namely, the change of det D̄ under an SL(N,C)

transformation. So, as with anomaly calculations, the answer is robust and is obtained
by other regularizations as well. In a similar way we get

Tr logD = 2 cA Swzw(M) (5.27)
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If we write Tr log(−DD̄) = Tr logD + Tr log D̄ with (5.26), (5.27), the result is not
gauge-invariant. Basically, the regularization we used is not gauge-invariant. However,
as with the calculation of effective actions from quantum corrections, changing regular-
izations is equivalent to adding local counterterms. In the present case we can add the
local counterterm

Scounter =
2 cA
π

∫
Tr(Ā A) = −2 cA

π

∫
Tr
(
M †−1∂̄M † ∂MM−1

)
(5.28)

With this counterterm, or with the corresponding choice of regularization,

log det(−DD̄) = Tr logD + Tr log D̄ +
2 cA
π

∫
Tr(Ā A)

= 2 cA

[
Swzw(M) + Swzw(M †)− 1

π
Tr
(
M †−1∂̄M † ∂MM−1

)]

= 2 cA Swzw(M †M)

= 2 cASwzw(H) (5.29)

where we have used the Polyakov-Wiegmann identity again to combine terms. Since H
is gauge-invariant, we have a gauge-invariant result for the determinant. Since we used
the variation of the determinant, this calculation does not fix an overall multiplicative
constant for the determinant. The constant however, corresponds to the case of when
M = M † = 1, i.e., to det(−∂∂̄). Combining all results, we can then write

det(−DD̄) =

[
det′(−∂∂̄)∫

d2x

]dimG

e2 cASwzw(H) (5.30)

The prime on det′(−∂∂̄) indicates that the constant modes, which are zero modes of the
Laplacian are not to be included in the determinant. The division by

∫
d2x is to take

account of the normalization of the same zero modes. Using this back in (5.13), we get
the volume for the gauge-orbit space as

dµ(C) = N dµ(H) e2 cASwzw(H), N =

[
det′(−∂∂̄)∫

d2x

]dimG

(5.31)

A worthwhile remark regarding this result is that Swzw(V HV̄ ) = Swzw(H). This
follows from the Polyakov-Wiegmann identity (5.22). We also have dµ(V HV̄ ) = dµ(H),
since V , V̄ are matrices of unit determinant. Thus the volume element (5.31) has the
required holomorphic invariance.
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6 The topology and geometry of C

The space of gauge-invariant field configurations C can be identified as A/G∗, where A
is the space of gauge potentials (which are Lie-algebra valued 1-forms) and G∗ is the
set of gauge transformations, i.e., group elements g : R2 → G, wit the condition that
g(x) → 1 as |~x| → ∞. One can think of A as a fiber bundle with G∗ as the structure
group and C = A/G∗ as the base manifold,

G∗ −→ Ay
C = A/G∗

(6.1)

These are all infinite dimensional spaces. The topology and geometry of these spaces
are clearly important for the study of gauge theories. The bundle structure (6.1) shows
that, locally on a patch U of C, we have the product structure AU ∼ CU × G∗. On
the patch U we have a set of gauge potentials (corresponding to points in C) with a
fiber corresponding to the orbit of each such configuration by gauge transformations.
One can specify the gauge-invariant degrees of freedom by choosing a representative
configuration for each orbit; this is the process of gauge-fixing and is equivalent to
specifying a section of the bundle. While this can be done on a local patch on C, A as
a G∗-bundle is nontrivial and does not admit a global section. Thus there is no gauge
fixing which is valid for all gauge potentials. This is the Gribov problem [15]; for a
more general discussion, see also [4].

The nontriviality of the bundle can be seen by a slight variant of the reductio ad

absurdum argument due to Singer [4]. Assume that we can write A = C × G∗ globally,
i.e., for all gauge potentials. As mentioned in section 2, the space A is an affine space
and all homotopy groups of A are trivial. If the condition A = C × G∗ is correct, then
we must have trivial homotopy groups for C and for G∗. Consider now Π1(G∗). A
typical element of this would be a sequence of group elements g(x1, x2, σ) where σ is a
parameter (with values in [0, 1]) along the loop of G∗ elements. Specifically, we consider
a loop starting and ending at the identity element, which implies that g(x1, x2, σ) → 1

at σ = 0, 1. From the definition of G∗ we also have g(x1, x2, σ) → 1 as |~x| → ∞. Thus g
is a map from a cylinder (coordinatized by x1, x2, σ) to G, with g = 1 on the boundary.
Topologically, this equivalent to maps from a sphere to G,

g(x1, x2, σ) : S3 → G (6.2)

The homotopy classes of such maps are classified by Π3(G), implying Π1(G∗) = Π3(G).
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This is nontrivial for all nonabelian Lie groups; for simple groups, we have

Π3(G) =





Z Any simple G, except SO(4)

Z× Z SO(4)
(6.3)

The nontriviality of Π1(G∗) shows that the initial assumption that A = C × G∗ cannot be
valid. This establishes the nontriviality of the bundle (6.1). There is a Gribov problem
for any nonabelian group.

Consider now a two-parameter family of gauge potentials of the form

A(x, 1, x2, σ, τ) = τ A(x1, x2) + (1− τ)Ag1(x1, x2, σ) (6.4)

The σ-dependence of the potentials is due to the σ-dependence of g1 which we take to
be a nontrivial element of G∗. Taking σ, τ as coordinates in A, this defines potentials
over a disc in A. The potentials on the boundary of the disc are A at σ = 0, 1 and at
τ = 1, and Ag1 at τ = 0. Since these boundary values are all gauge-equivalent, they
correspond to a single point in C, so that the disc is a closed 2-surface in C. If this
surface is contractible to a point in C, the pre-image of that point is a disc in A where all
potentials inside are also gauge-equivalent to A, of the form Ag with g(x1, x2, σ, τ) such
that g(x1, x2, σ, 0) = g1(x1, x2, σ) and g(x1, x2, σ, 1) = 1. Thus g(x1, x2, σ, τ) is a homotopy
between g1(x1, x2, σ) and the identity, which is impossible since g1 is a nontrivial element
of Π3(G). The conclusion is that the closed 2-surface in C is not contractible. Rather
than this long argument, we could also have used exact homotopy sequence

Π2(A) → Π2(C) → Π1(G∗) → Π1(A)

0 → Π2(C) = Π1(G∗) → 0
(6.5)

to arrive at the same conclusion. The implication of the nontrivial nature of the bundle
at the level of using A is the Gribov problem and the impossibility of a global section.
At the level of directly using C, it is manifest in the nontrivial topology of C, the lowest
dimensional such feature being Π2(C) 6= 0.

Our aim now is to construct an example of the set of configurations which form a
noncontractible two-surface, i.e., a nontrivial element of Π2(C). (This discussion follows
[12].) The winding number, which we may take as characterizing the element of Π2(C)
can be related to the instanton number of a four-dimensional gauge theory. This can be
seen as follows. In addition to the homotopy group Π2(C) being nontrivial, the second
cohomology group of C is nontrivial as well. Thus there is a closed but not exact two-
form on C. In terms of the potentials, the generating element of this cohomology can
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be written as

Ω =
1

4π

∫
tr(δA δA) (6.6)

Here A is a one-form on the spatial manifold, δ denotes the exterior derivative on A.
If we use w, w̄ to denote the coordinates along the two-surface in C, δ is given by
δ = dw∂w + dw̄∂w̄. The integration in (6.6) is over the spatial manifold, making Ω a
two-form on C. The integral of Ω over the closed noncontractible two-surface in C will
give a winding number ν by

∫
Ω = 2πν.

The two-surface in C (with the coordinates w, w̄) and the two-dimensional spatial
manifold can be considered together as a four-dimensional space. The instanton num-
ber on this 4d-space is given by

ν =
1

8π2

∫
Tr(F̃ F̃ ) (6.7)

where F̃ = (d+δ)Ã+ÃÃ. The operator (d+δ) denotes the full exterior derivative on the
four-dimensional space and Ã is the four-dimensional gauge potential. The 4d-potential
can be constructed from the two-dimensional potential A as Ã = A+A′, where we take
A′ to be given in terms of M , M † by

A′ = −∂wM M−1 dw + (M †)−1∂w̄M
†dw̄ (6.8)

While A transforms as a connection under gauge transformations g(x), A′ is gauge-
covariant since g(x) does not depend on w, w̄. In other words, δg = 0 for gauge trans-
formations. The field strength can be written out as

F̃ = F + F ′ + δA+DA′, DA′ = dA” + AA′ + A′A (6.9)

It is then easy to see that

tr(F̃ F̃ ) = tr(δA δA) + d [tr (A′DA′ + 2 δAA′)] + δ [tr(F A′)] (6.10)

In integrating this expression over the spatial manifold and the internal closed two-
surface, the terms which are total derivatives give zero. (Notice that the integrands
are gauge-invariant, so there is not problem of the potentials being patchwise defined
with transitional gauge transformations on the overlap regions. Therefore the total
derivatives indeed integrate to zero.) From the integral of (6.10), we see that

ν =

∫
Ω

2π
(6.11)
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where Ω is as given in (6.6). Using the expression for A′ from (6.8) and the parametriza-
tion (4.6) for the spatial components, Ω takes the form

Ω =
1

2π

∫
Tr
[
∂(H−1∂̄H)δ(H−1δ̄H) + ∂(H−1δ̄H)δ(H−1∂̄H)

]
(6.12)

We can exploit this connection between the two-form Ω on C and the instanton
number to construct an example of the noncontractible two-surface of configurations.
Towards this, we write the standard instanton in R4 using complex coordinates and
interpreting one pair of complex coordinates as internal coordinates parametrizing the
two-surface in C. Explicitly this gives the expression

H = exp(2fJ3) = cosh 2f + J3 sinh 2f (6.13)

Here J3 = σ · n with σa, a = 1, 2, 3, being the Pauli matrices and the unit vector na is
given by

na =
1

(z̄z + w̄w)
(z̄w + w̄z, i(w̄z − z̄w), z̄z − w̄w) (6.14)

The function f is given by

f =
1

2
log

(
z̄z + w̄w + µ2

z̄z + w̄w

)
(6.15)

µ is a scale parameter and (w, w̄) parametrize the two-surface in C. Using the formula
(6.12), it is easy to verify that

ν =

∫
Ω

2π
= 3 (6.16)

for this set of configurations (6.13). Therefore (6.13) does correspond to a noncon-
tractible two-surface in C.

We have specified the configurations (6.13) directly in terms of the gauge-invariant
variable H, so there is no Gribov problem per se. However, the existence of nontrivial
elements in Π2(C) means that we have to choose coordinate patches (in C) to specify the
whole set of configurations in a nonsingular way. This will be related to the freedom
of the holomorphic transformations mentioned earlier. We will illustrate this in our
explicit example now.

Notice that, as z̄z → ∞, H → 1. Further, for almost all w, w̄, H is nonsingular;
however, the particular configuration at w = 0 has a singularity at the spatial point
z = 0. We can change the position of this singularity by transformations of the type
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H → V HV̄ , where V is holomorphic in z. Consider the configuration for which w =

w̄ = 0; it is given by

f =
1

2
log(z̄z + µ2/z̄z)

H = exp(2fσ3) = exp
(
σ3
[
log(z̄z + µ2)− log z − log z̄

])

= exp
(
−σ3 log z

)
exp

(
σ3 log(z̄z + µ2)

)
exp

(
−σ3 log z̄

)
(6.17)

Using V = eσ
3 log(z/z−a), we find

V H V̄ = exp
(
σ3[log(z̄z + µ2)− log(z − a)− log(z̄ − ā)]

)
(6.18)

We see that the singularity has been shifted from z = 0 to z = a.

This tells us that, at least for configurations of the type given here, we can specify
field configurations by nonsingular formulae for H in different coordinate patches with
transition relations given by transformations of the form H → V (z)H V̄ (z̄). This shows
the importance of the holomorphic invariance.

Since the singularity in our example is at a point, namely at w = 0, for this specific
case, even if we simply use the formulae (6.13-6.15) with the coordinate singularity, the
effect on the quantum wave functions is minimal. This is something that can be verified
in terms of the wave functions given later. Also, as remarked earlier, the WZW-action
Swzw(H) is invariant under transformations of the type H → V HV̄ and therefore we do
not expect any pathology for the wave function. Explicitly, for the set of configurations
(6.13), the WZW-action is given by

S(H) =
5µ2 + 4ww̄

ww̄ + µ2
− 3µ2 + 4ww̄

µ2
log

[
µ2 + ww̄

ww̄

]

= 5 + 3 log(ww̄) +O(ww̄) (6.19)

When w → 0, exp(2cAS) vanishes as (ww̄)6cA. The coordinate singularity does not lead
to difficulties, at least for this case.

7 *The Hamiltonian

In section 5, we obtained the volume element of the gauge orbit space. As discussed in
section 2, the wave functions for the physical states must obey the invariance condition
G0(θ)Ψ = 0. The inner product is then given by integration with dµ(C), see (2.38), and
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it can be written out as

〈1|2〉 =

∫
dµ(H) e2 cASwzw(H) Ψ∗1 Ψ2 (7.1)

The Hamiltonian has the form given in (2.39) or (2.41). Since it involves products
of operators at the same point, a regularized version has to be defined, consistent with
all the symmetries which have to be maintained. (The construction of the Hamiltonian,
including regularization issues, is discussed in detail in [13].) Towards this, we first
define translation operators on the SL(N,C) group elements M and M † by

[pa(~x),M(~y)] = M(~y)(−ita) δ(2)(~x− ~y)

[p̄a(~x),M †(~y)] = (−ita)M †(~y) δ(2)(~x− ~y) (7.2)

Here M and M † are taken to be N × N matrices, corresponding to the fundamental
representation of SL(N,C). Correspondingly, ta are N × N matrices which form a
basis for the Lie algebra of SU(N). We take them to be normalized as Tr(tatb) = 1

2
δab.

Parametrizing M,M † in terms of Θa(~x), Θ̄a(~x) respectively, we can write

M−1δM = δΘaRab(Θ) tb, δM †M †−1 = δΘ̄aR∗ab(Θ̄)tb (7.3)

These equations define Rab(Θ) and R∗ab(Θ̄).4 From the parametrization of the gauge
potentials, we also have

δA = −D(δMM−1), δĀ = D̄(M †−1δM †) (7.4)

Using these relations, we can solve for Θa and Θ̄a in terms of δAa and δĀa and identify
the functional derivatives (which are the electric fields up to a factor of e2) as

− i
2

δ

δĀk(~x)
=

i

2
M †

ak(~x)

∫

y

Ḡ(~x, ~y) p̄a(~y)

− i
2

δ

δAk(~x)
= − i

2
Mka(~x)

∫

y

G(~x, ~y) pa(~y) (7.5)

where Mab = 2 Tr(taMtbM−1) is the adjoint representation of M . The kinetic energy
operator in (2.41) can now be written down as

T = −e
2

2
∆C = −e

2

2

∫

x

δ2

δAk(~x)δĀk(~x)

=
e2

2

∫

x

Kab(~x)(Ḡp̄a)(~x)(Gpb)(~x) (7.6)

4They are basically the frame fields on the group SL(N,C).

38



where Kab = M †
akMkb = 2 Tr(taHtbH−1) and Gpb(~x) ≡

∫
y
G(~x, ~y)pb(~y), etc.

Another way to write T , which shows explicitly that it is a symmetric operator, is

〈1|T |2〉 =
e2

4

∫
dµ(H)e2cASwzw(H)

[
GpaΨ1Kab (GpbΨ2) + Ḡp̄aΨ1Kba (Ḡp̄bΨ2)

]

= 〈T1|2〉

=
e2

4

∫
dµ(H)e2cASwzw(H)Ψ∗1

[∫

x

e−2cASwzw(H)
[
Ḡp̄a(~x)Kab(~x) e2cASwzw(H)Gpb(~x)

+Gpa(~x)Kba(~x) e2cASwzw(H)Ḡp̄b(~x)
]]

Ψ2 (7.7)

In this expression, if we try to move Ḡp̄a through Kab e
2cAS to act on Gpb(~x)Ψ2, we will

encounter the singular commutator [Ḡp̄a(~x), Kab(~x)]. The regularized version of (7.7)
should be such that it agrees with (7.6).

The regularization of a field theory in the Schrödinger formulation in terms of the
Hamiltonian and wave functions is more involved (and less well-known) than the case
of covariant perturbation theory. We will discuss this and related issues in some detail
separately in Appendix B. But for now, we make an observation about observables and
the wave function. Since we are considering the gauge theory without matter fields, the
Wilson loop operators W (C), over all closed curves C, constitute a complete (in fact,
overcomplete) set of observables. These are given by

W (C) = TrPe−
∮
C Adz+Ādz̄ = TrPe

∮
C ∂HH

−1dz = TrPe(π/cA)
∮
C Jdz (7.8)

Here P signifies path-ordering of the matrices in the exponent and J is the current given
by

J =
cA
π
∂H H−1 (7.9)

This is the current associated with the WZW action Swzw(H) which is part of the volume
of the gauge orbit space. We are starting with wave functions which are functions of
A, Ā, or equivalently, M and M †. Since they must be gauge-invariant by the Gauss law
condition G0(θ)Ψ = 0, we can take them to be functions of H. But since all observables
can be given in terms of J , we can further assume Ψ’s to be functions of J . Thus it
is advantageous to express the Hamiltonian entirely in terms of J . The kinetic energy
operator then takes the form

T Ψ(J) = m

[∫
Ja(~z)

δ

δJa(~z)
+

∫

z,w

Ωab(~z, ~w)
δ

δJa(~w)

δ

δJb(~z)

]
Ψ(J)

Ωab(~z, ~x) =

(
cA
π2

1

(z − w)2
+ ifabc

J c(w)

π(z − w)

)
+O(ε) (7.10)
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where m = e2cA/(2π). We have done the regularization using ε as a short-distance
cutoff. Although a detailed discussion of the regularization will be in Appendix B, we
will just state here that our regularization amounts to a point-splitting where the Dirac
δ-function is replaced by

σ(~x, ~y; ε) =
e−|~x−~y|

2/ε

πε
(7.11)

This shows that the regularization parameter ε is essentially a short-distance cutoff. We
recover the δ-function as ε → 0. This has to be augmented by certain factors involving
Kab to preserve various invariances, as discussed later. The terms displayed in (7.10)
are the finite regularized terms, with O(ε) indicating terms which are negligible as the
cutoff ε→ 0.

The two terms appearing in the expression for T are of some interest in their own
right. The first term is essentially due to the anomaly in the two-dimensional case. We
can see this by calculating

T Ja(~x) = −e
2

2

∫
d2y

δ2Ja(~x)

δĀb(~y)δAb(~y)
=
e2cA
2π

M †
amTr

[
TmD̄−1(~y, ~x)

]
~y→~x

= m Ja(~x) (7.12)

The coincident point limit of D̄−1(~y, ~x) which appears here is exactly the same as in the
calculation of the gauge-invariant measure of integration. Calculating it exactly as in
that case, i.e., using (5.19), leads to the second line in (7.12). The result in (7.10) then
follows by the chain rule for functional differentiation.

The second term involving Ωab(~z, ~x) gives the singular pole terms in the operator
product expansion for the current of the WZW model Swzw(H), from a conformal field
theory point of view. Its appearance is again very natural.

There is another way to obtain the result (7.10) for the operator T , which is also
illuminating in some ways. For this we first write the Gauss law operator, defined in
(2.23) as

G0(θ) =

∫
dµ θa

(D · E)a

e2
=

∫
dµ θaIa

Ia =
(D · E)a

e2
=

2

e2
(DĒ + D̄E)a (7.13)

The idea then is to regard Ēa and Ia as independent invariables and eliminate Ea. We
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can solve for E in terms of (Ēa, Ia) as

E(~x) =

∫

y

(D̄−1)x,y

(
e2

2
I −DĒ

)
(7.14)

The fundamental commutation rules are

[Ea(~x), Āb(~y)] = [Ēa(~x), Ab(~y)] = −ie
2

2
δabδ(~x− ~y)

[Ia(~x), Ab(~y)] = −iDab
x δ(~x− ~y) (7.15)

It is easy to check that this is consistent with the solution for E, so that we may take
(7.14) as an operator identity. We can thus write the kinetic energy operator as

T =
2

e2

∫

x

Ea(~x)Ēa(~x) =
2

e2

∫

x,y

[
(D̄−1)ab(~x, ~y)

(
e2

2
I −DĒ

)b
(~y)

]
Ēa(~x) (7.16)

The idea is that we can now move the Gauss law operator to the right end of this
expression; this gives

1

2

∫

y

(D̄−1)ab(~x, ~y)Ib(~y)Ēa(~x) =
1

2

∫

y

(D̄−1)ab(~x, ~y)Ēa(~x)Ib(~y)

− i
2

∫

y

(D̄−1)ab(~x, ~y)fabcĒc(~y)δ(~x− ~y)

=
1

2

∫

y

(D̄−1)ab(~x, ~y)Ēa(~x)Ib(~y)

−1

2
Tr
[
T c(D̄−1)(~x, ~y)

]
~y→~x Ē

c(~x) (7.17)

Notice that, once agin, the coincident point involved is exactly what we had for the
calculation of the volume element and in (7.12) as well. We can evaluate it as done
previously to write

−1

2
Tr
[
T c(D̄−1)(~x, ~y)

]
~y→~x Ē

c(~x) =
icA
2π

(
A−M †−1∂M †)c (7.18)

We can now write T from (7.16) as

T = 2im

∫

x

(A−M †−1∂M †)a(~x)Ēa(~x) − 2e2

∫

x,y

[
(D̄−1)(~x, ~y)DĒ(~y)

]a
Ēa(~x)

+ e2

∫

x,y

(D̄−1)ab(~x, ~y)Ēa(~x)Ib(~y) (7.19)

where m = e2cA/(2π). On physical states annihilated by the Gauss law, the last term
gives zero. This simplification for T did not require any wave function, and is valid for
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both the E-diagonal and A-diagonal representation. We can reduce this expression for
T further if we choose wave functions in the A-representation. Towards this, write the
parametrization of the fields as

A = M †−1(−∂HH−1)M † +M †−1∂M †, Ā = M †−1∂̄M † (7.20)

This displays our parametrization for (A, Ā) as a complex gauge transformation of
(−∂HH−1, 0), by the SL(N,C) group element M †. We may therefore take the wave
function Ψ(A, Ā) as a function of J = (cA/π)∂HH−1 and M †. Since a change of M † is
equivalent to an SL(N,C) gauge transformation, we may write, for infinitesimal θ,

Ψ(M †eθ, J) ≈ Ψ(M †, J) +

∫
θaIa Ψ(M †, J) (7.21)

This shows that, even though θ is complex, the Gauss law condition is enough for us to
conclude that

Ψ(M †eθ, J) = Ψ(M †, J) (7.22)

We see that, by a sequence of such transformations, we can set M † to the identity.
(In two spatial dimensions, all configurations M † are homotopic to the identity, since
Π2(SL(N,C)) = 0. So there is no obstruction to this procedure.) In other words, we
can take the physical wave functions to be functions of J . In this case, we can take
A = −∂HH−1, Ē ∼ (δ/δJ) and T simplifies to the expression given in (7.10).

It is a simpler task to write the potential energy term in terms of the current J . From
the structure of the parametrization of fields as in (7.20), we see that

Bata = M †−1

[
−2π

cA
∂̄Jata

]
M † (7.23)

so that we have∫
BaBa

2e2
=

π

mcA

∫

x

: ∂̄Ja(~x)∂̄Ja(~x) : (7.24)

The normal-ordering indicates the subtraction of the short-distance singularity. We can
write this more explicitly as

∫
BaBa

2e2
=

π

mcA

[∫

x,y

σ(~x, ~y; ε)∂̄Ja(~x)
[
K(x, ȳ)K−1(y, ȳ)

]
ab
∂̄Jb(~y)− cAdimG

π2ε2

]
(7.25)

Finally, we can combine the expression for T from (7.10) and the potential energy
from (7.24) to write the full Hamiltonian as

H = m

[∫
Ja(~z)

δ

δJa(~z)
+

∫

z,w

Ωab(~z, ~w)
δ

δJa(~w)

δ

δJb(~z)

]

+
π

mcA

∫

x

: ∂̄Ja(~x)∂̄Ja(~x) : +O(ε) (7.26)
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8 *A propagator mass for the gluon

We have obtained the Hamiltonian in terms of the current J . We also have the volume
element for the gauge orbit space, which is what defines the inner product for wave
functions. Thus we are now in a position to write down the Schrödinger equation and
solve it, in some suitable approximation. However, before we do that, we will discuss the
theory from the perturbative limit as it can provide some useful insights. From standard
perturbation theory in terms of Feynman diagrams, the effective action Γ (which is the
generating function for one-particle irreducible vertices), calculated to one-loop order,
has the form

Γ = − 1

4e2

∫
F a
µν(x)

[
1− 7e2cA

64

1√
−∇2

]

x,y

F aµν(y) + · · · (8.1)

There is no renormalization of the coupling constant, so predictions for string tension,
masses, etc. can be made without worrying about the scale at which e2 is to be defined.
Secondly, the correction shows clearly that the expansion parameter is e2/

√
−∇2 ∼

(e2/k) where k is the momentum of the field Fµν . Thus in a Fourier decomposition, the
modes of the field for momenta high compared to e2 can be treated perturbatively, while
the low momentum modes with k � e2 have to be treated nonperturbatively. There is
no real expansion parameter for the theory as a whole, e2 is only a marker to signify
which modes can be, and which modes cannot be, treated perturbatively.

Based on our Hamiltonian, we can take this a step further and consider an improved
perturbation theory where a partial resummation has been carried out. (This has been
discussed in [12, 13].) Towards this, we write H = et

aϕa in terms a set of fields ϕa.
Then we have

J = −cA
π
∂H H−1 = −cA

π

∫ 1

0

dα eαt·ϕ(t · ∂ϕ)e−αt·ϕ

≈ −cA
π
ta

[
∂ϕa +

i

2
fabcϕb∂ϕc + · · ·

]
(8.2)

In perturbation theory, interaction vertices arise from commutators and carry factors
of fabc. With this in mind, we can consider a simplification of the Hamiltonian where
we keep only the leading term in (8.2). With Ja ' cA

π
∂ϕa, the Hamiltonian has the

expansion

H ' m

[∫
ϕa

δ

δϕa
+

π

cA

∫
Ω(~x, ~y)

δ

δϕa(~x)

δ

δϕa(~y)

]
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+
cA
mπ

∫
∂ϕa(−∂∂̄)∂̄ϕa +O(ϕ3) (8.3)

Ω(~x, ~y) = −
∫

d2k

(2π)2
eik·(x−y) 1

kk̄

The first term in the Hamiltonian, namely,
∫
ϕaδ/δϕa shows that every ϕ in a wave

function will get a contribution of m to the energy. This is basically the origin of the
mass gap. To the same order, with H = etaϕ

a ≈ 1 + taϕ
a, the volume element becomes

dµ(C) = dµ(H) e2cASwzw(H) ' [dϕ] e−
cA
2π

∫
∂ϕa∂̄ϕa

(
1 +O(ϕ3)

)
(8.4)

The exponential factor with the WZW action, can be absorbed into the wave function
by defining

Φ = ecASwzw(H)Ψ ' e−
cA
4π

∫
∂ϕ∂̄ϕΨ (8.5)

In terms of the wave functions Φ, the inner product is given by

〈1|2〉 ≈
∫

[dϕ] Φ∗1(H) Φ2(H) (8.6)

We defined H to act on the Ψ’s. For the wave functions Φ, the Hamiltonian should be

H′ = ecASwzw(H)H ecASwzw(H) ' e−
cA
4π

∫
∂ϕ∂̄ϕH e

cA
4π

∫
∂ϕ∂̄ϕ

' 1

2

∫

x

[
− δ2

δφ2
a(~x)

+ φa(~x)
(
m2 −∇2

)
φa(~x)

]
+ · · · (8.7)

where φa(~k) =
√
cAkk̄/(2πm) ϕa(~k). This is exactly the free part of a Hamiltonian for

a field of mass m = e2cA/2π. Thus, to this order, the gauge-invariant version of the
gluons are represented by φa and behave as a field of mass m. It is then straightforward
to realize that the propagator corresponding to φa is5

〈T φa(x)φb(y)〉 = δab

∫
d3k

(2π)3
e−ik·(x−y) i

k2 −m2 + iε
(8.8)

Since m = (e2cA/2π), this is not the result at the lowest order in the usual perturbation
theory. We must expand this in powers of m to make the comparison. The terms of
order (m2)n in such an expansion may be viewed as arising from the diagrams of order
(e2)n in perturbation theory, so that (8.8) can be taken to be the result of a selective
resummation of the perturbation expansion, where a set of specific terms (and, in fact,
a particular kinematic limit of such terms) are summed up.

5Here T denotes the usual time-ordering.
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Thus in setting up perturbation theory using our Hamiltonian and expanding H in
powers of ϕ to any order, what we get is an “improved” perturbation theory, where a
selective resummation has been done even at the lowest order. The theory at this lowest
order is a free scalar field theory of mass m. This does give a useful starting point
for some calculations. In fact, we will use this version later to calculate the Casimir
energy for a parallel plate geometry in the nonabelian theory and compare with lattice
simulations.

9 *The Schrödinger equation: An expansion scheme

In this section, we shall return to the version of the Hamiltonian in terms of the cur-
rents, write down the Schrödinger equation and develop a recursive scheme for solving
it for the vacuum wave function. A priori this is a difficult task since there is no natu-
ral expansion parameter in the theory. As explained earlier, the modes of, say, J with
momenta k � m can be considered low momentum modes and those with k � m can
be considered as high momentum modes, with the coupling constant e2 only serving to
separate the modes into these two domains. Our aim will be to focus on the nonpertur-
bative part due to the low k modes. Towards this, we will adopt the following strategy
to set up the expansion scheme. We will consider an extension of the theory defined by
the Hamiltonian as in (7.26) with m and e considered as independent parameters. This
will require a rescaling of the current as explained below. We can then develop a series

expansion for the vacuum wave function, writing Ψ0 = e
1
2
F where F is a power series

in e. Mathematically, this framing of the problem, with m and e treated as independent
parameters, gives us a way to systematize the solution for the vacuum wave function.
At the end, we will set m = (e2cA/2π) to regain the gauge theory of interest. (The
solution for the vacuum wave functional to the lowest order was given in [16] and used
to calculate the string tension. The systematic expansion scheme and the solution with
the first set of corrections were given in [17].)

It is worth emphasizing again that this is very different from perturbation theory
since m is included exactly in the lowest order result for F . Further in the present case,
we are not expanding J in terms of ϕ either. The resulting recursive procedure will
still be some sort of resummed theory. The resummation involves collecting A, Ā in an
appropriate series to define J and then including m at the lowest order which is another
series. Getting to details, we first do a scale transformation on J as J → (ecA/2π)J . In
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terms of the new J , we can write

H = H0 + H1

H0 = m

∫
Ja(~z)

δ

δJa(~z)
+

2

π

∫

w,z

1

(z − w)2

δ

δJa(~w)

δ

δJa(~z)

+
1

2

∫

z

: ∂̄Ja(z)∂̄Ja(z) : (9.1)

H1 = +ie

∫

w,z

fabc
J c(w)

π(z − w)

δ

δJa(~w)

δ

δJb(~z)

As stated before, in the expression forH, we take m and e to be independent parameters
for now. The interaction termH1 is to be treated as a perturbation. In the vacuum wave

function Ψ0 = e
1
2
F , F is an arbitrary functional of J . Therefore it can, in general, be

taken to be of the form

F =

∫
f (2)
a1a2

(x1, x2) Ja1(x1)Ja2(x2) +
e

2

∫
f (3)
a1a2a3

(x1, x2, x3) Ja1(x1)Ja2(x2)Ja3(x3)

+
e2

4

∫
f (4)
a1a2a3a4

(x1, x2, x3, x4) Ja1(x1)Ja2(x2)Ja3(x3)Ja4(x4) + · · · (9.2)

In accordance with the idea of treating H1 perturbatively, each of the coefficient func-
tions will also be taken to have an expansion in powers of e2, so that we can write

f (2)
a1a2

(x1, x2) = f
(2)
0 a1a2

(x1, x2) + e2f
(2)
2 a1a2

(x1, x2) + · · ·
f (3)
a1a2a3

(x1, x2, x3) = f
(3)
0 a1a2a3

(x1, x2, x3) + e2f
(3)
2 a1a2a3

(x1, x2, x3) + · · · (9.3)

f (4)
a1a2a3a4

(x1, x2, x3, x4) = f
(4)
0 a1a2a3a4

(x1, x2, x3, x4) + · · ·

The Schrödinger equation for the vacuum wave function takes the expected form

(H0 +H1) Ψ0 = 0 (9.4)

We can now substitute for Ψ0 with F as in (9.2) into the Schrödinger equation (9.4)
and equate the coefficients of terms with similar powers of J to obtain a set of recursion
relations. The term with zero powers of J is a constant which can be removed by a
suitable normal-ordering of the Hamiltonian. In fact, we have already taken account of
this as indicated by the normal-ordering of the potential energy term. Terms with only
one power of J will vanish by color contractions. The lowest nontrivial relation pertains
to f (2)

a1a2(x1, x2); it is given by

2m f (2)
a1a2

(x1, x2) + 4

∫

x,y

f (2)
a1a

(x1, x)(Ω̄0)ab(x, y)f
(2)
ba2

(y, x2) + Vab
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+e2

[
6

∫

x,y

f
(4)
a1a2ab

(x1, x2, x, y)(Ω̄0)ab(x, y) + 3

∫

x,y

f
(3)
a1ab

(x1, x, y)(Ω̄1)aba2(x, y, x2)

]
= 0

(9.5)

where, for brevity, we have used the definitions

(Ω̄0)ab(x, y) = δab∂yḠ(x, y) = δab
1

π(x− y)2

(Ω̄1)abc(x, y, z) = − i
2
fabc [δ(z − y) + δ(z − x)] Ḡ(x, y)

Vab(x, y) = δab

∫

z

∂̄zδ(z − x) ∂̄zδ(z − y) (9.6)

We have also used (5.16) for Ḡ(x, y). For the higher point functions, the recursion
relation is given by

mpf (p)
a1···ap +

p∑

n=2

n(p+ 2− n)f (n)
a1···an−1a

(Ω̄0)abf
(p−n+2)
ban···ap

+

p−1∑

n=2

n(p+ 1− n)f (n)
a1···an−1a

(Ω̄1)abapf
(p−n+1)
ban···ap−1

+e2

[
(p+ 1)(p+ 2)

2
f

(p+2)
a1···apab(Ω̄

0)ab +
p(p+ 1)

2
f

(p+1)
a1···ap−1ab

(Ω̄1)abap

]
= 0 (9.7)

This applies for p ≥ 3. We must solve (9.5) and this set of equations (9.7) to calculate
the vacuum wave functional in our scheme.

9.1 The lowest order solution

With each f having a series expansion in powers of e2, the lowest order solution to (9.5)
is

f (2)
a1a2

(x1, x2) ≈ f
(2)
0 a1a2

(x1, x2) = δa1a2

[
− q̄2

m+ Eq

]

x1,x2

= −δa1a2

∫
d2q

(2π)2

[
q̄2

m+ Eq

]
ei~q·(~x1−~x2) (9.8)

where Eq =
√
m2 + q2 and q̄ = 1

2
(q1 − iq2). Using this expression, we get the vacuum

wave function to this order as [16]

Ψ0 ≈ N exp

[
−1

2

∫

x,y

∂̄Ja(x)

(
1

m+
√
m2 −∇2

)

x,y

∂̄Ja(y)

]
(9.9)

47



where N is a normalization factor. Even with this lowest order result, we can extract
some predictions regarding physical quantities. This will be taken up in the next section,
but for now, we will give the first set of corrections to this expression.

9.2 The first order corrections to the vacuum wave functional

For the first order corrections to Ψ0, we will need the lowest order results for f (3) and
f (4). Then using them, we can get f (2)

1 a1a2
(x1, x2), which is the term in f

(2)
a1a2(x1, x2) at

order e2.

The expressions for the kernels f (3) and f (4) obtained by solving the recursion rules
(9.7) to the lowest order are

f
(3)
0 a1a2a3

(k1, k2, k3) = −f
a1a2a3

24
(2π)2δ(k1 + k2 + k3) g(3)(k1, k2, k3) (9.10)

f
(4)
0 a1a2;b1b2

(k1, k2; q1, q2) =
fa1a2cf b1b2c

64
(2π)2δ(k1 + k2 + q1 + q2) g(4)(k1, k2; q1, q2)

(9.11)

where

g(3)(k1, k2, k3) =
16

Ek1 + Ek2 + Ek3

{
k̄1k̄2(k̄1 − k̄2)

(m+ Ek1)(m+ Ek2)
+ cycl. perm.

}
(9.12)

g(4)(k1, k2; q1, q2) =
1

Ek1 + Ek2 + Eq1 + Eq2
×

{
g(3)(k1, k2,−k1 − k2)

k1 + k2

k̄1 + k̄2

g(3)(q1, q2,−q1 − q2)

−
[

(2k̄1 + k̄2) k̄1

m+ Ek1

− (2k̄2 + k̄1) k̄2

m+ Ek2

]
4

k̄1 + k̄2

g(3)(q1, q2,−q1 − q2)

− g(3)(k1, k2,−k1 − k2)
4

q̄1 + q̄2

[
(2q̄1 + q̄2) q̄1

m+ Eq1
− (2q̄2 + q̄1) q̄2

m+ Eq2

]}

(9.13)

We have displayed the kernels in terms of their Fourier transforms

f (3)
a1a2a3

(x1, x2, x3) =

∫
dµ(k)3 exp

(
i

3∑

i

kixi

)
f (3)
a1a2a3

(k1, k2, k3)

f (4)
a1a2a3a4

(x1, x2, x3, x4) =

∫
dµ(k)4 exp

(
i

4∑

i

kixi

)
f (4)
a1a2a3a4

(k1, k2, k3, k4) (9.14)
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dµ(k)n =
d2k1

(2π)2
· · · d

2kn
(2π)2

(9.15)

Note also that f (4)
a1a2;b1b2

(k1, k2; q1, q2) as defined in (9.11,9.13) is symmetric under in-
dependent exchange of the first and second pairs of indices as well as under the si-
multaneous exchange ({a1, k1}, {a2, k2}) ↔ ({b1, q1}, {b2, q2}). It could have been made
completely symmetric but it is notationally simpler to leave it as it is for now.

Finally, using the expressions (9.10)-(9.13) for f (3)
0 , f (4)

0 in the recursion rule (9.5),
the term of order e2 in f (2) is given by [17]

f
(2)
2 (q) =

m

Eq

(∫
d2k

32π

1

k̄
g(3)(q, k,−k − q) +

∫
d2k

64π

k

k̄
g(4)(q, k;−q,−k)

)
(9.16)

This completes the calculation of F to order e2. The kernels f (n), n ≥ 5, are zero to this
order, becoming nonzero starting only at the next order in e2.

To summarize, to the lowest order in our expansion scheme, the vacuum wave func-
tion is given in (9.9). Equations(9.10-9.13) and (9.16) then give the first set of correc-
tions to the wave function, i.e., to order e2.

9.3 Another route to the vacuum wave functional

We have already seen in section 8 how we can define an improved perturbation theory
where the lowest order result gives the Hamiltonian for a free massive scalar field. The
Hamiltonian given in (8.3) has the term mϕa(δ/δϕa), which assigns a mass m to each
power of ϕ. The existence of this term is directly related to the integration measure

dµ(C) = dµ(H) e2cASwzw(H) ' [dϕ] e−
cA
2π

∫
∂ϕa∂̄ϕa

(
1 +O(ϕ3)

)
(9.17)

Given this integration measure, the term mϕa(δ/δϕa) is necessary for self-adjointness
of the Hamiltonian. We can now use this to give an alternative approach to the wave
functional (9.9).

Since it corresponds to a free massive scalar field, the HamiltonianH′ from (8.7) has
the vacuum wave functional

Φ0 ∼ exp

(
−1

2

∫
φa
√
m2 −∇2 φa

)
, φa(~k) =

√
cAkk̄/(2πm) ϕa(~k) (9.18)

Converting this back to Ψ = e
cA
4π

∫
∂ϕ∂̄ϕΦ, we find

Ψ0 ∼ exp

[
− cA
πm

∫
(∂∂̄ϕa)

(
1

m+
√
m2 −∇2

)
(∂∂̄ϕa)

]
(9.19)
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The key argument is then the following. We know, from other considerations, that the
wave functions can be taken to be functionals of the current J . For small ϕ, H ≈ 1 + ϕ

and J ≈ cA
π
∂ϕ. So we ask: Is there a functional of J which reduces to the form (9.19)

for J ≈ cA
π
∂ϕ? There is a unique answer, it is given by (9.9),

Ψ0 ≈ N exp

[
−1

2

∫

x,y

∂̄Ja(x)

(
1

m+
√
m2 −∇2

)

x,y

∂̄Ja(y)

]
(9.20)

The measure of integration for the inner product is exact, being determined by an
anomaly calculation. This in turn fixes the form of H for the small ϕ version of the
Hamiltonian, and gives the wave function (9.19). The requirement that Ψ be a function
of the current then ties it down to the form (9.20). This argument shows that there is a
certain robustness to the form of Ψ0 in (9.20).

10 *Analytic results, comparison with numerics

In the previous section we have obtained the solution of the Schrödinger equation for
the vacuum wave function up to the lowest two orders in our expansion scheme. We
have also identified an approximate description of the gluons by a massive scalar field.
The generation of mass is a nonperturbative effect, even though we expect this ap-
proximate description to be valid in a kinematic regime towards the high momentum
range. In this section, we will use these results to calculate certain quantities of physical
interest and compare with numerical studies.

10.1 String tension

Since confinement has been the aspirational goal of many attempts at the nonpertur-
bative analysis of gauge theories, first, we will consider the calculation of the string
tension σR for the representation R. As explained in section 3, this is related to the
vacuum expectation value of the Wilson loop operator as

〈WR(C)〉 ≈ N e−σRAC (10.1)

Since we are interested in loops of large area, we will consider the vacuum wave func-
tion for the low momentum modes of the fields. From (9.9), the lowest order result for
this is

Ψ0 ≈ N exp

[
−1

2

∫

x,y

∂̄Ja(x)

(
1

m+
√
m2 −∇2

)

x,y

∂̄Ja(y)

]
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≈ N exp

[
− 1

4m

∫

x

∂̄Ja ∂̄Ja
]

= N exp

[
− 1

8me2

∫

x

F 2

]
(10.2)

where, in going to the second line, we have simplified the kernel as it applies to the low
momentum modes. The expectation value of the Wilson loop operator WR(C), where
C is purely spatial, can be written as

〈WR(C)〉 =

∫
dµ(C) Ψ∗0Ψ0WR(C)

= N ′
∫
dµ(C)WR(C) exp

[
− 1

4g2

∫
F 2

]
(10.3)

where g2 = me2. This is exactly the Euclidean path-integral version of the expectation
value in a two-dimensional Yang-Mills theory, with a coupling constant g2. By the argu-
ments presented in section 3, we can also calculate this as the interaction energy for a
heavy particle-antiparticle pair in the 1+1 dimensional Yang-Mills theory. Using φ and
χ to represent the heavy particles as in section 3, the action we need is

S =

∫
d2x

[
− 1

4g2
F 2 + iφ†D0φ+ iχ†D0χ

]
(10.4)

This is a fairly trivial theory to investigate. Since the canonical momentum Πa
0 is zero,

we can choose Aa0 = 0 as the conjugate constraint and eliminate the pair. There is no
magnetic field in 1+1 dimensions, so the Hamiltonian in the Aa0 = 0 gauge is

H =
1

2g2

∫
dxEaEa (10.5)

We also have the Gauss law constraint

(DE)a + g2(φ†taφ− χ†t̃aχ) = 0 (10.6)

(This is the same as (3.6).) As the conjugate constraint, we can take ∂xA = 0. If we take
A to vanish at spatial infinity, the only solution is A = 0. The Gauss law (10.6) then
constrains Ea in terms of the charge densities. Thus there are no propagating degrees
of freedom associated to the Yang-Mills field. The solution of the Gauss law condition
is Ea = ∂fa, with

fa(x) = −g
2

2

∫

y

|x− y| (φ†taφ− χ†t̃aχ)(y) (10.7)

The Hamiltonian now becomes

H = −g
2

4

∫

x,y

(φ†taφ− χ†t̃aχ)(x) |x− y| (φ†taφ− χ†t̃aχ)(y) (10.8)
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Acting on the state |0, L〉 = φ†i (0)χ†i (L) |0〉 we find

H |0, L〉 =
g2

2
L (φ†ta)i(χ

†t̃a)i |0〉 =
g2cR

2
L |0, L〉

=
e4cAcR

4π
L |0, L〉 (10.9)

where cR is the value of the quadratic Casimir operator for the representation R. The
string tension can now be read off from this result as

σR =
e4cAcR

4π
(10.10)

This is an analytic prediction for the string tension for the Wilson loop operators in any
representation [16].

An interesting observation regarding this result is that we have not used any simpli-
fication of the gauge theory that might arise from the large N approximation. However,
the final result (10.10) is consistent with large N expectations. For example, for the
fundamental representation of SU(N), we find

σF =
(e2N)2

4π

N2 − 1

2N2
→ λ2

8π
, as N →∞ (10.11)

where λ = e2N is the ’t Hooft coupling constant.

10.2 Comparison of string tension with numerical estimates

Even though we obtained the result (10.10) for the string tension using the wave func-
tion to the lowest order in our expansion scheme, it is useful at this stage to pause and
compare the values given by (10.10) with numerical simulations. In the Table 1, we
show the results for a number of different gauge groups and representations carried
out by Teper and collaborators. It is clear that the values are very close to the predic-
tions from (10.10), the difference being less than 3%. In addition to these, there has
been a high precision calculation for the fundamental representation (k = 1) of SU(2)

which gives value of 0.33576(24) for
√
σ/e2 [21]. Again this compares favorably with

our value of 0.3455. An independent numerical estimate of the large N result has also
been carried out in [22], giving a value of 0.1964N .

An especially fascinating group is G2, since all representations of this group are
screenable. Lattice-based calculations of the string tension for the representations 7,
14, 27, 64, 77, 77′, 182 and 189 have been carried out in [23]. They have verified the
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Group Representations

k=1 k=2 k=3 k=2 k=3 k=3
Fund. antisym antisym sym sym mixed

SU(2)

0.345

0.335

SU(3)

0.564

0.553

SU(4)

0.772 0.891 1.196

0.759 0.883 1.110

SU(5)

0.977

0.966

SU(6)

1.180 1.493 1.583 1.784 2.318 1.985

1.167 1.484 1.569 1.727 2.251 1.921

SU(N)
0.1995 N

N→∞ 0.1976 N

Table 1: Comparison of
√
σ/e2 as predicted by (10.10) (upper entry) and lattice estimates (lower

entry, in red) from [18, 19, 20]. k is the rank of the representation.

relation σR = σ7(cR/c7) (which follows from (10.10) ) to within 1%. The value of
√
σ7

itself agrees with (10.10) to within 1.8%.

The fact that the predictions from (10.10) and the results of the numerical calcula-
tions do match rather well is very nice, but one could ask whether there are corrections
and, if so, whether they do remain small so as not to vitiate the agreement we find
here. We will consider the corrections due to the terms of the next order (i.e., to order
e2) in the wave function and show that the corrections are indeed small. Since these
calculations are rather long, and all too technical, we will defer this to Appendix C. For
now, we will make some comments regarding the string tension and then move on to
the propagator masses and the Casimir effect.

10.3 Comments regarding string tension

There are a couple of interesting and important comments to be made about the string
tension.

As mentioned earlier, G2 is a group for which all representations are screenable. The
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fundamental representation of G2 is 7-dimensional while the adjoint representation is
14-dimensional. The product (7×Adjoint×Adjoint×Adjoint) contains a singlet or the
trivial representation, ensuring that all representations are screenable. Generally the
form of the potential for static sources in screenable representations will show a linear
increase with distance up to a certain critical value Rb and will become flat for r > Rb.
The distance Rb is referred to as the string-breaking distance. The lattice estimate of the
string tension for G2 (and for screenable representations for other groups) is the slope
of the linearly rising part, before the flattening, i.e., for r < Rb. These are the values for
which we make the comparison for the screenable cases.

In a larger context, we can ask whether it makes sense to consider the string picture
of confinement in a situation where the string can eventually break. The lattice simu-
lation in [24] considered 3d Yang-Mills theory coupled to a number of scalar fields in
the fundamental representation, so that all representations are screenable (by suitable
binding with the scalar fields). The results show that an effective string description is
still valid for the confining part of the potential; even boundary terms and higher or-
der corrections from the Nambu-Goto string action can be correctly reproduced by the
simulation.

The second comment is about Casimir scaling versus the sine-law for the string ten-
sion, an issue which took some time to be clarified. Here one considers the k-string
corresponding to the antisymmetric rank k representation of SU(N). The value of the
quadratic Casimir operator for this representation is easily calculated as

ck =
N + 1

2N
k(N − k) (10.12)

If the string tensions are proportional to ck (as we found in (10.10)), and as argued by
others as well, then

σk
σF

=
k(N − k)

N − 1
(10.13)

This is the Casimir scaling law. An important feature is that in a large N expansion, we
have

σk
σF
≈ k

(
1− k − 1

N
− k + 1

N2
+ · · ·

)
(10.14)

Thus one can get odd powers of 1/N in this case.

The sine-law for the k-string is the statement that

σk
σF

=
sin(πk/N)

sin(π/N)
≈ k

(
1− (k2 − 1)π2

6N2
+ · · ·

)
(10.15)
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In this case, we have only even powers of 1/N , evident from the symmetry of the ratio
of the sines under N → −N .

The sine-law was recognized as a possibility that one needs to consider following
the work of Douglas and Shenker who derived it in N = 1 supersymmetric Yang-Mills
(SYM) theory in 4 dimensions [25]. This theory can be obtained by adding a super-
symmetry breaking term to the N = 2 SYM theory whose nonpertrubative analysis
was carried out by Seiberg and Witten, and who obtained the exact low energy effec-
tive action [26]. A similar result was obtained in [27] using a 5-brane construction in
M -theory, the so-called MQCD. Within the context of holography, one can obtain the
k-string tension as the value of the Hamiltonian for a classical supergravity configura-
tion in the holographic dual description. The sine-law is then obtained for the 4d SYM
for the Maldacena-Nunez dual and an approximate sine-law for the Klebanov-Strassler
background [28].

While these results were obtained for the supersymmetric theory using the gravity
dual, a general argument for the sine-law was suggested in [29], see [30] for a review.
The basic argument is the following. Since representations with zero N -ality can all
be screened, the asymptotic formula for the string tension should depend only on the
N -ality of the representation. The rank k antisymmetric representation and the rank
(N−k) antisymmetric representation are conjugates of each other. Therefore we should
further expect the tensions to be invariant under k → N − k. This means that the ratio
σk/σF , which is a dimensionless function depending only on k and N , should be a
function of | sin(πk/N)|; we can represent it as a power series of the form

σk
σF

= c1| sin(πk/N)|+ c2| sin(πk/N)|2 + · · · (10.16)

Further, we know that counting powers ofN in terms of diagrams in perturbation theory
show that at fixed k, one should only have even powers of 1/N . The limit N →∞ with
fixed k should also exist, as we expect confinement at large N with a finite and nonzero
string tension. (This is after everything is expressed in terms of the ’t Hooft coupling e2N

as in (10.11).) These properties require that c2n+1 ∼ N1 and c2n ∼ N0. The terms with
odd powers have the property that, in the limit k → ∞, N → ∞ with k/N fixed, σk/k
is a function of x = πk/N . The authors of [29] refer to this as the saturation property.
Keeping only such terms, one ends up with an odd series in | sin(πk/N)|, with c2n+1 ∼ N .
By comparison with the gravity dual arguments and fitting to some numerical data, one
can then argue that a single power of | sin(πk/N)| suffices. The emerging suggestion
from this line of reasoning was that Casimir scaling should be ruled out as not being
compatible with the (1/N)-expansion of Yang-Mills theory.
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However, the data from lattice simulations were fairly decisively in favor of Casimir
scaling. This follows from the results of [18]-[22] and also from the specific check of
Casimir scaling done for G2 in [23]. Simulations done for the high temperature (T)
limit of 4d Yang-Mills theory, which should reduce to the zero-temperature 3d theory
with a redefined coupling e2 = g2T, also shows Casimir scaling [31]. A calculation using
the gravity dual for the 3d SYM also supports Casimir scaling [32]. Detailed analyses
with the gravity dual, for the string tension and for the Luscher term, were carried out
in [33], [34]; the results seem to lie in between the Casimir law and the sine-law, and
close to both cases.

It would seem from the previous two paragraphs that there is a possible conflict
between the standard (1/N)-expansion and Casimir scaling (which seems to hold for
a number of cases and which can include odd powers of (1/N)). However, this is not
the case, there is a loophole in the arguments presented in [29], as shown by [35].
The essence of this resolution is that, for the string tension, one is calculating a matrix
element of the form 〈0|F e−HTF †|0〉, as shown in section 3. Using a complete set of
energy eigenstates, we can write this in the form

〈0|F e−HTF †|0〉 =
∑

α

Cα e−EαT (10.17)

where Cα and Eα are functions of the coupling constant, N , etc. Generally there is also
a representation dependence arising from the choice of F . Consider now the (1/N)-
expansion of various terms in the sum. It is possible for the individual Cα and Eα

to have odd powers of (1/N). When we expand in (1/N) at finite T , there can be
cancellation of the odd powers between different terms in the sum, thus rendering the
(1/N)-expansion of the correlator consistent with expectations from the diagrammatic
side. However, if we take large T first, then the term which dominates is the term with
the lowest energy, say, e−E0T . This is what is done both in our analytic calculation and in
the lattice simulations, with the string tension extracted from E0. As mentioned earlier,
E0 can have odd powers of (1/N), but in taking the large T limit first, the possible
cancellants of the odd powers of (1/N) from higher Cα, Eα are discarded, so the odd
powers in E0 are retained. This argument shows that there may be no contradiction
between Casimir scaling and the (1/N)-expansion.

The point is that the two limits, namely large T and large N , do not necessarily
commute. (In [35] the authors give a specific example of how such a scenario can be
realized, with the cancellation of the odd powers in the correlator, while retaining odd
powers in E0, in a lattice model in the strong coupling expansion.) The conclusion is
that Casimir scaling is compatible with the expectations from the (1/N)-expansion in
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terms of diagrams.

10.4 Casimir effect: Calculation

In section 8 we argued that our analysis leads to an “improved” perturbation theory
where, at the lowest order the gluon is described by a scalar field φa with mass m =

(e2cA/2π). The Hamiltonian for this was given in (8.7) and it corresponds to the action

S =

∫
d3x

1

2

[
φ̇aφ̇a − (∇φa)(∇φa)−m2φaφa

]
+ · · · (10.18)

We can now use this to calculate the Casimir energy for the nonabelian gauge theory, in
the usual classic set-up of two parallel conducting plates or, rather, wires since we are
in two spatial dimensions. We consider the fields in a square box of side L, with two
parallel wires separated by a distance R. Eventually, we can take L, b1, b2 →∞ keeping
R fixed. The relevant geometry is shown in Fig. 1. In the small ϕa expansion, the gauge
potentials have the form

Aai ≈
1

2
[−∂iθa + εij ∂jϕ

a + · · · ] , M = exp

(
− i

2
ta(θ

a + iϕa)

)
(10.19)

(The field φa is related to ϕa as φa(~k) =
√
cAkk̄/(2πm) ϕa(~k).) The boundary condition

appropriate to perfectly conducting wires is that the tangential component of the electric
field should vanish; i.e.,

εij niF
a
0j = 0, (10.20)

where ni is the unit vector normal to the wire. For small ϕa, we see that this is equivalent
to the condition

niεijεjk∂kϕ̇
a = −ni∂iϕ̇a = 0 (10.21)

L

b1 R b2

(✏1, 0)

(✏1, ✏2)

(0, 0)
1

23

Rei⇡/4

C

S

z

1

Figure 1: The set-up for Casimir effect
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Since the time-derivative does not affect the spatial boundary conditions, this can be
satisfied by imposing the Neumann boundary condition n · ∂ϕa = 0 on the scalar field
ϕa or, equivalently, on φa. This gives us a simple strategy for calculating the Casimir
energy within our improved perturbation theory: We just calculate the Casimir energy
of a free massive scalar field, of mass m, with Neumann boundary conditions on the
wires. (It may be worth re-emphasizing that, even though we use a free field theory,
interactions and some nonperturbative effects are folded in since there is a nonzero
mass m.) Accordingly, the field in the region between the wires has the expansion

φa =

∫
dk

2π

∞∑

n=0

Ca
n,k

√
2

R
cos
(nπx1

R

)
eikx2 , (10.22)

consistent with the Neumann boundary conditions. The action is then obtained as

S =

∫
dt
dk

2π

∑

n

1

2

[
Ċa
n,kĊ

a
n,k − Ω2

n,k C
a
n,kC

a
n,k

]
+ · · · (10.23)

where Ω2
n,k = k2 + (nπ/R)2 + m2. Here n is an integer ≥ 1. (Notice that n = 0 will not

give and R-dependent term.) The unrenormalized zero-point energy can be easily read
off as

E =
L

2
dimG

∫
dk

2π

∑

n

Ωn,k

=
L

2
dimG

∫
dk

2π

∑

n

(
∂2

∂x2
0

)∫
dk0

π

eik0x0

k2
0 + Ω2

n,k

]

x0=0

(10.24)

The summation can be done using the formula
∞∑

n=1

1

k2
0 + Ω2

n,k

= − 1

2ω2
+

R

2ω
+
R

ω

1

e2ωR − 1
(10.25)

where ω2 = k2
0 + k2 +m2. Thus E splits into three terms. The contribution from the first

term on the right hand side of (10.25) is independent of R and will disappear when
we take E(R) − E(R → ∞) to obtain the renormalized energy. As for the second term,
there will be similar contributions from the regions of extent b1 and b2, so that together
we get (R + b1 + b2)/(2ω) = L/(2ω). So its contribution is also independent of R. The
expression for the energy now becomes

E = −LR
4π

dimG

∫ ∞

0

dp
p3

√
p2 +m2

1

e2R
√
p2+m2 − 1

= −dimG
L

4πR2
(mR)3

∫ ∞

1

dz
(z2 − 1)

e2mRz − 1
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= −dimG
L

16πR2

[
2mR Li2(e−2mR) + Li3(e−2mR)

]
(10.26)

In going from (10.24), (10.25) to the first line of this equation, we have carried out
the angular integrations, and p in this expression is given as

√
k2

0 + k2. By using p =

m sinh q, and z = cosh q we get to the second line. The expansion of this in powers of
e−2mRz leads to the last line of (10.26) in terms of the polylogarithms,

Lis(w) =
∞∑

1

wn

ns
(10.27)

Using the expression (10.10) for the string tension, we can re-express (10.26) in terms
of x =

√
σF R as

E
LσF

= −dimG

16π

[
2
√
cA/πcF
x

Li2

(
e−2
√
cA/πcF x

)
+

1

x2
Li3

(
e−2
√
cA/πcF x

)]
(10.28)

10.5 Casimir effect: Comparison with lattice data

The formula for the Casimir energy given in (10.28) is in a form that can be compared
to the lattice simulations. In fact, for the case of G = SU(2), such a simulation and
calculation of the Casimir energy for the parallel wire geometry have been carried out
in [36]. Using the appropriate values of cA and cF , the specialization of formula (10.28)
to SU(2) is

E
LσF

= −A dimG

16π

[
1.84

x
Li2
(
e−1.84x

)
+

1

x2
Li3
(
e−1.84x

)]
(10.29)

We have also included a prefactor A. The motivation for a possible change of the
prefactor (from the value of A = 1 as in (10.28)) is the following. The prefactor is
really a measure of the number of degrees of freedom. This is clear from the dimG

factor. However, lattice simulations of Yang-Mills theories have shown that the number
of degrees of freedom do not quite reach a value corresponding to a gas of free gluons
even at very high temperatures, where we expect a deconfined gluon plasma. This has
known for a fairly long time. (A recent review which gives updated results is [37];
in particular, see figure 4 of this reference.) There could also be higher order effects
(interactions among the ϕa fields, corrections to the wave function, etc.) which could
contribute to A. The exponential fall-off is however controlled by the mass m. So we
do not tamper with that; the value from our analysis, namely m = (e2cA/2π), has been
used in (10.29).
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As for the comparison with lattice data, the authors of [36] fitted the data points to
a phenomenologically motivated formula

E
LσF

= −dimG
ζ(3)

16π
x−ν e−M x/

√
σF , (10.30)

the best fit values being ν = 2.05 and M = 1.38
√
σF . in Fig. 2, we show the curve

corresponding to (10.30) as the dashed red line, using the best fit values quoted above.
It is very clear that our formula (10.29) is at least as good a fit to the lattice data as the
phenomenological formula (10.30). We have used only one fitting parameter, namely
A. Its best fit value is A = 0.9715. If we used (10.28) without allowing for a change
of the prefactor (which means A = 1), the agreement would still be rather good, since
the deviation is only about 3%. Notice that the exponential factors are just as predicted
from (10.28). Even a small error in the mass m could give a significant deviation since
it is in the exponent.

Why is our result for the Casimir energy so accurate considering that it is obtained
using the “free theory”, albeit including the mass which is nonperturbatively generated?
Obtaining a lattice estimate of the Casimir energy at large separations is problematic
because of the exponential damping. The numerical values are lost in the noise. At the
other end, for short distance, lattice artifacts get in the way. So the lattice estimates
are by necessity confined to a certain range (roughly between x = 0.1 and x = 0.7

in the graph). This is the kinematic regime which we might expect to be more or less
accessible by perturbation theory, but improved to incorporate a mass which is necessary
to include the exponential fall-off.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-8

-6

-4

-2

E
LσF

x

Figure 2: Comparison of (10.30) (dashed red line) and (10.29) (solid blue line).
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10.6 Propagator mass: Alternate approaches

The Casimir effect, as discussed above, may be the most accurate way to test the predic-
tion about the propagator mass for gluons. But there are a few other ways to attempt
the calculation or the numerical estimate of this quantity.

First of all, since we argued that our analysis, in the high momentum regime, could
be viewed as a resummation of a select series of Feynman diagrams, one could attempt
a direct resummation within standard covariant perturbation expansion. In such an
approach, the difficulty we might face is that the selection of the terms to be resummed
has to respect gauge invariance or BRST invariance. This means that the chosen set of
terms should form a closed set with respect to the relevant Ward-Takahashi identities.
Ensuring this feature can be cumbersome in practice. However, since we are primarily
interested in the mass, not full-blown off-shell amplitudes, there is a simpler method
we can use. The idea is to first construct a possible gauge-invariant mass term for the
gauge fields. This will be of the form

Smass =
1

2

∫
d3k

(2π)3
Aai (−k)Aaj (k)

(
δij −

kikj
~k2

)
+O(A3) (10.31)

The quadratic term shows that this is truly a mass term for the transverse gauge fields,
but is not gauge-invariant. However, one can add to it a suitable series involving A’s
to get a gauge-invariant completion of this term. Since the completion is not uniquely
defined, we can have different possible choices for Smass. All such mass terms are nec-
essarily sums of nonlocal monomials of the fields. Once we have chosen a mass term
Smass, we consider the action6

S = SYM +M2Smass −∆ Smass (10.32)

where SYM is the usual Yang-Mills action. We take ∆ to have a loop expansion starting
at the 1-loop order, writing

∆ =
∑

1

~n ∆(n) (10.33)

After adding gauge fixing and ghost terms, we can calculate the effective action Γ. This
will have the form

Γ = SYM +M2Smass −
∑

1

~n∆(n) Smass + ~Γ(1)(~) + ~2Γ(2)(~) + · · · (10.34)

6For the rest of this section, we use the Euclidean theory in keeping with the fact that this signature is used

in diagrammatic perturbation theory.
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Notice that while Γ(1) is obtained from terms which are graphically of the 1-loop topol-
ogy, it contains terms of arbitrary order in ~ since the propagators involve ∆ and are of
the form (k2 +M2 −∆)−1. Thus Γ(1) has the expansion

Γ(1) = Γ
(1)
0 +

∑

1

~n Γ(1)
n (10.35)

In a similar way, additional ~ dependence arises for the 2-loop vertices. The terms of
order ~2 in Γ(2) are due to
a) 2-loop graphs with the propagators ∼ (k2 +M2)−1

b) terms from Γ
(1)
1 .

Collectively we will denote these terms by Γ
(2)
0 . Just to clarify, we may note that the

second set of terms can arise from 1-loop diagrams with vertices from SYM + M2Smass

(plus similar ghost vertices) and propagators expanded to ∆(1) order or from 1-loop
diagrams with propagators ∼ (k2 + M2)−1, but with vertices from ∆(1)Smass. Similar
reasoning will hold for higher order terms. The expansion (10.34) thus takes the form

Γ = SYM +M2Smass + ~
(

Γ
(1)
0 −∆(1)Smass

)
+ ~2

(
Γ

(2)
0 −∆(2)Smass

)
+ · · ·

+gauge-fixing terms + ghost terms (10.36)

We takeM2 to be the propagator mass; this is so at the tree level with the pole appearing
at k2+M2 = 0. It can be kept at the same point to order ~ by choosing ∆(1) to cancel any
shift of the pole induced by Γ

(1)
0 . This will determine ∆(1) as a function of M . Likewise,

we choose ∆(2) to cancel any shift of the pole at order ~2, etc. Finally, we are not seeking
to change the theory, it should still be the usual Yang-Mills theory. So we should at the
end set

M2 = ∆ = ∆(1) + ∆(2) + · · · , (10.37)

so that the starting action (10.32) is just the Yang-Mills action. This equation becomes
a gap equation for the theory determining M in terms of the coupling constant.

The procedure we have outlined gives a systematic and gauge-invariant way to carry
out a resummation of the select set of terms and identify the propagator mass. It can
also be implemented order by order; for example, M2 = ∆(1) will be the 1-loop gap
equation, M2 = ∆(1) + ∆(2) is the 2-loop gap equation, etc. The series of terms which
are selected to be resummed is determined by the choice of Smass, with different choices
corresponding to different series being resummed. This method of obtaining the gap
equation has been explained in some detail in [38, 39].
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Calculations along these lines have been carried out for several different choices of
Smass. In [40], a Higgs field was used to generate a gauge-invariant mass term, in a
way similar to how the Higgs mechanism gives a mass to vector bosons. In [38], we
have used a different mass term inspired by the 2d-WZW action and also by the Debye
screening mass term in 4d-Yang-Mills theory at high temperatures. This mass term
also has an interesting geometrical side to it, in terms of Sasakian structures on three-
dimensional spaces [41]. Jackiw and Pi have used a more conventional mass term of the
form F (1/D2)F [39]. A Chern-Simons term, although parity-violating, has also been
used [42]. In the references cited so far, the calculations were done to 1-loop order and
the resulting gap equation was then solved to obtain the value of the propagator mass.
The calculations of [40] have also been extended to obtain the 2-loop gap equation in
[43, 44]. The values of the propagator mass obtained using these mass terms are given
in Table 2.

A second method is to use the Schwinger-Dyson formulation of the theory [45]. This
is effectively a reorganization and resummation of the perturbation expansion and so
it is ideologically related to the resummation method discussed above. By combining
the Schwinger-Dyson equation with the pinch technique [46, 47], it is possible to get
gluon propagators and identify the mass. (The pinch technique is a way of adding a
certain kinematic limit (the pinching limit) of some Feynman diagrams to other n-point
functions to obtain gauge-invariant n-point functions. See the references quoted to
see the details of how this can be implemented.) The Schwinger-Dyson equations are
nonlinear and in the end, in this approach, some numerical work is needed to solve
them. The result seems to give a value close to what is obtained by the other methods,
as seen from Table 2.

Yet another approach is to use lattice simulations again. Arguably, the best feature
of lattice gauge theory is the ease of preserving manifest gauge invariance. However,
to define the gluon propagators and the propagator mass one needs to do gauge-fixing.
This will also bring in issues like the Gribov problem. Nevertheless, calculations have
been done using the Landau gauge, the maximal Abelian gauge and for what we shall
refer to as the λ3 = 2 gauge. (See the quoted reference for details.)

Finally, we point out that Philipsen [52] has also calculated the propagator mass by
considering the correlation length and fall-off of gauge-invariant partonic correlators
in the 4d-Yang-Mills theory at high temperatures (which is equivalent to the 3d-theory
with a redefinition of the coupling constant).
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Group m/e2 Method

SU(2)

0.38 Resummation, 1-loop [38]

0.28 Resummation, 1-loop [40, 39]

0.35 Lattice, common factor for glueball masses [40]

0.34 Two-loop gap equation [43]

0.33 Two-loop gap equation [44]

0.25 Resummation of perturbation theory [48]

0.51 Lattice, maximal abelian gauge [49]

0.52 Lattice, Landau gauge [49]

0.44 Lattice, λ3 = 2 gauge [49]

0.456 Lattice, Landau gauge [50]

0.37 Gauge-invariant lattice definition [51]

0.36 Gauge-invariant correlation length [52]

0.32 Calculation via our Hamiltonian method

SU(3)

0.568 Resummation, 1-loop [38]

0.42 Resummation, 1-loop [40, 39]

0.515 Lattice, Landau gauge [53]

0.482 Lattice, Landau gauge [54]

0.48 Calculation via our Hamiltonian method

Table 2: Comparison of propagator mass calculations

11 Screenable representations and string breaking

Screenable representations are representations R such that R × Adjoint × Adjoint · · ·
contains the trivial (or singlet) representation. For G = SU(N), these are representa-
tions of zero N -ality. As discussed in section 3, if we consider a particle-antiparticle pair
in a screenable representation, the potential between them will flatten out at some point
as the separation between the two is increased. Thus, for screenable R, the formula for
the string tension should apply only up to this critical separation.

The process of the flattening out of the potential can be visualized as follows. Since
R×Adjoint×Adjoint · · · contains a singlet, we could have a bound state of zero charge
made of the particle with a certain number of gluons. This bound state is usually re-
ferred to as a glue lump. Similarly one can have a glue lump for the antiparticle with
some gluons. As we increase the separation between the particle and the antiparti-
cle, at some point, it becomes energetically favorable to convert the interaction energy
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into creating a glue lump pair. Once this is achieved, there is no further energy cost
to separating the lumps, since each of them has zero charge. The energy of the pair
remains what it was at the point of the glue lump formation. This is the flattening,
which can also be thought of as the breaking up of the string connecting the particle
and antiparticle.

The ideal scenario theoretically would be to see this directly in the calculation of
the expectation value of the Wilson loop. This has not been possible so far using the
vacuum wave function we have obtained, namely, the result to the lowest two orders
within our expansion scheme. Presumably higher order effects will be important for
string breaking. However, what we can do is an approximate calculation of the ground
state energy of a glue lump and then argue that the energy needed to create a glue
lump pair in their ground state is the critical value V∗ of the potential energy at the
string-breaking point.

11.1 A Schrödinger equation for the glue lump

We will first outline the calculation of the glue lump ground state energy. Recall that
we can consider the Wilson loop as a process involving the propagation of a heavy
particle-antiparticle pair, each, say, of massM . The simplest case to consider is when the
representation R for the particle is the adjoint one, so that the glue lump is the bound
state of this particle (or antiparticle) with the gluon [55]. If φa is field representing the
heavy particle, then the gauge-invariant version, denoted by Φa, is given by

Φata = M † φataM
−1 (11.1)

The wave function of a glue lump state will then have the form

ΨG =

∫

x,y

f(~x, ~y) ∂̄JaW̃ ab(x, y)Φb Ψ0

W̃ ab(x, y) =
[
K(x, ȳ)K−1(y, ȳ)

]ab
(11.2)

Here Φa represents the particle and Ja the gluon. f(~x, ~y) is the two-body wave function
for the gluon and the heavy particle. Ψ0 is the wave function for the ground state, which
is given by

Ψ0 = N exp

(
−1

2
F
)

exp

(
−1

2
M

∫
ΦaΦa

)
(11.3)

with F as given in section 9. The second exponential is the ground state wave function
for a heavy particle of mass M .
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Our aim now is to act on this wave function with the Hamiltonian. In some ap-
proximation, as explained below, this will lead to an ordinary two-body Schrödinger
equation for f(~x, ~y). We can then estimate the ground state energy as we do in quan-
tum mechanics. The Hamiltonian is given by H from section 7, or the expression (9.1),
with the Hamiltonian for the scalar field added to it. The result is H = HYM +HΦ, with

HYM = m

∫
Ja(~z)

δ

δJa(~z)
+

2

π

∫

w,z

1

(z − w)2

δ

δJa(~w)

δ

δJa(~z)

+
1

2

∫

z

: ∂̄Ja(z)∂̄Ja(z) : +ie

∫

w,z

fabc
J c(w)

π(z − w)

δ

δJa(~w)

δ

δJb(~z)

HΦ =

∫
:

[
−1

2

δ2

δΦaδΦa
+

(
2π

cA
∂̄Φa(DΦ)a +

M2ΦaΦa

2

)]

+im

∫

z,w

Λcd(~w, ~z)fabcΦa(~w)
δ

δΦb(~w)

δ

δJd(~z)
: (11.4)

where

Dw ab =
cA
π
∂wδab + ifabcJc(~w)

Λcd(w, z) = −∂z
[∫

x

Ḡac(~x, ~w)Kab(~x)Gbs(~x, ~z)

]
K−1
sd (~z)

Ḡma(~x, ~y) =
1

π(x− y)

[
δma − e−|~x−~y|

2/ε
(
K(x, ȳ)K−1(y, ȳ)

)
ma

]

Gma(~x, ~y) =
1

π(x̄− ȳ)

[
δma − e−|~x−~y|

2/ε
(
K−1(y, x̄)K(y, ȳ)

)
ma

]
(11.5)

The propagators given in the last two lines of (11.5) are the regularized form of the cor-
responding propagators. HΦ is normally ordered so that there is no zero-point energy,
as indicated in (11.4).

We can now consider the action of H on ΨG. Before we give details, we will make
some observations which are useful in understanding the genesis of various terms in the
resulting Schrödinger equation. We have already seen that TJa = mJa in (7.12). When
we include Ψ0 as well, we find

T Ja(x)Ψ0 =

(
m− ∇

2

2m

)
Ja(x)Ψ0 +

2iπ

mcA
fabcJ

b∂̄J cΨ0 + · · · (11.6)

If we ignore the terms of order J2, this is like an eigenvalue equation, the eigenvalue
itself being (m−∇2/2m), which is the nonrelativistic version of

√
m2 + k2.7

7Actually one can recover the fully relativistic expression
√
m2 + k2 by summing up a series in 1/m. The

situation is very similar to what happens with quantum fluctuations around a static soliton. A series of terms

produced by the zero modes of the Hessian has to be summed up to get the relativistic formula.
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Notice that we also have
∫

:

[
−1

2

δ2

δΦaδΦa
+

1

2
M2ΦaΦa

]
: ΦbΨ0 = M ΦbΨ0 (11.7)

The action of the operator on the left also produces a term 1
2
M ΦbΨ0, but a similar

result is obtained for just Ψ0 as well; it is the vacuum energy which is removed by
the normal ordering. From these two statements and the fact that ΨG contains ∂̄Ja

and Φb, we expect that the action of the Hamiltonian will produce a contribution of
(M+m−∇2/2m) to the eigenvalue. (One could also have−∇2/2M , but this is negligible
as we take M very large.) There will also be the energy of the interaction between the
charged factors ∂̄Ja and Φb in ΨG. These expectations are born out by the explicit
calculations, with the result

H ΨG =

∫ [
M +m− ∇

2
x

2m
+ σA|~x− ~y|

]
f(~x, ~y) ∂̄Ja(~x)W̃ ab(~x, ~y)Φb(~y)Ψ0 + · · · (11.8)

Here σA is the string tension for the adjoint representation and the ellipsis stands for
a number of terms we have neglected. The approximations involved in arriving at this
equation are the following.

1. First of all, there is the obvious approximation of using the leading solution (9.9)
for the vacuum wave function; i.e., F in (11.3) is taken to be the leading kernel
for the quadratic term in the J ’s.

2. There are terms which correspond to new operator structures, i.e., they are not of
the form of ΨG and have more powers of J . These are possible new states in the
theory. The glue lump state ΨG = ∂̄JW̃Φ Ψ0 given in (11.2) can have overlap with
such states since they have the same quantum numbers.

The fact that the Hamiltonian acting on ΨG can produce these other structures
shows that there can be mixing. But, as is well known in quantum mechanics,
the effect of nondiagonal terms in H comes with energy denominators and can be
taken to be small if the differences between the energies of the lowest glue lump
state (which is what we are interested in) and higher states are large enough. We
expect this to be the case at large enough coupling, since the differences must go
like m. But ultimately it is to be justified a posteriori.8 For more details on these
issues, see [55].

8The transition amplitude from the Wilson loop without string-breaking to the glue lumps is seen to be very

small from lattice data, even for SU(2) [56, 57]. This is another indication for the expectation that the off-diagonal

elements mentioned above should be small.
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Accepting the caveats mentioned above, we can now see that the glue lump state
(11.2) will be an eigenstate of the Hamiltonian if f(~x, ~y) obeys the ordinary Schrödinger
equation

[
M +m− ∇

2
x

2m
+ σA|~x− ~y|

]
f(~x, ~y) = E f(~x, ~y) (11.9)

Removing the center of mass motion (which is zero as M → ∞), we see that this
equation is the obtained by minimizing the energy functional

E = M +m+
1

N

∫
d2x

[ |∇f |2
2m

+ σA|~x| |f |2
]

N =

∫
d2x |f |2 (11.10)

The simplest way to proceed further is to use a variational procedure. We consider an
ansatz of the form

f = exp(−β|x|µ) (11.11)

where β and µ are to be treated as variational parameters. Calculating E(β, µ) and
extremizing it we find that the minimum occurs at β = β∗, with

E(β∗, µ) = M +m+

[
2−(2µ+1)/µ

2mΓ(2/µ)

(
2(µ−3)/µ2mσAΓ(3/µ)

µ2

)−1/3

×
(

8mσAΓ(3/µ) + 81/µµ2

(
2(µ−3)/µ2mσAΓ(3/µ)

µ2

))]
(11.12)

β∗ =

(
2(µ−3)/µ(2mσA)Γ(3/µ)

µ2

)µ/3

The minimization with respect to µ has to be done numerically.

A seemingly more general ansatz for f is

f =
e−β|x|

µ

(1 + |x|)ν (11.13)

with β, µ, ν as variational parameters. This may seem better motivated since the solu-
tions of the Schrödinger equation with a linear potential involve the Airy functions Ai

and we have

Ai
(
(2mσA)1/3|x|

)
√
|x|

≈
exp

[
−2

3

(
(2mσA)1/3|x|

)3/2
]

|x|3/4 (11.14)

for large |x|. However the minimization of E(β, µ, ν) shows that the minimum occurs
at ν = 0, so, in the end, this is equivalent to (11.11).
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11.2 Comparison with lattice simulations

The calculation of string-breaking given above is admittedly rather crude. As stated,
there are several terms which have been neglected. Even after this, the Schrödinger
equation (11.9) has only the linear potential σ−A|~x−~y|. At short distances one should
expect a Coulomb potential (logarithmic in 2+1 dimensions) as in perturbation the-
ory. In the glue lump, since the wave function has some nonzero probability at short
separation between the constituents, the Coulomb potential can have an impact on the
energy. There is also the Luscher term (π/24|~x− ~y|) for the potential energy. Finally we
are only carrying out a variational estimate of the ground state energy. So, all things
considered, the calculation presented above should be viewed as primarily being of
qualitative value, demonstrating the possibility of string-breaking. Nevertheless, it is in-
teresting to compare with lattice estimates, keeping in mind all the caveats mentioned
above.

Minimizing the energy in the formula (11.12) with respect to µ and using the value
of the adjoint string tension given by (10.10), namely, σA = (e4c2

A/4π) = πm2, we find
E(β∗, µ∗) = M + 3.958m. Since we had two masses M initially, the extra energy needed
to create a glue lump pair is 2×3.958m = 7.916m. Thus we should expect that the string
breaking should occur when the interaction energy is V∗cal = 7.916m.

A point of internal consistency of the calculation is the following. Taking the value
7.916m for V∗cal, the separation between the constituents of the glue lump at the point
of breaking is r∗ = (V∗/σA) & 2.52/m and so, the typical momentum at this separa-
tion . (m/2.52). While this does not make an unassailable case for the nonrelativistic
treatment, it is not inconsistent.

Turning to the lattice numbers, an early estimate of string-breaking in SU(2) by
Philipsen and Wittig [56] gave a value of the breaking separation Rb as 13.6/Mg where
Mg is the mass of the lightest glueball. Taking this to be the 0++ with a mass of 5.17m

as given by [18], this translates to V∗lat = 8.26m. The calculated value agrees with the
lattice estimate up to |V∗lat − V∗cal|/V∗lat = 4.16%.9

In the lattice estimate by Kratochvila and de Forcrand [57], the value of V∗ for
G = SU(2) was obtained as V∗lat = 2.063a−1, while the fundamental string tension
is σF = 0.0625a−2, where a is a lattice spacing used in the simulation. This implies

9String-breaking was also clearly demonstrated in [58], but the authors considered the theory with quarks in

the fundamental representation. This is different from our case of adjoint static charges, so a comparison is not

obtained.
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The unbroken-string state energy is also drawn. The horizontal line at 2.06(3)a−1

represents twice the mass of a gluelump.

are already strongly suppressed. But they are clearly seen in the adjoint case for
distances larger than the string breaking distance since the Wilson loop has very
good overlap with the unbroken-string state which is an excited state for R > Rb.
More about excited states can be found in Subsection 5.1.2.

5.1.1 Static potential

We start our discussion with the extraction of the fundamental static potential
Vfund(R). We consider only one level of fundamental smearing (30 iterations of
Eq.(21)) of the fundamental spatial links and do not consider a Wilson loop matrix
in the sense of Eq.(55). A single-mass Ansatz works nicely at all R in the temporal
range Tmin = 12a ≤ T ≤ 60a, where we have no measurable contribution of excited
states. The extracted Vfund(R) is in full agreement with the literature.

From the static potential we can extract the string tension σ. This gives us a
crosscheck with previous determinations [20] and a way to express the lattice spacing
in physical units. We use a string-motivated Ansatz

V (R) ∼ V0 + l ln
R

a
− γ

R
+ σR (53)

20

Figure 3: The adjoint and fundamental static

potentials V (R) (the latter multiplied by the

Casimir factor 8/3) versus R using Wilson

loops only. The adjoint static potential re-

mains approximately constant for R ≥ Rb =

10a proving string breaking. The unbroken-

string state energy is also drawn. The hori-

zontal line at 2.06(3)a−1 represents twice the

mass of a glue lump. This is graph is from

[57].
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FIG. 7. Continuum scaling of the adjoint static potential:
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L = 48 (β = 8.34688) and L = 64 (β = 11.3138). The
potential between two fundamental charges for β = 6.0 is
also reported for comparison.

fit data for V adj according to the ansatz

V adj(d) = σd + k
π

24d
, (15)

where k is a free parameter. Such an ansatz is reasonable
only for d < Rc however, just like in standard EST, values
of d which are too small have to be excluded from the fit,
since they are contaminated by the Coulomb interaction
between the sources (that in our case is logarithmic).

In Fig. 6 we show our estimates for the parameter k en-
tering Eq. (15), obtained by fitting data for V adj(d) com-
puted on a 643 lattice at coupling β = 11.3138. Accord-
ing to Eq. (3) the lattice spacing corresponding to this
value of the coupling is about half the one at β = 6.0, so
we expect Rc ≈ 20a, and indeed up to d = 18a we found
no signal of string breaking. In Fig. 6 we also report esti-
mates obtained by fitting the two-point finite difference
approximation of the derivative of V adj

dV adj

dr
(r + a/2) " V adj(r + a) − V adj(r)

a
(16)

instead of the static potential itself, which give consis-
tent results. From Fig. 6 we see that k is definitely not
consistent with 1, and this fact can be interpreted as a
signal for d < Rc that the string will break by increasing
the distance between the sources.

Finally, in Fig. 7 we show the continuum scaling of V adj

for three different values of the lattice spacing (which
goes from a ≈ 0.11 fm at β = 6.0 to a ≈ 0.057 fm at β =
11.3138), with the static potential between fundamental

charges being also shown for comparison. Additive con-
stants have been fixed by imposing V adj(2/

√
σ) = 7

√
σ,

and an almost perfect scaling is observed, which implies
also in this case the absence of significant cut-off effects.

IV. CONCLUSIONS

In this paper we have studied color flux tubes in a
theory which displays string breaking, and in particular
their behavior when the separation between the static
sources approaches the string breaking distance Rc. For
this purpose we used as testbed the three-dimensional
SU(2) Yang-Mills theory with charges transforming in
the adjoint representation of the gauge group.

We have shown that the adjoint flux tube, like the
fundamental one, consists mainly of the longitudinal
chromoelectric field for distances d between the sources
that are smaller than Rc. As the critical distance Rc

is approached, the longitudinal chromoelectric field gets
strongly suppressed, becoming of the same size of the
transverse fields at Rc. The disappearance of the flux
tube is quite abrupt, and the value of R10(d, xt = 0)
(which is related to square of longitudinal chromoelec-
tric field inside the flux tube) decreases approximately
by a factor of 3 when the relative difference between d
and Rc reduces below 10%.

This rapid disappearance is the one that could have
been naively guessed from the behavior of the adjoint
static potential V adj(d), which suddenly switches from
an approximately linear grow to a constant plateau at
d " Rc. We have however seen that precursors of string
breaking are present for d smaller than Rc, which are ba-
sically related to the failure of standard effective string
theory. The scaling of the square width w2(d) of the
flux tube with the distance d follows (at least within the
present accuracy) the expected logarithmic behaviour,
but the value of the coefficient differs from the universal
effective string prediction. Similarly, an analogous of the
Luscher term is present also in V adj(d), but again numer-
ical data are not compatible with the expected universal
coefficient.

Future studies should be aimed at extending this anal-
ysis to other models, to understand to which amount
the phenomenology at string breaking observed in the
three-dimensional SU(2) Yang-Mills case is generic and,
in particular, is relevant for QCD. For the same reason
it would be very interesting to investigate if there is a
relation between the values of the coefficients kw and k
in Eqs. (12),(15) (or better, their deviations from the
EST predictions) and some nonuniversal property of the
theory, like its spectrum.

Acknowledgements Numerical simulations have been
performed on the CSN4 cluster of the Scientific Com-
puting Center at INFN-PISA. It is a pleasure to thank
Michele Caselle for useful comments and discussions.
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V∗lat = 2.06m
√

(πcF/0.0625cA) = 8.68m, fairly close to the value obtained by [56]. The
deviation of this from the calculated value of 7.916m is approximately 8.76%. How-
ever, the form of the potential which emerges from the simulations in [57] do display a
Coulomb term and the Lüscher term in addition to the linear potential, so a direct com-
parison with (11.12) is not really appropriate. A more meaningful quantity might be
the distance at which breaking occurs, signaled by the flattening of the potential. This
happens at about 10a for β = 6, where β is the parameter which appears in the lattice
action (Wilson action) and a is the lattice spacing. These are related to the coupling e2

as a = (2N/βe2). We then find σA × (10a) = 6.67m. This is about 19% below our esti-
mate. (The flattening of the potential is very clearly seen in many lattice simulations.
We display two examples, just to illustrate this point, in Fig. 3 and Fig. 4.)

Another recent estimate is the one reported in [59]. These authors show that the
breaking occurs at a value of 1.3 (which is twice the mass of a “constituent gluon” in
their terminology). The units used are such that the 0++ glueball has a mass of 1.198.
Taking M0++ = 5.17m as in [18], we find that V∗lat = (1.3/1.198)× 5.17m = 5.61m.

We also mention [60], where the authors again demonstrate string-breaking for a
bound state of a quark and an antiquark. As in the case of [58], the quarks being in
the fundamental representation, we are not able to obtain a comparison with the value
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calculated here.

An interesting recent simulation for SU(2) lattice gauge theory considered the lon-
gitudinal and transverse chromoelectric fields as the distance between the particle and
antiparticle static sources is increased [61].10 The longitudinal fields suddenly drop to
almost zero as the separation approaches the string-breaking value. This happens at
about 10a for β = 6, in agreement with [57]. So, as in that case, σA × (10a) = 6.67m. It
is however worth mentioning that the focus of [61] was not so much on the value of the
energy. The key result is about how the breaking occurs, signaled by the rapid decay of
of the longitudinal contribution to the energy (for which they find clear evidence).

12 Alternate candidates for the vacuum wave functional

The procedure we have described in section 9 gives a systematic expansion scheme
for solving the Schrödinger equation. The solution was then used in arriving at the
formula for the string tension. But there have been a few other suggestions regarding
the vacuum wave functional for the 3d Yang-Mills theory. We will briefly review some
of them here.

In a couple of very interesting papers, Leigh, Minic and Yelnikov (LMY) considered
an alternate method of solving the Schrödinger equation [62]. The starting observation
was to note that the kernel given in the solution (9.9) can be expanded in powers of
−∇2 as

(
1

m+
√
m2 −∇2

)
=

1

2m

[
1− 1

4

(−∇2

m2

)
+

1

8

(−∇2

m2

)2

+ · · ·
]

(12.1)

As a result, the exponent of the wave functional (9.9) can be viewed as a sum of terms
involving monomials of the form

O′n =

∫
∂̄Ja(∂∂̄)n∂̄Ja (12.2)

Based on this, LMY introduce a set of operators [62]

On =

∫
∂̄Ja

[
(D∂̄)n

]ab
∂̄J b, Dab =

cA
π
∂ δab + ifabcJ c (12.3)

(The operator Dab was previously introduced in (11.5).) The motivation for this has
to do with invariance under holomorphic transformations of H, namely, under H →
V (z)HV̄ (z̄). The operator D is a covariant derivative for this and leads to manifest

10I thank Claudio Bonati for a useful comment and for sharing some of their data.
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invariance for On under the holomorphic transformations. The next step in [62] was to

postulate an ansatz for the wave functional of the form Ψ0 = e
1
2
F , with

F =
∑

n

cnOn (12.4)

To evaluate the action of the Hamiltonian, they assumed that On are eigenvectors of the
kinetic operator,

T On = (2 + n)mOn (12.5)

This relation can actually be proved for n = 0, 1, but there are additional terms in
general for higher n. Nevertheless, if one neglects any correction to (12.5), one can
solve the Schrödinger equation and arrive at a wave functional

Ψ0 = exp

[
− 1

4m

∫
∂̄J K[L] ∂̄J

]
, K[L] =

J2(4
√
L)√

L J1(4
√
L)

(12.6)

where L = −D∂̄/m2 and J1, J2 are Bessel functions of orders 1 and 2 respectively. Given
the possibility of extra terms in (12.5), we may take this as a good approximate solution
of the Schrödinger equation.

The kernel K which appears in (12.6) is, despite appearances, very close to the
kernel in our solution (9.9). In Fig. 5, we show a comparision of the two kernels.11.

11I thank A. Yelnikov for this comparison graph.
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The value of the string tension does not change compared to (9.9), since the low
momentum limit of the kernel is the same. However, LMY were able to use this wave
functional to calculate a number of glueball masses as well. These were obtained from
the two-point function for different color-singlet composite operators, characterized by
spin, parity and charge conjugation properties (JPC-notation). The results, in units of
√
σF , are shown in Table 3. Again, there is reasonable agreement with the lattice data

of references [18, 19].

Since two-dimensional Yang-Mills theory leads to an area law for the Wilson loop, it
has long been suspected that a similar form for the wave functional might be applicable
in higher dimensions [63]. The form of the wave functional we find, namely (9.9), is in
accordance with this. We find F ∼ F 2 for modes of the field with low momenta, while
F ∼ F (1/

√
−∇2)F at high momenta, in agreement with the expected perturbative

behavior. An interpolation between these two limiting behaviors, different from our
result (9.9), was suggested by Samuel [64] and used to estimate the 0++ glueball mass.
Essentially the same form (with a small variation) was suggested more recently as a
candidate variational ansatz for the wave functional [65]. Specifically it reads Ψ0 =

e
1
2
F , with

F = −1

2

∫

x,y

F a
ij(x)

(
1√

−D2 − λ0 +M2

)ab

x,y

F b
ij(y) (12.7)

Here D2 is the square of the covariant derivative in the adjoint representation, λ0 is the

State LMY Calculation Lattice

0++ 4.098 4.065± 0.055

0++∗ 5.407 6.18± 0.13

0++∗∗ 6.716 7.99± 0.22

0++∗∗∗ 7.994 9.44± 0.38

0−− 6.15 5.91± 0.25

0−−∗ 7.46 7.63± 0.37

0−−∗∗ 8.77 8.96± 0.65

2++ 6.72 6.88± 0.16

2++∗ 7.99 8.62± 0.38

2++∗∗ 9.26 9.22± 0.32

2+− 8.76 8.04± 0.50

2−− 8.76 7.89± 0.35

2+−∗ 10.04 9.97± 0.91

2−−∗ 10.04 9.46± 0.46

Table 3: Comparison of glueball mass estimates from [62] and lattice calculations from [18, 19].
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FIG. 2. Cumulative data for ωMC vs. p2 in physical units, on lattices
of extensions L = 16,24,32,40,48, and Euclidean lattice couplings
βE = 6,9,12. The curves labeled “GO fit” and “KKN fit” (there are
actually two curves, difficult to distinguish from one another), are
the theoretical values for ωGO(p2), and ωKKN(p2), using the param-
eters of m and g2 in Table I. The line labeled “Coulomb gauge” is
obtained from the ansatz for the Coulomb gauge vacuum wavefunc-
tional ΨCG[A] (eq. 51) as described in Section IVB.

With the parameters obtained from the fit, we can use di-
mensional reduction (naively, in the KKN case, as explained
in section II C) to compute the string tension, and compare it
with our input value of (440 MeV)2. Dimensional reduction
gives

σ = mg2×





3
16 GO

3
8 KKN

. (81)

The parameters g2,m from the best fit, and
√
σ from obtained

dimensional reduction, in the GO and KKN cases are shown
in Table I. The values of

√
σ should be compared with the

given value of
√
σ = 0.44 GeV, which was used to set the

lattice spacing at each βE . The GO result is within 5% of that
value, and the KKN result is almost exactly right.

variant m g2
√
σ from

diml red.
GO 0.771 1.465 0.460
KKN 0.420 1.237 0.441

TABLE I. The parameters m,g2 for the GO and KKN wavefunction-
als, determined from a best fit to the abelian plane wave data in Fig.
2, with

√
σ derived from dimensional reduction. All values are in

units of GeV.

The product of m and g2, in either the GO or KKN ap-
proach, determines the string tension σ in either approach.
The dimensionless ratio g2/m is an output of the KKN ap-
proach, where it is predicted to be π . If m and g2 are de-
termined from a best fit to the data, then the actual ratio is
g2/m = 2.95. It is not clear, at this stage, whether this small
discrepancy is significant, or should just be attributed to devi-
ations from the continuum scaling due to a finite lattice spac-
ing.

B. Tests of the Coulomb gauge wavefunctional

To test the wavefunctional eq. (51), we first have to trans-
fer it to the lattice. We begin by rescaling the gauge field
Ai $→ Ai/g so that a prefactor g−2 appears in the exponent
of eq. (51), and Ai(x) has engineering dimension of a mass.
With these conventions, the Fourier transformed kernel ω(k)
and curvature χ(k) also have dimensions of mass.
Next we latticize as in eq. (70) and rescale the gauge field

again to obtain the dimensionless field8 Âck(x̂) ≡ aAck(ax̂). For
Coulomb gauge fixed connections, it is, in principle, impor-
tant to use the so-called midpoint rule when extracting the
gauge fields from the lattice linksUk:

Uk(x̂) = a0k(x̂) + iack(x̂)σc

=⇒ Âck(x̂+ k̂/2) = −2ack(x̂) ·η(a0k(x̂)) . (82)

As compared to simpler prescriptions such as eq. (72), we
have two modifications:

1. The shift in the argument on the lhs ensures that the
resulting lattice connection is exactly lattice transversal
if the link fields are,

∇ · Â(x̂) =∑
j

[
Â j(x̂+ ĵ)− Â j(x̂)

]
= 0 .

After Fourier transformation, the shift leads to a phase
factor in the connection which affects general observ-
ables but happens to drop out in the (quadratic) expo-
nent R[A] tested here.

8 Throughout this section, we will denote dimensionless lattice objects with
a caret.

Figure 6: Comparison of cumulative data for ωMC versus p2 on lattices of extensions L =

16, 24, 32, 40, 48 and Euclidean lattice couplings βE = 6, 9, 12. The curve labeled “GO fit” refers

to the ansatz in [65] while the curve labeled “KKN-fit” refers to our result from (9.9). This

graph is from [66].

lowest eigenvalue of −D2 and M is a parameter with the dimension of mass, treated
as a variational parameter. A number of quantities can be calculated after fixing M by
minimizing the ground state energy. In [66], Monte Carlo simulations of the kernel in
a Gaussian ansatz for the wave functional were carried out and then compared against
kernels in our wave functional (9.9) and the variational ansatz (12.7), see Fig. 6. For
the two cases, the kernel for the quadratic Gaussian part may be written in terms of
momentum variable p as

ωKKN =
1

e2

p2

√
p2 +m2 +m

, (from (9.9)

ωGO =
1

e2

p2

√
p2 +M2

(from [65]) (12.8)

The fit to the Monte Carlo data is designated as ωMC. From the figure, it seems clear
that both agree rather well with the simulations.

The close match between the wave functional we calculated, namely (9.9), and the
other candidate functionals is rather nice, but the variational approach comes with
a word of caution. The exact vacuum wave functional has zero energy, for reasons
of Lorentz invariance, as already explained in the Introduction. For the variational
approaches, one calculates the expectation value of the energy and minimizes it with
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respect to the variational parameters. This is almost always nonzero, unless one is so
lucky as to hit on the exact vacuum functional as the guess for the variational ansatz.
Recall that the variational estimate is an upper bound on the true ground state energy, so
we generally have Evar,min > 0. One could try to subtract this out by using H − Evar,min

as our notion of a “normally ordered” Hamiltonian, but such a Hamiltonian, if used
in the Schrödinger equation and we are able to solve for Ψ0, we would end up with
a negative energy for the true vacuum. In this sense, H − Evar,min will not be the true
normally-ordered Hamiltonian to be used in the Schrödinger equation. So, basically, this
means that we have to live with a nonzero vacuum energy in the variational approach.
Then the question is: Is this acceptable? When we set up a relativistic field theory, the
aim is to solve for the vacuum state preserving all the isometries of the spacetime on
which it is defined, namely, full Poincaré invariance in flat space. So, with variational
ansätze, there is a contradiction between the premise and the end result. (One cannot
view Evar,min as a cosmological constant or anything of that sort; that would require a
spacetime with a different group of isometries, such as the de Sitter or anti-de Sitter
space. This would again imply a discord between the starting spacetime and the one
consistent with the final results.) This is not to say the variational approach is useless,
but it should be used with caution.

13 Extensions of the Yang-Mills theory and some comments

13.1 An intuitive argument for the mass gap

The emergence of the mass gap m = (e2cA/2π) is an important feature which allowed
for the expansion scheme for solving the Schrödinger equation. It is therefore useful
to understand this, not just in technical terms, but in some intuitive way. The key
ingredient for this is the measure of integration (5.31). In some ways, its role is already
evident in how the propagator mass emerged in section 8. To bring out the connection
of the volume element (5.31) and the mass gap, consider the Hamiltonian of the theory
written simply as

H =
1

2e2

∫ [
(Ea)2 + (Ba)2

]
(13.1)

There is a simple argument based on the uncertainty principle which helps us to get a
sense of the low lying excitations of this Hamiltonian. The basic commutation rule we
need is [Ea

i , A
b
j] = −iδijδab. Let us first consider the Abelian case of electrodynamics,

with B = ∇× A. In terms of components Ek and Bk of wave vector (or momentum) k,
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this becomes [Ei, B] = −e2εijkj, so that the uncertainty principle reads ∆Ek ∆Bk ∼ e2k,
where ∆Ek, ∆Bk stand for the root mean square of the fluctuations of the electric field
Ek and the magnetic field Bk. The expectation value of the Hamiltonian for a state with
wave function Ψ with momentum k is then

E =
1

2e2
〈Ψk|

[
E2 +B2

]
|Ψk〉 =

1

2e2

[
(∆E2

k) + (∆B2
k)
]

∼ 1

2

(
e2k2

∆B2
k

+
∆B2

k

e2

)
(13.2)

For low lying states, we must minimize this E with respect to ∆B2, which gives ∆B2
k,min

∼ e2k, giving E ∼ k. This corresponds to the familiar photon of the Abelian theory.

For the nonabelian theory, this is inadequate since the expectation value 〈H〉 =∫
Ψ∗HΨ involves the factor e2 cASwzw(H). In fact,

〈H〉 ∼ 1

2

∫
dµ(H)e2 cA Swzw(H) (e2E2

k +B2
k/e

2) (13.3)

In terms of B, the behavior of the WZW action is

2 cA Swzw(H) ≈ − cA
2π

∫

k

B−k

(
1

k2

)
Bk + · · · (13.4)

We see that, in the integration measure in (13.3), we have a Gaussian distribution for B
with a width of ∆B2

k ≈ πk2/cA, for small values of k. Evidently, this Gaussian dominates
near small k, since it becomes narrower and narrower as k → 0, giving ∆B2

k ∼ k2(π/cA).
Another way to see this is to notice that B2 ∼ ∂̄J ∂̄J and the currents in the WZW theory
obey

〈Ja(x)J b(y)〉 ∼ δab∂
1

(x− y)
(13.5)

This translates to 〈Ja(k)J b(−k)〉 ∼ (k/k̄), leading to ∆B2
k ∼ kk̄(π/cA) ∼ k2(π/cA) again.

What this means is that, even though E in (13.2) is minimized around ∆B2
k ∼ k, proba-

bility is concentrated around ∆B2
k ∼ k2(π/cA). For the expectation value of the energy,

we then find 〈H〉 ∼ e2cA/2π + O(k2). Thus the kinetic term, in combination with the
measure factor e2cASwzw(H), leads to a mass gap of order e2cA/2π. The argument is ad-
mittedly not rigorous, but does capture the essential physics. The key point is that the
volume element (5.31) cuts off the low momentum modes. This suggests that the cal-
culation of the volume element in extensions of the theory with matter content can, by
itself, shed light on the issue of the mass gap. In fact, we shall briefly analyze some
extensions of the Yang-Mills theory from this point of view. In the case of the Yang-
Mills theory modified by the addition of a Chern-Simons term, which will be considered
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next, in subsection 13.2, we can carry out the simplification of the Hamiltonian and see
how this is indeed realized. We will also consider some supersymmetric extensions in
subsection 13.3.

13.2 Yang-Mills-Chern-Simons theory

We consider the Yang-Mills theory modified by the addition of a Chern-Simons (CS)
term, so that the action we start with is

S = − 1

4e2

∫
d3x F a

µνF
aµν − k

4π

∫
d3x Tr

(
Aµ∂νAα +

2

3
AµAνAα

)
εµνα (13.6)

The second term in S is the integral of the Chern-Simons (CS) 3-form. Although it
had been known in the mathematics literature in the context of secondary characteristic
classes, it was initially introduced in physics literature as a possible mass term for gauge
fields in three dimensions [67, 68]. The parameter k is known as the level number of
the Chern-Simons term.

Under a gauge transformation, the CS term changes as

CS(Ag) = CS(A)− k

4π

∫
dTr(g−1dg A)− k

12π

∫
Tr(g−1dg)3 (13.7)

For transformations g such that g → 1 at the spacetime boundary, we see that the total
derivative will integrate to zero. The boundary condition means that g(x) is equivalent
to a map from S3 to G. Such maps can be homotopically nontrivial since Π3(G) is Z for
a simple Lie group, see (6.3). The last term is then 2π times the winding number of this
map. For the invariance of the theory under all such gauge transformations, we need
invariance of eiS. This requires that the level number k should be an integer. (There are
other related ways to understand the quantization of the level number, see for example
[69].)

The CS term is odd under parity and time-reversal. Its role as a mass term is made
clear by considering the propagator for the theory. In a gauge where ∂µAµ = 0, we find

〈0| T Aai (x)Abj(y) |0〉 = δab
∫

d3p

(2π)3
e−ip(x−y) i

p2 − µ2 + iε

(
δij + iµ

εijkp
k

p2

)
(13.8)

where µ = (e2k/4π). This shows that perturbatively µ is the mass of the gauge particle.

As in the case of the pure Yang-Mills theory, we shall now use the A0 = 0 gauge to
set up the Hamiltonian formalism [70]. The canonical momenta can be easily identified
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from the action (13.6) and are related to the electric fields Ȧ as

Ea =
e2

2
Πa +

ie2k

8π
Aa = −ie

2

2

δ

δĀa
+
ie2k

8π
Aa

Ēa =
e2

2
Π̄a − ie2k

8π
Āa = −ie

2

2

δ

δAa
− ie2k

8π
Āa (13.9)

The commutation rule for Ea, Ēa is given by

[Ēa(~x), Eb(~y)] =
e4k

8π
δabδ(~x− ~y) (13.10)

The Gauss law operator G0(θ) is given by

G0(θ) =

∫
θa
[
(DΠ̄ + D̄Π)a +

ik

4π
(∂Āa − ∂̄Aa)

]
(13.11)

As before, we can parametrize the fields A, Ā in terms of M and M †, with wave
functions taken as functionals of M and M †. The Gauss law operator generates gauge
transformations on the argument (M,M †) of the wave functionals. The Gauss law con-
dition (2.24) for physical states is then equivalent to

Ψ(hM,M †h−1) =

[
1 +

k

2π

∫
Tr
(
M †−1∂̄M † ∂θ + ∂̄θ ∂MM−1

)]
Ψ(M,M †) (13.12)

where h(x) ≈ 1 + θ(x), θ = −itaθa. The general form of the wave function obeying this
condition can be written as

Ψ(M,M †) = exp

[
k

2

(
Swzw(M †)− Swzw(M)

)]
χ(H)

≡ eiω(M,M†)χ(H) (13.13)

where χ is gauge-invariant, depending on M,M † only via the combination H = M †M .
Swzw(M) is the familiar WZW action for M , see 5.21). The Chern-Simons term may be
viewed as a “velocity-dependent” potential, since it involves the time-derivative of the
A’s. The appearance of a phase factor, eiω(M,M†) in (13.13) is in accordance with the
fact that the wave functions must carry phase factors when we have velocity-dependent
potentials [71]. The gauge-invariant volume element is still as given in section 5, so
that the inner product is

〈1|2〉 =

∫
dµ(H) e2cASwzw(H) χ∗1 χ2 (13.14)
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We can formulate the Schrödinger equation in terms of χ(H). But it will turn out to

be simpler to use another wave function Φ(H) = e−
1
2
kSwzw(H) χ(H). The original wave

function Ψ is related to Φ(H) as

Ψ = eiω(M,M†) exp
[

1
2
kSwzw(H)

]
Φ(H)

= exp

[
k

2

(
Swzw(M †)− Swzw(M) + Swzw(H)

)]
Φ(H)

= exp

[
kSwzw(M †)− k

4π

∫
AaĀa

]
Φ(H) (13.15)

In going to the last line of this equation from the second, we have used the Polyakov-
Wiegmann identity (5.22). The inner product of the states, expressed in terms of Φ’s, is
given by

〈1|2〉 =

∫
dµ(H)e(k+2cA)Swzw(H) Φ∗1Φ2 (13.16)

This inner product agrees with what is obtained for the pure Chern-Simons theory as
well. Notice that, compared to the pure YM case, the key difference in the integration
measure is in the coefficient of the WZW action Swzw(H), with 2cA → k + 2cA.

The Chern-Simons term is the integral of a differential form. Being independent of
the spacetime metric, it does not contribute to the energy-momentum tensor and the
Hamiltonian. Thus H is still of the form

H =
1

2e2

∫ [
(Ea)2 + (Ba)2

]
(13.17)

However, the action of this on the wave functionals is altered as the electric fields have
additional terms when expressed in terms of functional derivatives as in (13.9).

There are several steps involved in working out the Hamiltonian or the expression
for the kinetic energy as a functional differential operator. First of all, we express the
derivatives with respect to A, Ā in terms of the translation operators pa, p̄a on M , M †,
as in (7.5). In E, Ē, we also have the additional terms proportional to A, Ā. Finally, for

the action on Φ(H), we need H → e−
1
2
kSwzw(H)−iωHeiω+

1
2
kSwzw(H). Since

p̄aSwzw(M †) = − i

2π
∂̄(∂M †M †−1)a, paSwzw(M) = − i

2π
∂(M−1∂̄M)a, (13.18)

we find

e−iω T eiω =
e2

2

∫
Kab(~x)

[∫

y

Ḡ(~x, ~y)p̄(~y)− ik

4π
(∂HH−1)(~x)

]a
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×
[∫

u

G(~x, ~u)p(~u) +
ik

4π
(H−1∂̄H)(~x)

]b
(13.19)

Including the e
1
2
kSwzw(H) factors, we then obtain

T̃ =
e2

2

∫
Kab(~x)

(∫

y

Ḡ(~x, ~y) p̄a(~y)− ik

2π
(∂HH−1)a

)∫

u

G(~x, ~u) pb(~u)

=
e2

2

∫
Kab e

−kSwzw(H) Ḡp̄a ekSwzw(H) Gpb (13.20)

T̃ ≡ e−
1
2
kSwzw(H)e−iω T eiωe

1
2
kSwzw(H)

It is possible to write this in a more symmetric form, similar to the expression (7.7) for
the pure Yang-Mills case, but it will not be important for us at this stage. (The relevant
expressions are given in [70].)

In the Yang-Mills theory, the observables are all obtained in terms of the current Ja.
However, in the YMCS theory, there are additional observables. Notice that the inner
product (13.16) expresses matrix elements of operators in terms of a hermitian WZW
model of level (k + 2cA). The correlators of the hermitian WZW model are the analytic
continuation of the correlators of the level k SU(N) WZW-model with κ = k + cA

replaced by −κ = −(k + cA). The level k SU(N) WZW model has integrable primary
operators (of finite norm) other than the identity. However, we expect that the vacuum
wave function can still be expressed in terms of the currents. For a wave functional Φ

which depends on J , rather than H in general, the expression for the Hamiltonian can
be written in terms of functional derivatives with respect to J . The result is

T̃ = TYM +
e2k

4π

∫
Ja

δ

δJa

TYM =
e2cA
2π

[∫

u

Ja(~u)
δ

δJa(~u)
+

∫
Ωab(~u,~v)

δ

δJa(~u)

δ

δJ b(~v)

]

Ωab(~u,~v) =
cA
π2

δab
(u− v)2

− i
fabcJ

c(~v)

π(u− v)
+O(ε) (13.21)

We see that the coefficient of the
∫
Jδ/δJ-term is (k + 2cA)e2/4π, giving a mass of this

value to every factor of Ja. The perturbative mass µ gets corrected by the addition of
(e2cA/2π). This is also consistent with the shift 2cA → k+2cA in the integration measure
in (13.16), and also in accordance with the intuitive argument for the mass gap given
in subsection 13.1.
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The expression (13.21) for T̃ can be rewritten as

T̃ = m̃

∫

u

Ja(~u)
δ

δJa(~u)
+ m

∫
Ωab(~u,~v)

δ

δJa(~u)

δ

δJ b(~v)

= m̃

[∫

u

ξa(~u)
δ

δξa(~u)
+

∫
Ωab(~u,~v)

δ

δξa(~u)

δ

δξb(~v)

]
(13.22)

where m̃ = (k + 2cA)e2/4π and ξ =
√
m̃/m J . The potential energy

∫
B2 is as it was in

the pure YM case.

Given the similarity of these expressions to the what we obtained for the YM theory,
we can use the expansion scheme outlined in section 9 and work out the lowest order
vacuum wave functional as

Φ0 = exp

[
− π

m̃cA

∫
∂̄ξ

(
1

m̃+
√
m̃2 −∇2

)
∂̄ξ

]

= exp

[
− π

mcA

∫
∂̄J

(
1

m̃+
√
m̃2 −∇2

)
∂̄J

]
(13.23)

≈ exp

(
− 1

4g2

∫
F 2

)

where g2 = m̃e2 = e4(k + 2cA)/4π. In the last line, we give the expression for the modes
of low momentum or long wave length. For an observable O (involving long wave
length modes of the fields), the expectation value is thus

〈O〉 ≈
∫
dµ(H)e(k+2cA)Swzw(H) e

− 1
4g2

∫
F 2

O ≈
∫
dµ (C) ekSwzw(H)e

− 1
4g2

∫
F 2

O

≈
∫

[dQ]dµ (C) e−S O

S =

∫
d2x

[
1

4g2
F a
µνF

aµν +
k∑

i=1

Q̄iγ ·DQi

]
(13.24)

where we have used the fact that ekSwzw(H) can also be expressed in terms of integration
over fermions (in two dimensions) as

eSwzw(H) = det(−DD̄) =

∫
[dQ]e−

∫
(Q̄LDQL+Q̄RD̄QR)

=

∫
[dQ] e

∫
Q̄γ·DQ (13.25)

Here Q’s are fermions in the fundamental representation of SU(N) and we use k flavors
to get the factor ekSwzw(H).
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Effectively, we have the expectation value to be computed in a two-dimensional the-
ory for the YM theory coupled to k flavors of fermions in the fundamental representa-
tion. (We are not saying that there are fermions in the spectrum of the theory; (13.24) is
just a useful way of expressing expectation values.) These fermions can screen charges
in any representation and hence the the expectation value of the Wilson loop will not
display an area law. Already, at the level of perturbation theory, we have seen that the
Chern-Simons term in the action (13.6) acts as a mass term for the gluons. Therefore
we should expect that the interaction energy between charges cannot be of long range.
The fact that we do not obtain an area law for the Wilson loop is entirely in accordance
with this expectation.

13.3 *Supersymmetric theories

In this subsection we will make a few observations about supersymmetric Yang-Mills
theories. (This analysis is heavily based on [72, 73].) In subsection 13.1 we have seen
that the mass gap is closely related to the integration measure used for the inner product
of the wave functionals. We have also seen that this correlation holds also for the YMCS
theory where the inner product involves the integral of e(k+2cA)Swzw(H), see (13.16), and
the mass m̃ = e2(k + 2cA)/4π. Further, the measure (13.16) is the same for the pure CS
theory and for the YMCS theory. With these observations in mind, we see that we can
make some statements regarding supersymmetric theories via the following strategy.
We calculate the integration measure for the supersymmetric CS theory, taking k → 0

to obtain the YM case. It is also possible to identify the integration measure without
detailed calculations by using a set of indirect, although slightly intricate, arguments.
For this, we will first consider Hamiltonian analysis of the level k CS theory coupled to a
set of point charges, the charge matrices being ta is some representation r of the group
G, following [9]. The action is given by

S = − k

4π

∫
d3x Tr

(
Aµ∂νAα +

2

3
AµAνAα

)
εµνα

−i
∑

r

∫
dt(−ita)r(Aa0(xr) + Aai ẋ

i
r) (13.26)

The canonical commutation rules are given by

[Āa(x), Ab(y)] =
2π

k
δabδ(2)(x− y) (13.27)
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We take functionals of A to describe the states, with

Āa(x) Ψ(A) =
2π

k

δ

δAa(x)
Ψ(A) (13.28)

The equation of motion for Aa0 or the Gauss law is given by
[
ik

2π
(∂Ā− ∂̄A+ [A, Ā])a −

∑

r

(ta)r δ
(2)(x− xr)

]
Ψ = 0 (13.29)

This can be rewritten as

δθ Ψ(A) =

∫
θa

[
k

2π
∂̄A+

∑

r

(−ita)(r)δ
(2)(x− xr)

]
Ψ (13.30)

where δθ Ψ(A) denotes the change of Ψ(A) under an infinitesimal gauge transformation.
In the absence of charges, the solution of this equation is

Ψ0 = N0 e
kSwzw(M) (13.31)

where the normalization factor N0 can be identified from12

|N0|2
∫
dµ(H) exp [(k + 2 cA)Swzw(H)] = 1 (13.32)

Now consider two point-charges, conjugate to each other, at positions ~x1 and ~x2. The
solution to the Gauss law condition is

Ψ = N(z1, z2)M(x1)M−1(x2) Ψ0 (13.33)

where N(z1, z2), which depends on the positions of the charges, is determined by the
requirement that Ψ should obey the Schrödinger equation. The Hamiltonian corre-
sponding to (13.26) is given as

H =
∑

r

(ta)r

[
2π

k
˙̄zr

δ

δAa(xr)
+ żrA

a(xr)

]
(13.34)

When H acts on Ψ we will encounter singular terms due to terms like δM(x1)/δA(x1).
The properly regularized version leads to two interesting features. First, k in the ex-
pression (13.34) is shifted to κ = k + cA. (In the Hamiltonina framework, this shift has

12The action (13.26) also shows that the canonical two-form (ik/2π)
∫
δĀ δA is a Kähler form associated with

the Kähler potential K = (ik/2π)
∫
ĀA. The normalization of Ψ in the coherent state basis we are using then

requires a factor of e−K in the integration measure. (For more details, see [9].) This term combined with ekSwzw(M)

and its conjugate (from Ψ0 and Ψ∗0) leads to the ekSwzw(H) factor in (13.32).
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been obtained in [74, 9].) The Schrödinger equation is then identical to the Knizhnik-
Zamolodchikov (KZ) equation [75] for the chiral blocks of the WZW theory with pa-
rameter κ. Thus N(z1, z2) becomes a chiral block of the level k SU(N)-WZW theory.

Finally, we consider the normalization of the state Ψ in (13.33). We can write the
required integral as

|N(z1, z2)|2
∫
dµ(H) ek̃ Swzw(H) H(x1)H(x2)−1 = 1 (13.35)

We have put in the measure factor with an arbitrary coefficient k̃ for Swzw(H) to show
how we can determine it. There are two points we can make about this normalization:

1. The integral in (13.35) will yield the correlator 〈H(x1)H(x2)−1〉 of the hermitian
WZW model (for SL(N,C)/SU(N)) of level k̃. The (z1, z2)-dependence of this
correlator must exactly cancel the similar dependence of |N(z1, z2)|2 to allow for a
proper normalization of (13.33). So 〈H(1)H(2)−1〉 should be given by the solution
of the KZ equation with κ = (k + cA)→ −κ = −(k + cA).

2. At the same time, we also know that the correlator 〈H(x1)H(x2)−1〉 of the hermi-
tian theory (of level k̃) is the same as the corresponding correlator of the SU(N)

theory of level −k̃ [11].

These two statements together imply that

−k̄ + cA = − (k + cA) (13.36)

We see that this determines k̃ to be k + 2cA, as expected.

This illustrates how we can obtain the measure in more general cases. First we
calculate the shift in the level number k to identify the KZ parameter κ. This can be
done via the Hamiltonian method, or in an even simpler way, by straightforward use of
Feynman diagrams [76]. Once this is done, the compatibility of the two requirements
given above for 〈H(x1)H(x2)−1〉 will be

KZ parameter of SU(N)

WZW theory of level− k̃

}
=

{
KZ parameter of SU(N)

WZW theory of level k
(13.37)

We are now ready to look at supersymmetric theories. From diagrammatic calcula-
tion (for which the supersymmetric Yang-Mills term may be viewed as a regulator), the
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KZ parameters are given as [77]

k →





k + cA N = 0

k + 1
2
cA N = 1

k N ≥ 2

(13.38)

The normalization of the wave functionals for the supersymmetric YMCS theories are
thus given by

〈1|2〉 =

∫
dµ(H) exp[k̃ Swzw(H)] dµ[Fermions] Ψ∗1 Ψ2 (13.39)

k̃ =





k + 2 cA N = 0

k + cA N = 1

k N ≥ 2

(13.40)

For N = 0, we can take k = 0 and obtain the result for the pure YM case. For N = 1,
we cannot take k = 0 since there is a parity anomaly, so we need k = 1 as the minimal
choice for a consistent theory [78, 79]. In this case, the value of k̃ suggest that there
will be a mass gap, of a magnitude different form the case of N = 0. For N ≥ 2, we can
take k = 0. For these cases, we should expect that there will be no mass gap.

These statements are in accordance with expectations from other analyses. For the
N = 4 case, constraints of unbroken supersymmetry prevent a mass term [78], but a
partial spontaneous breaking of the gauge symmetry is possible. For N = 2 theories, no
mass gap is expected, but there may be no stable supersymmetric vacuum [78, 80, 81].
The absence of mass gap for N = 2 has also been analyzed by different methods in
[82, 83].

While the arguments presented above for the measure bypassed direct calculations,
one can ask whether the same result is obtained in a straightforward Hamiltonian for-
mulation of the supersymmetric theories. This is indeed the case, as discussed in some
detail in [72]. Here we will briefly indicate the steps to highlight a subtle point in
obtaining the Hamiltonian. The classical action for the N = 1 theory is given by

S = − 1

4 e2

∫
F a
µνF

aµν − i

2e2

∫
ψ̄a(γµDµψ)a (13.41)

The supersymmetry transformation is given by

δεA
a
µ = −i ε̄ γµψa, δεψ

a =
1

2
F a
µνγ

µνε (13.42)

The action is invariant under this transformation with the supercharges given by

Q† =

∫
(iψ†γi

δ

δAi
+

1

e2
ψ†B), Q =

∫
(iγiψ

δ

δAi
+

1

e2
ψB) (13.43)
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Q is a two-component spinor, and we make the identification Q1 = q, Q2 = q†. As
mentioned before, the parity anomaly will make the partition function of this theory
vanish, rendering it trivial or inconsistent [78, 79]. To get a consistent theory, we must
include a supersymmetric Chern-Simons term

SSCS = − k

4π

∫
d3x Tr

[(
Aµ∂νAα −

2

3
AµAνAα

)
εµνα + ie2ψ̄ψ

]
(13.44)

The full action is thus SSYM = S+SSCS. Being a supersymmetric theory, the Hamiltonian
can be obtained as the anticommutator of supercharges. Towards this, we first define
the gauge-invariant wave function Φ(H) as in (13.15),

Ψ = eiω(M,M†) exp
[

1
2
kSwzw(H)

]
Φ(H) (13.45)

The supercharge in terms of its action on Φ is given by

q′ = i

∫
χ†a(Gp)a − 1

e2

2π

cA

∫
χa∂̄Ja (13.46)

where G is the regularized version of the Green’s function G = ∂−1 and χ is the gauge-
invariant version of the fermion field defined by χb = (M−1)abψa, χb† = ψa†Mab.

We take the integration measure for the inner product of the Φ’s to be given in terms
of

dµ = dµ(H) exp [(k + (2− n)cA)Swzw(H)] (13.47)

For the present case, n = 1, but we will leave it arbitrary for now. The adjoint of
the supercharge, which is consistently the adjoint with (13.47) defining the integration
measure, is

q′† = −i
∫
χa
(

(Ḡp̄)a − i k
2π

(∂HH−1)a + i
ncA
2π

(∂HH−1)a
)
− 1

e2

2π

cA

∫
(χa∂̄Ja)† (13.48)

Recall that, by virtue of the physical states being annihilated by the Gauss law operator,
we were able to eliminate Ea in favor of Ēa and the currents, in the simplification of the
kinetic energy operator, see equations (7.13) to (7.22). Equivalently, we can eliminate
p̄a in favor of pa. Effectively, this amounts to the statement

p̄a = (Kp)a +
1

e2
falm(Kχ†)lχm (13.49)

When this is used in (13.48), we have to move χa to the right end to obtain normal
ordering. This results in a singular term Ḡ(x, x), exactly the same kind of term we
encountered in section 7. Evaluating it as before, we end up with

−i
∫
χa(x)(Ḡp̄)a(x) =− i

∫
χa(x)(ḠKp)a(x)−

∫
χa(x)Ja(x)
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+
i

e2

∫
Ḡab(x, y)f blm(Kχ†)l(y)χa(x)χm(y) (13.50)

The χaJa-term arises from the normal ordering mentioned above. When this is used for
q′† in (13.48) and the anticommutator is taken, we find the gauge-invariant form of the
Hamiltonian for the supersymmetric theory as

H =
1

2
{q′, q′†} =

e2cA
2π

(∫
Ja

δ

δJa
+

∫
Ωab(x, y)

δ

δJa(x)

δ

δJ b(y)

)
+

2π2

e2c2
A

∫
(∂̄Ja∂̄Ja)

+
e2(k − ncA)

4π

∫
Ja

δ

δJa
− icA

2π

∫
fabcḠ(x, y)Kcs(y)χs†(y)χb(y)

δ

δJa(x)

− 1

e2

∫
(χ†D̄J̄χ† − χDJχ) +

(
e2

4π
(k + 2cA − ncA)

)∫
1

e2
χ†a(K−1)abχb

(13.51)

Notice the equality of the masses for the J ’s and the χ’s, as expected for a supersym-
metric theory.13

14 Entanglement in Yang-Mills (2+1)

Entanglement is a property of the state and can be characterized by a reduced density
matrix obtained by integrating Ψ∗[ϕ]Ψ[ϕ′] over fields in some subregion of space. So it
would seem that if there is any feature of the quantum theory for which wave functions
provide a better framework than manifestly covariant methods, it would be entangle-
ment. And this is indeed the case, although, for ease of calculation a path integral with
a cut on (the unintegrated) part of space is often used (with a replica trick as well). In
the case of gauge theories, this led to the identification of an extra term in the entan-
glement entropy, known as the contact term (or Kabat term) [84], compared to what
is expected for matter fields. Here we will consider the contact term for YM(2+1) in a
Hamiltonian formulation and relate it to something familiar in mathematics literature
known as the BFK gluing formula [85]. (This analysis is basically taken from [86].)

14.1 Entanglement in Maxwell theory

It is simpler and conceptually more clarifying to consider the Maxwell theory first. The
Gauss law condition takes the form G0 = ∇ · E = 0. We will choose a conjugate
constraint χ = ∇ ·A. In general, if we have constraints ζi and conjugate constraints χj,

13It may be useful to keep in mind that the anticommutator is given as {χa, χb†} = e2δabδ(2)(x− y).
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the Hamiltonian path integral is given by

Z =

∫
[dµ] δ(ζ)δ(χ) det[{ζi, χj}] eiS (14.1)

Here dµ is the phase space measure of integration, the constraints are enforced by δ-
functions and we also need the determinant of the Poisson brackets of the constraints.
S is the action expressed in terms of the phase space variables. For the Maxwell theory
we thus get

Z =

∫
[dµ] δ(∇ · E)δ(∇ · A) det[−∇2] eiS (14.2)

We have already set A0 = 0, so that the phase space variables are Ei and Ai, i = 1, 2.
We consider the theory in some region of space V with a boundary ∂V. The fields can
be parametrized as

Ai = ∂iθ + εij∂jφ, Ei = Ȧi = ∂iσ + εij∂jΠ (14.3)

We separate the fields into a bulk part and a boundary part by writing

θ(x) = θ̃(x) +

∮

∂V

θ0(y)n · ∂G(y, x), φ(x) = φ̃(x) +

∮

∂V

φ0(y)n · ∂G(y, x)

σ(x) = σ̃(x) +

∮

∂V

σ0(y)n · ∂G(y, x), Π(x) = Π̃(x) +

∮

∂V

Π0(y)n · ∂G(y, x) (14.4)

The tilde-fields all obey Dirichlet conditions, vanishing on ∂V. The values of the fields
on the boundary are designated with a subscript 0 and are continued into the interior
of V via Laplace’s equation, i.e.,

∇2
x

∮

∂V

θ0(y)n · ∂G(y, x) = 0 (14.5)

The Green’s function G(y, x) for the Laplace operator also obeys Dirichlet conditions.
The decomposition of fields as in (14.4) follows from Green’s theorem. The canonical
one-form is given by A =

∫
EiδAi and by direct substitution of (14.4), we find

A =

∫
Ei δAi

=

∫

V

[
(−∇2σ̃) δθ̃ + Π̃ δB

]
+

∮
E δθ0(x) +

∮
Qδφ0(x) (14.6)

where B = −∇2φ̃ is the magnetic field. Also E and Q are given by

E(x) =

∮

y

σ0(y)M(y, x) + ∂τΠ0(x)
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Q(x) =

∮

y

Π0(y)M(y, x)− ∂τσ0(x) (14.7)

M(x, y)I = n · ∂x n · ∂yG(x, y)
∣∣∣
x, y on ∂V

(14.8)

M(x, y) is what is usually referred to the Dirichlet-to-Neumann operator. and ∂τ =

niεij∂j denotes the tangential derivative on the boundary. E and Q are not independent,
but are related by

C = ∂y

∮
EI(x)M−1(x, y) +QI(x) = 0 (14.9)

In the sense of Dirac’s theory of constraints, C is of the first class; one can choose a
conjugate constraint φ0 = 0 and eliminate the pair, so that

A =

∫

V

[
(−∇2σ̃) δθ̃ + Π̃ δB

]
+

∮

∂V

E δθ0 (14.10)

The phase volume associated with this canonical structure is14

dµ = [dσ̃dθ̃] [dE dθ0] [dΠ̃dB] det(−∇2) (14.11)

The constraints entering the path integral (14.2) can be written out as

δ(∇ · E) = (det(−∇2))−1 δ(σ̃), δ(∇ · A) = (det(−∇2))−1 δ(θ̃) (14.12)

Since θ̃ vanishes on ∂V, we are imposing the Gauss law with test functions vanishing on
∂V. The value of θ on the boundary and its conjugate E represent physical degrees of
freedom. Using (14.11) and (14.12), we see that we can set σ̃ = θ̃ = 0, and all factors
of det(−∇2) cancel out, so that Z in (14.2) becomes

Z =

∫
[dE dθ0] [dΠ̃dB] eiS (14.13)

The action S also involves only the fields Π, B, E , θ0. We see that we have a theory of
the bulk fields Π, B, which constitute a single bulk field, with “edge modes” described
by E , θ0.

Now consider going through this procedure for a region of space divided into two
with an interface (dashed line) as shown in Fig. 7. We construct the theory on the whole
space and then in V1 and V2 separately, put them together and compare the results. For
the theory on the whole space, the result is basically as we have already discussed, with

Zwhole =

∫
[dσdθ] [dΠdB] [det−∇2] δ(∇ · E) δ(∇ · A) det[−∇2] eiS

14The determinants of −∇2 are calculated with Dirichlet boundary conditions.
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V1 V2

Figure 7: Showing division of space into two regions for entanglement considerations

=

∫
[dΠdB] eiS (14.14)

We do not consider any edge modes for the boundary of the whole space since our focus
will be on entanglement across the interface. (They can be included without changing
the essence of the argument.)

Now consider building the theory separately in V1 and V2. The fields on the interface
can be continued into V1 and V2 again using Laplace’s equation, so that we have

θ(x) =




θ̃1(x) +

∮
∂V1

θ0(y) n · ∂G1(y, x) in V1

θ̃2(x) +
∮
∂V2

θ0(y) n · ∂G2(y, x) in V2

(14.15)

with similar expressions for the other fields. G1 and G2 are Green’s functions for the
Laplacian for regions V1 and V2, respectively, vanishing on the interface. The phase
volume has the form

dµsplit = [dσ̃dθ̃]1 [dσ̃dθ̃]2 det(−∇2)1 det(−∇2)2 [dEdθ0]× [dµΠ,B-part] (14.16)

The key issue is about the constraints. Using f, h for test functions, with boundary
values on the interface designated as f0, h0, respectively, the constraints are

∫
∂if Ei =

∫

V1

f̃1(−∇2σ̃1) +

∫

V2

f̃2(−∇2σ̃2) +

∮
f0 E ≈ 0

∫
∂ihAi =

∫

V1

h̃1(−∇2θ̃1 +

∫

V2

h̃2(−∇2θ̃2) +

∮
h0 (M1 +M2) θ0 ≈ 0 (14.17)

M1, M2 are the Dirichlet-to-Neumann operators for G1 and G2, respectively. For the
theory on the full space, θ-dependence is eliminated everywhere including the interface,
so each term in (14.17 must vanish separately and the δ-functions for the constraints
must be interpreted as

δ(∇ · E) δ(∇ · A) = δ[−∇2σ̃1] δ[−∇2σ̃2] δ[−∇2θ̃1] δ[−∇2θ̃2]
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×δ[E ] δ[(M1 +M2)θ0] (14.18)

We also have the BFK gluing formula [85]15

det(−∇2) = det(−∇2)1 det(−∇2)2 det(M1 +M2) (14.19)

If we use results (14.18) and (14.19), we get back to (14.14) as expected; splitting the
fields is only a more involved way of writing the path integral for the full space.

Consider now integrating out fields in V2. Since the interface is a boundary to V2,
from the point of view of the theory in V2, we can only impose the Gauss law with test
functions which vanish on the interface. The edge modes E , θ0 are physical degrees of
freedom. Thus we must take f0 = h0 = 0, and the constraints become

δ(∇ · E) δ(∇ · A) = δ[−∇2σ̃1] δ[−∇2σ̃2] δ[−∇2θ̃1] δ[−∇2θ̃2] (14.20)

The determinant det(M1 + M2) is not canceled out and the reduced theory in V1 takes
the form

Zred = det(M1 +M2)

∫
[dEdθ0]dµΠ,B e

iS (14.21)

There is an extra factor det(M1 + M2); since this is part of the phase volume, it is to be
considered as a degeneracy factor. Thus if we define a reduced density matrix, it takes
the form

ρ =
1

det(M1 +M2)
(ρbulk)red (14.22)

where (ρbulk)red refers to the reduced density matrix for all the remaining physical de-
grees of freedom and 1 is a matrix such that Tr 1 = det(M1 +M2).

This determinant log det(M1 + M2) is Kabat’s contact term. Its origin is due to the
simple fact that in the full space Gauss law eliminates θ, E , but for the theory in each
region, these are not eliminated. The contact term can also be identified as the interface
term in the BFK gluing formula.

14.2 The case of YM(2+1)

It is now straightforward to consider the situation for the Yang-Mills theory. Since we
phrased the discussion given above in the language of gauge-fixing, the simplest way

15This formula tells us that if a Riemannian manifold is separated into V1, V2, etc. by suitable hypersurfaces,

then the determinant of the Laplacian for the full space can be obtained as the product of similar determinants

with Dirichlet boundary conditions in each of the regions V1, V2, etc. times a set of interface contributions which

are the determinants of the Dirichlet-to-Neumann operators.
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for us is to eliminate E from our considerations using the Gauss law as we did in section
7, see equations (7.13 to (7.22). This is like a complex gauge-fixing, since M † gets set
to 1. The canonical one-form is A =

∫
Ea
i δA

a
i = −4

∫
Tr(Ē δA + E δĀ) and the Gauss

law takes the form

Ga = 2(D̄E +DĒ)a (14.23)

As the conjugate constraint, we take χa = (DĀ)a. EliminatingE, the canonical one-form
can then be written as

A = −4

∫
Tr
[
Ē δA+ G(x) (−DD̄)−1

x,y δχ(y)
]

(14.24)

The corresponding phase volume is

dµ = det[(−DD̄)−1] [dĒdA] [dGdχ] (14.25)

We see, in a way similar to what happens in the Maxwell case, that we will get det[(−DD̄)]1

and det[(−DD̄)]2 for V1 and V2, and det[(−DD̄)]V1∪V2 for the full space V = V1 ∪ V2.
The contact term is then given by

Scontact = log

[
det(−DD̄)V1∪V2

det(−DD̄)V1 det(−DD̄)V2

]
(14.26)

Unlike the Abelian case, this expression depends on the fields. So one has to carry out
an averaging over the physical fields, i.e., do the integration over H, to calculate the
entropy. If we ignore the field dependence, the contribution of (14.26) is the same as
the result for (dimG copies of) the Abelian theory.

A noteworthy point is the following. The operator (−DD̄) which comes into the
contact term is independent of the mass, even though the theory does have a mass gap.
In a massive theory, the entanglement tends to vanish as the mass becomes large. But in
the gauge theory the contact term will lead to nonzero entanglement even in the large
m limit.
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15 Appendix A: Conventions and Notations

Summation over repeated indices is assumed. Greek letters µ, ν, etc. are used to denote
spacetime components, taking values 0, 1, 2, 3 in (3 + 1)-dimensional spacetime, and 0,
1, 2 in (2 + 1)-dimensional spacetime. The metric for flat Minkowski space is denoted
by ηµν; the contravariant version is denoted by ηµν . The components of ηµν are given by
η00 = 1, ηij = −δij, and η0i = ηi0 = 0.

We will also use the abbreviation ∂µ = ∂
∂xµ

. The scalar product of two vectors with
components Aµ andBν will be written as A·B = ηµνAµBν = A0B0−AiBi. In some cases,
such as in writing eip·x we often abbreviate the scalar product as just px ≡ p0x0 − pixi.

The Levi-Civita symbol in three dimensions is εijk which is totally antisymmetric
under exchange of any two indices and is normalized as ε123 = 1. εµναβ is defined in a
similar way, with ε0123 = 1.

The symbol ∂ is also used to denote the boundary of a spatial or spacetime region.
Thus ∂V denotes the boundary of the region V . Differential forms will be used for
certain discussion and have the usual expression in terms of a coordinate basis. Thus if
B denotes a differential p-form, it has the local coordinate expression

B =
1

p!
Bµ1µ2···µp dx

µ1 ∧ dxµ2 · · · ∧ dxµp (A1)

with the wedge symbol, as usual signifying the antisymmetrization of the coordinate
differentials. The symbol d will be used for the exterior derivative of a differential form,

dB =
1

p!
(∂µBµ1µ2···µp) dx

µ ∧ dxµ1 ∧ dxµ2 · · · ∧ dxµp (A2)

While a large part of the discussions will use flat space, there will be occasions to
discuss some curved manifolds. The appropriate metric will be given as the occasion
arises.

For spinors, we will need the Dirac γ-matrices; these are defined by

γµ γν + γν γµ = 2 ηµν 1 (A3)

In the case of nonchiral spinors in four dimensions, γ’s can be realized as 4×4 matrices.
Thus the 1 on the right hand side of (A3) denotes the 4 × 4 identity matrix. A specific
choice for the γ’s is

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
(A4)
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Each entry in the matrices in (A4) is a 2× 2 matrix. σi are the Pauli matrices given as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(A5)

In three dimensions (or 2 + 1 dimensions), the spinors are nonchiral and the γ’s can
be realized as 2× 2 matrices. A specific choice is γ0 = σ3, γ1 = iσ1, γ2 = iσ2.

For the group SU(N), the generators of the Lie algebra in the fundamental (N -
dimensional) representation are denoted by ta, a = 1, 2, · · · , dimG = N2 − 1. They are
taken to be normalized as Tr(tatb) = 1

2
δab. The commutation rules are [ta, tb] = ifabctc.

The quadratic Casimir operator has the value cF = (N2 − 1)/2N for the fundamental
representation and cA = N for the adjoint representation.

16 Appendix B: Regularization

16.1 The regularized form of the operators

We will now go over some of the issues related to defining the regularized form of the
operators for the kinetic and potential energies, and the Hamiltonian. A good regular-
ization procedure must preserve gauge invariance. With our choice of variables, it is
also important to preserve the holomorphic invariance. This property was discussed at
the end of section 4. The matrices (M,M †) and (M ′,M ′†) where M ′ = MV̄ , M ′† = VM †

will give the same potentials (A, Ā). Here V is a holomoprhic function of the coordi-
nates, V̄ is an antiholomoprhic function. Generally, we need this freedom in how we
define M and M †, so that configurations can be represented on various coordinate
patches without singularities. The calculations we do will involve the Green’s functions
for D = ∂ + A and D̄ = ∂̄ + Ā. These were introduced in section 5 in the form

D−1(x, y) = M(x)G(x, y)M−1(y), D̄−1(x, y) = M †−1(x)Ḡ(x, y)M †(y) (B1)

where G and Ḡ are the Green’s functions for ∂ and ∂̄, respectively. For particular coor-
dinate patch, we can take these to be

G(x, y) =
1

π(x̄− ȳ)
, Ḡ(x, y) =

1

π(x− y)
(B2)

Consider the construction of D−1(x, y) and D̄−1(x, y) using M ′ and M ′†. These
Green’s functions are unchanged if we define

G′(x, y) = V̄ −1(x)G(x, y) V̄ (y), Ḡ′(x, y) = V (x) Ḡ(x, y)V −1(y) (B3)
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Notice that these will still satisfy the required equations

∂xG(x, y) = ∂̄xḠ(x, y) = δ(2)(x− y) (B4)

We see that the use of different forms for the matrices M , M † must be accompanied by
the use of different definitions for the Green’s functions G and Ḡ.

Our aim is to use a point-splitting regularization for the Green’s functions G(x, y)

and Ḡ(x, y) which preserves the transformation property (B3). This can be done by use
of the Gaussian approximation to the Dirac δ-function given in (7.11), namely,

σ(~x, ~y; ε) =
e−|~x−~y|

2/ε

πε
(B5)

Based on this we define

G(~x, ~y) =

∫

u

G(~x, ~u)σ(~u, ~y; ε)K−1(y, ū)K(y, ȳ)

Ḡ(~x, ~y) =

∫

u

Ḡ(~x, ~u)σ(~u, ~y; ε)K(u, ȳ)K−1(y, ȳ) (B6)

Since we will be using the matrices M , M †, H in the adjoint representation for most
of the calculations, we have given these expressions in the appropriate form. Here
Kab = 2Tr(taHtbH

−1) is the same as the matrix H but in the adjoint representation. It
is easy enough to verify that G and Ḡ have the same transformation as G and Ḡ. By
expanding the K ’s in (B6), it is possible to carry out the integration and reduce these to
the form

Gma(~x, ~y) = G(~x, ~y)[δma − e−|~x−~y|
2/ε
(
K−1(y, x̄)K(y, ȳ)

)
ma

]

Ḡma(~x, ~y) = Ḡ(~x, ~y)[δma − e−|~x−~y|
2/ε
(
K(x, ȳ)K−1(y, ȳ)

)
ma

] (B7)

The coincident point limit of Ḡ can be read off from these as

Ḡ(x, x) = −∂KK
−1

π
(B8)

Correspondingly, we have

D̄−1(~x, ~x)reg = − 1

π
M †−1(~x)(∂KK−1)M †(~x) =

1

π
(A−M †−1∂M †)(~x) (B9)

This reproduces the results in equations (5.19) and (5.20) used in the calculation of the
volume element for C.
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Turning to the kinetic energy operator, we start with the form given in (7.7),

T =
e2

4

∫

x

e−2cASwzw(H)
[
Ḡp̄a(~x)Kab(~x) e2cASwzw(H)Gpb(~x)+Gpa(~x)Kba(~x) e2cASwzw(H)Ḡp̄b(~x)

]

(B10)

We have put in the regularized form of the Green’s functions. In this expression, we use
the abbreviation

Gpb(~x) =

∫

u

Gbc(~x, ~u)pc(~u), Ḡp̄a(~x) =

∫

u

Ḡac(~x, ~u)p̄c(~u), etc. (B11)

In (B10), in moving pa and p̄a to the right, we encounter the commutators

Ḡ[p̄a(~x), Kab(~x) e2cASwzw(H)], G[pa(~x), Kba(~x) e2cASwzw(H)] (B12)

These involve the coincident point limit of the Green’s functions. Using (B7) we can
calculate the commutators and see that they are zero as ε → 0; see [13] for more
details. The expression for T can then be brought to the form

T =
e2

2

∫
Πrs(~u,~v)p̄r(~u)ps(~v) (B13)

Πrs(~u,~v) =

∫

x

Ḡar(~x, ~u)Kab(~x)Gbs(~x,~v)

This is the regularized version of (7.6), thus establishing its equivalence with (7.7) as
well.

The action of p and p̄ on the current J is given by

[ps(~v), Ja(~z)] = −icA
π
Kas(~z)∂zδ(~z,~v)

[p̄r(~u), Jb(~w)] = −i(Dw)brδ(~w − ~u), Dw ab =
cA
π
∂wδab + ifabcJc(~w) (B14)

We can then use the form of T from (B13) and work out its action on a functional of the
currents; basically this involves using the chain rule and the commutators (B14). The
result is

T Ψ(J) = m

[∫

z

ωa(~z)
δ

δJa(~z)
+

∫

z,w

Ωab(~z, ~w)
δ

δJa(~z)

δ

δJb(~w)

]
Ψ(J) (B15)

where

ωa(~z) = −ifarm
[
∂zΠrs(~u, ~z)

]
~u→~z K

−1
sm(~z) = ifarmΛrm(~u, ~z)

∣∣
~u→~z
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Ωab(~z, ~w) = −
[[cA
π
∂wδbr + ifbrmJm(~w)

]
∂zΠrs(~w, ~z)

]
K−1
sa (~z)

= Dw brΛra(~w, ~z) (B16)

Λra(~w, ~z) = −(∂zΠrs(~w, ~z))K−1
sa (~z) (B17)

Using Πrs(~u,~v) from (B13), the expression for Λra can be written out as

Λra(~w, ~z) =

∫

x

Ḡmr(~x, ~w)G(~x, ~z)e−|~x−~z|
2/ε
[ x̄− z̄

ε
K(x, x̄)K−1(z, x̄)

+K(x, x̄)∂z(K
−1(z, x̄)K(z, z̄))K−1(z, z̄)

]
ma

(B18)

Because of the exponential e−|~x−~z|2/ε, the region |~x− ~z|2. ε is what is relevant for ωa(~z).
Expanding around z, we get

ωa(~z) = Ja(~z) +O(ε) (B19)

If we use the expression (B7) for Ḡmr(~x, ~w) in (B18), the expression for Λra will split
into four terms. One can expand the integrands in powers of x−w, x̄− w̄ and carry out
the x-integration to generate an expansion in powers of ε. We then find

Λra(~w, ~z) =
1

π(z − w)

[
δra −

(
K(~w)K−1(z, w̄)

)
ra
e−|z−w|

2/2ε
]

+(terms of higher order in ε or (z − w), (z̄ − w̄))

≡ Ḡ ′ra(~z, ~w) + · · · (B20)

Here Ḡ ′ is the transpose of Ḡ with ε replaced by 2ε. We can use this expression in (B16)
for Ωab(~z, ~w) and write the kinetic energy operator as

TΨ(J) = m

[∫
Ja(~z)

δ

δJa(~z)
+

∫ (
DwḠ ′(~z, ~w)

)
ab

δ

δJa(~w)

δ

δJb(~z)

]
Ψ(J) +O(ε)

= m

∫

z,w

[
∂̄Ja(~w)Ḡ(~z, ~w)

δ

δJa(~z)
+
(
DwḠ ′(~z, ~w)

)
ab

δ

δJa(~w)

δ

δJb(~z)

]
Ψ(J) +O(ε)

(B21)

It is easy to see that as ε→ 0, Λ(~w, ~z)→ Ḡ(~z, ~w). The first line of (B21) then reproduces
the expression (7.10) in text. In simplifying (B16) for ωa to get (B19), we have cancelled
powers of (z −w) against Ḡ(~z, ~w). This can lead to expressions which seemingly do not
have the holomorphic invariance. The second line of (B21) shows T in a manifestly
holomorphic invariant form.
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As for the potential energy, we can do a point-splitting and write

V(λ′) =
π

mcA

∫

x

: ∂̄Ja(~x)∂̄Ja(~x) :

=
π

mcA

[∫

x,y

σ(~x, ~y;λ′)∂̄Ja(~x)(K(x, ȳ)K−1(y, ȳ))ab∂̄Jb(~y)− cAdimG

π2λ′2

]
(B22)

A priori we have the freedom to choose a different value λ′, rather than ε, for the width
of σ(~x, ~y;λ′), so we have displayed the expression for such a choice. The action of T
on V is important for solving the Schrödinger equation. Since we have regularized all
operators, it is straightforward to work this out and obtain

T(ε) V(λ′) = 2m
[
1 + 1

2
log(λ′/2ε)

]
V(λ′) + · · · (B23)

Since it is different from λ′, we display the regularization parameter ε for T as a sub-
script.

To understand how ε and λ′ may be related, we first note that since we are using the
A0 = 0 gauge, the Coulomb potential at short distances will obtained from the action
of the kinetic term on wave functionals. In 2+1 dimensions, the Coulomb potential
is logarithmic and so a subtraction point needs to be chosen to define the zero of the
potential. The freedom of choosing this point is also a reflection of the fact that the
kinetic operator is scale invariant as ε → 0. In terms of the regularized version, this
means that we can define

T(λ) = T(ε) +
e2

2
log(2ε/λ) Q

Q = ε

∫
σ(~u,~v; ε)Krs(u, v̄)

(
p̄r(~u)− i∂̄Jr(~u)

)
ps(~v) (B24)

Acting on V , we now get

T(λ)V(λ′) = 2m
[
1 + 1

2
log(λ′/λ)

]
V(λ′) + · · · (B25)

The addition of Q to T can be interpreted as follows. Recall that, in covariant pertur-
bation theory, the addition of local counterterms is equivalent to a change of regular-
ization. The addition of Q in (B24) may be viewed as the analogous procedure for the
Hamiltonian formulation.

16.2 A Lorentz-invariance argument

We have regularized T and V with different parameters, λ (or ε) and λ′. Each ex-
pression will thus involve fields with modes of momenta larger than 1/

√
λ and 1/

√
λ′,
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respectively. Being short-distance regularization parameters, we need them to be much
smaller than any physical scales such as 1/(e2)2.

The key missing ingredient in treating T and V separately is Lorentz invariance.
Recall that under a Lorentz transformation corresponding to velocity vi, the electric and
magnetic fields transform as

δEi ≈ −εijvjB, δB ≈ εijviEj, |v| � 1 (B26)

The Hamiltonian is the integral of the energy density T00. The momentum and stress
densities are given by

T0i = εijEjB, Tij = −EiEj + δijT00 (B27)

Under a Lorentz transformation, we have

δT0i = viT00 + vjTij (B28)

If we use the transformation (B26) for the fields,

δT0i = δ(εijEjB) = vi(E
2 +B2)− vkEk Ei (B29)

This is in agreement with (B28). But it also shows that if we regularize the momentum
Pi =

∫
εijEjB with a parameter λ, Lorentz invariance will require that both terms

in the energy (on the right hand side of (B29) should be regularized with the same
parameter. (A variant of this argument was given in [87].) Thus, although a priori

we could use different regularizations for T and V , consistency with Lorentz symmetry
requires λ = λ′ (with 1/

√
λ� e2). In this case, (B25) simplifies to

T(λ)V(λ) = 2m V(λ) + · · · (B30)

At this point, we can also go back and use ε in place of λ as we did for the potential
energy in (7.25).

Another version of this argument, where the action of T on V and the vacuum wave
functional are considered, is given in [87]. We may note that the issue of regulariza-
tion and how it relates to Lorentz invariance is somewhat tricky. For a discussion with
different points of view, see [88, 89].

17 Appendix C: Corrections to string tension

In this Appendix, we will calculate the first set of corrections to the formula (10.10)
for the string tension using the first order corrections to the vacuum wave functional
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obtained in section 9. From the recursive solution of the Schrödinger equation, the
correction to the quadratic kernel; in the wave function is

e2 f
(2)
2 (q) =

m

Eq

∫
d2k

32π

(
1

k̄
g(3)(q, k,−k − q) +

k

2k̄
g(4)(q, k;−q,−k)

)

≈ q̄2

2m
(1.1308) + . . . (C1)

In the second line we give the lowest order (quadratic in q2) term, as this is what is rel-
evant for the calculation of the string tension. Seemingly, this is a 113% correction, but
there are important additional terms which should be included. In calculating the the
vacuum expectation value of an operator as 〈O〉 =

∫
Ψ∗ΨO, we have to do a functional

integration over H, so this can be viewed as a two-dimensional field theory. It is then
clear that there are loop corrections, in the 2d field theory sense, to the quadratic kernel.
So we start with a procedure for simplifying and systematizing these contributions.

Since the measure of integration has the WZW action, our first step will be to
transform the functional integration over Ψ∗0Ψ0 = eF into the integration over a two-
dimensional chiral boson field ϕ, ϕ̄. (Although we use the same letter, this is not the ϕ
we used in parametrizing H as etaϕa.) The key point is that F is given in terms of cur-
rents, so consider the calculation of the current correlators in just the hermitian WZW
theory. We can write

1

Z

∫
dµ(H)e2cASwzw(H)e−

cA
π

∫
C̄a(∂HH−1)a =

1

Z

∫
dµ(H)e2cASwzw(UH)−2cASwzw(U)

= e−2cASwzw(U) (C2)

where C̄ = U−1∂̄U and we have used the Polyakov-Wiegmann identity

Swzw(H)− 1

π

∫
Tr(C̄∂HH−1) = Swzw(UH) − Swzw(U) (C3)

(Here Z is just a normalization factor; it is the partition function of the hermitian WZW
theory.) Since exp(−2cASwzw(U)) is the inverse of the chiral Dirac determinant in two
dimensions, we can use the formula

exp(−2cASwzw(U)) =

∫
[dϕdϕ̄] e−

∫
ϕ̄(∂̄+C̄)ϕ (C4)

The complex boson field ϕ transforms in the adjoint representation of SU(N). For the
YM case, including Ψ∗0Ψ0, we have

〈O〉 =

∫
dµ(H) e2cASwzw(H)eF(J)O(J)
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=
[
O(Ĵ) eF (Ĵ)

] ∫
dµ(H) e2cASwzw(H) e−

cA
π

∫
C̄a(∂HH−1)a

]

C̄=0

=

∫
[dϕdϕ̄] e−S(ϕ) O(

√
2π/mcA ϕ̄t

aϕ) (C5)

where Ĵa = −
√

2π/mcA
δ

δC̄a
and, after introducing the representation (C4), we have

evaluated the action of the Ĵa’s and set C̄ to zero. The action S(ϕ) is given by

S(ϕ) =

∫
ϕ̄∂̄ϕ−F(

√
2π/mcA ϕ̄t

aϕ) (C6)

There is a correction to be made to this formula once we have F which will introduce
additional interactions for the ϕ-field. If we think of this as a 2d field theory, it is
easy to see that we will need renormalization constants (Z-factors) for the chiral boson
action. The representation of the determinant which is applicable in the presence of
interactions is thus

exp(−2cASwzw(U)) =

∫
[dϕdϕ̄] exp

[
−
∫
ϕ̄(Z2∂̄ + Z1C̄)ϕ

]
(C7)

For the expectation values, we still get the formula (C5), but now with the action

S(ϕ) =

∫
(Z2ϕ̄∂̄ϕ+ Z1ϕ̄C̄ϕ) − F(Z1

√
2π/mcA ϕ̄t

aϕ) (C8)

(We can set C̄ to zero at the end, once the renormalization constants Z1, Z2 have been
calculated; see [17] for more details.) In this representation in terms of ϕ, effectively,
the current Ja is replaced by Z1

√
2π/mcA ϕ̄taϕ. The function F(Z1

√
2π/mcA ϕ̄taϕ)

contains vertices, F (2) with two currents (quartic in ϕ, ϕ̄), F (3) with three currents, etc.
For example, we may diagrammatically represent F (2), with two ϕ’s and two ϕ̄’s, as

F (2) = 2π
mcA

∫
(ϕ̄taϕ)x f

(2)(x, y)(ϕ̄taϕ)y =

The corrections to F (2), which is what we are interested in, may be viewed as loop
corrections to the quartic vertex in this two-dimensional field theory.

In calculating the corrections to F (2), the vertices F (3), F (4), etc., can be included
perturbatively since they carry powers of e. However, the lowest term in the vertex
F (2), corresponding to f (2)

0a1a2
(x1, x2), has no powers of e and hence its contributions will

have to be included to all orders and summed up. The result for the current-current
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〈ϕ̄taϕ(x) ϕ̄tbϕ(y)〉 = yx + x y +

+ x y + · · ·

Figure 2: Corrections to the two-point function of currents due to the vertex F (2)

equation, is

〈ϕ̄taϕ(x) ϕ̄tbϕ(y)〉 = Tr(tatb)

(
1

∂̄

)

xy

(
1

∂̄

)

yx

= −cA

π2

δab

(x − y)2

= δab cA

π

∫
d2k

(2π)2
eik(x−y) k

k̄
(46)

Using (26), the contribution of the term with one insertion of the F (2)-vertex is

〈ϕ̄taϕ(x) ϕ̄tbϕ(y)〉(1) = δab cA

π

∫
d2k

(2π)2
eik(x−y) k

k̄

[
−(Ek − m)

m

]
(47)

The summation of the series of terms shown in figure 2 is thus given by

〈ϕ̄taϕ(x) ϕ̄tbϕ(y)〉 = δab cA

π

∫
d2k

(2π)2
eik(x−y) k

k̄

(
m

Ek

)
(48)

The presence of the m/Ek factor improves ultraviolet convergence of integrals and it will

also suppress the numerical values of various corrections. In any diagram, the vertex cor-

responding to a current ϕ̄taϕ will have such a factor of m/Ek. This follows from noticing

that the current in any diagram has a series of terms (due to insertions of F (2)) correcting

it, as shown in figure 3. The summation of these terms gives the result

ϕ̄taϕ(x)
]
eff

= ϕ̄taϕ(x) −
∫

d2k

(2π)2
eik(x−z) Ek − m

m
(ϕ̄taϕ)(z) + · · ·

=

∫
d2k

(2π)2
eik(x−z)

[
1 − Ek − m

m
+

(
Ek − m

m

)2

+ · · ·
]

(ϕ̄taϕ)(z)

=

∫
d2k

(2π)2
eik(x−z) m

Ek
(ϕ̄taϕ)(z) (49)

For the two-point function for the currents, we must use the corrected current given by this

equation only at one vertex; otherwise, there will be double-counting. This is similar to the

case of Schwinger-Dyson equations in, say, electrodynamics, where the vertex corrections

to the vacuum polarization only apply at one vertex.

14

Figure 8: The current-current correlator including all contributions from F (2)
0

correlator is

〈ϕ̄taϕ(x) ϕ̄tbϕ(y)〉 = δab
cA
π

∫
d2k

(2π)2
eik(x−y) k

k̄

(
m

Ek

)
(C9)

Here Ek =
√
k2 +m2; the (m/Ek) factor arises from the summation of corrections due

to F (2)
0 , shown diagrammatically in Fig. 8. Any vertex can acquire a series of corrections

from F (2)
0 , so that we may consider an effective vertex

ϕ̄taϕ(x)
]

eff
=

∫
d2k

(2π)2
eik(x−z) m

Ek
(ϕ̄taϕ)(z) (C10)

This is shown diagrammatically in Fig. 9. As a result, all corrections acquire powers of
(m/Ek) in the integrands and in fact, we can classify contributions in powers of (m/Ek).
Since (m/Ek) ≤ 1, the numerical values will decrease as we go down the series.

The basic strategy for calculating corrections may then be summarized as follows:

1. Construct loop diagrams generated by F (3) (3 factors of ϕ̄taϕ) and F (4) (4 factors
of ϕ̄taϕ).

2. They can have arbitrary insertions of F (2)
0 ’s, leading to a factor of (m/Ek), as in

Fig. 10.

ϕ̄taϕ(x)
]

eff
= x + x

+ x + · · ·

Figure 9: The effective current vertex
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Figure 10: Corrections from F
(2)
0 summed up as a factor of m/Ek (shaded circle at vertex) and

sample renormalization diagrams

3. Sum up F (2)
0 insertions in all diagrams (of order e2) generated by F (3) and F (4).

4. Classify and group these by the number of factors of (m/Ek).

There will be corrections generated to the terms ϕ̄∂̄ϕ and ϕ̄C̄ϕ in the action; these are
renormalization effects due to F (2)

0 . These have to be cancelled by Z1 Z2 factors. They
are discussed in more detail in [17].

We have calculated corrections to order e2 and up to 4 powers of (m/Ek). Denoting
the factors of (m/Ek) by shaded circles at the vertices, the corrections to the low mo-
mentum limit of f (2) may summarized as in Fig. 11. We show the coefficients of q̄2/2m,
for small q, q̄ for each diagram. Let Cn denote the partial sum of corrections up to terms
with (m/Ek)

n, starting with C0 = 1.1308 from the recursive procedure (C1). We then

−0.58118 −0.47835 0.20169 −0.23569

0 0.02083 −0.06893

−0.01216 0.06824 (−0.1037) to (−0.166)

Figure 11: Corrections to the low momentum limit of the F (2) vertex
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find

C1 = 0.5496

C2 = 0.2730

C3 = 0.0373

C4 = −0.05843 to − 0.00583 (C11)

Many of the integrals have to be evaluated numerically. There is a small ambiguity
in one of the integrals for the last diagram in Fig. 11 [17], so that C4 is in the range
indicated.

Notice that the partial sums are systematically decreasing in value, showing that
the ordering of diagrams by powers of m/Ek does constitute a viable expansion. The
cumulative value of the corrections to the order we have calculated is indeed small. For
the string tension, we then find

√
σR = e2

√
cAcR
4π

{(
1− 0.02799 + · · ·

)
(
1− 0.0029 + · · ·

) (C12)

This correction, of the order of −2.8% to −0.03%, is entirely consistent with lattice
calculations. Terms of order (m/Ek)

5 are expected to contribute at the level of a fraction
of 1%.

The corrections seem to play out in an intriguing way here. The first term C0 is rather
large, but is then mostly cancelled out by the “loop corrections”. This suggests that there
must be a different way to organize the corrections so that many of the cancellations
are packaged together.

There are also several types of corrections we have not calculated. First of all, there is
the issue of corrections to Ψ0 due to the next set of terms (of order e4) in the solution of

Figure 1: Examples of representation-independent (left) and representation-dependent

(right) corrections to string tension

2

Figure 12: Example of a correction from F (3) term to the Wilson loop expectation value.

Each“gluon” stands for a 〈JaJb〉 propagator.
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the Schrödinger equation, as in section 9. Secondly, even to the order we are calculating
here, there are diagrams with two or more current loops in the effective 2d theory
of the ϕ-fields. Finally, there could also be corrections which do not appear as loop
corrections to the quadratic terms in Ψ0 but have to be included in the computation of
the expectation value of the Wilson loop operator. An example of such a diagram is
shown in Fig. 12. These types of corrections can also be representation-dependent in
general and they can be important for string-breaking effects as well.

This work was supported in part by the U.S. National Science Foundation Grant No.
PHY-2112729.
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