
Maria-Florina (Nina) Balcan

Foundations for Learning in the 
Age of Big Data

Carnegie Mellon University



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

(Labeled) Data

• E.g.: Adaboost, SVM, gradient descent, etc.

O
1

ϵ
VCdim C log

1

ϵ
+ log

1

δ



Key new resource:

E.g., video data, scientific data, medical data

Modern ML: massive amounts of data 

distributed across multiple locations.

Distributed Machine Learning

communication



This talk: models and algorithms for reasoning 

about communication complexity issues.

[Balcan-Ehrlich-Liang, NIPS 2013] 

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014] 

• Supervised  Learning

• Clustering, Unsupervised Learning

[Balcan-Blum-Fine-Mansour, COLT 2012] Runner UP Best Paper

[TseChen-Balcan-Chau AISTAT ’16]



Distributed Learning
Many ML problems today involve massive amounts of data 
distributed across multiple locations.

Often would like low error hypothesis wrt the overall distrib.

• different hospitals with different distributions of patients; want to

learn a classifier to identify a common misdiagnosis.

E.g.:

• different research groups collected scientific data; wish to perform

learning over the union of all these datasets.



Distributed Learning

• Data distributed across multiple locations. 

• Each has a piece of the overall data pie.

Important question: how much communication?

Plus, privacy & incentives.

• To learn over the combined D, must communicate.



Distributed PAC learning

• Fix C of VCdim d. Assume s << d.

Goal: learn good h over D,  as little communication as possible

• Total communication (bits, examples, hypotheses)

• X – instance space. s players.

• Player i can sample from Di, samples labeled by c*.

• Goal: find h that approximates c* w.r.t. D=1/s (D1 + … + Ds)

• Rounds of communication.

Efficient algos for problems when centralized algos exist.

[realizable: c* ∈ C, agnostic:c*∉ C ]

[Balcan-Blum-Fine-Mansour,COLT 2012]



Overview of Our Results

• Generic bounds on communication.

• Tight results for interesting cases (e.g., conjunctions,  
parity fns).

• Broadly applicable communication efficient distributed 
boosting.

Introduce and analyze Distributed PAC learning.



Interesting special case to think about

s=2. One has the positives and one has the negatives.

• How much communication, e.g., for linear separators?

Player 1                                                     Player 2 

+
++

+

+
++

+

- -

-
-

- -

-
-- -

-
-

- -

-
-

+
++

+

+
++

+



A simple communication baseline.

D1 D2 …              Ds

• Each player sends d/(²s) log(1/²) examples to player 1.  

• Player 1 finds consistent h 2 C, whp error · ² wrt D

Baseline

d/² log(1/²) examples, 1 round of communication



Improving the Dependence on 1/²

Baseline provides linear dependence in d and 1/²

D1 D2 …              Ds

Can get  better O(d log 1/²) examples of communication! 



Recap of Adaboost

• Boosting: algorithmic technique for turning a weak 
learning algorithm into a strong (PAC) learning one.



Recap of Adaboost

• For t=1,2, … ,T

• Construct Dt on {x1, …, xm}

• Run A on Dt producing ht

• Weak learning algorithm A.

+
++

+

+
++

+

- -

-
-

- -

-
-

ht

• Boosting: turns a weak algo into a strong (PAC) learner.

• Output H_final=sgn( σ𝛼𝑡 ℎ𝑡)

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)}; weak learner A



Recap of Adaboost

• For t=1,2, … ,T

• Construct 𝐃𝐭 on {𝐱𝟏, …, 𝒙𝐦}

• Run A on Dt producing ht

• D1 uniform on {x1, …, xm}

• Dt+1 increases weight on xi if ht
incorrect on xi ; decreases it on 
xi if ht correct.

• Weak learning algorithm A.

Key points:

+
++

+

+
++

+

- -

-
-

- -

-
-

ht−1

• Dt+1(xi) depends on h1(xi), … , ht(xi) and normalization factor 
that can be communicated efficiently.

• To achieve weak learning it suffices to use O(d) examples.  

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e −𝛼𝑡 if 𝑦𝑖 = ℎ𝑡 𝑥𝑖

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e 𝛼𝑡 if 𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖



Distributed Adaboost

• For t=1,2, … ,T

• Each player i has a sample Si from Di.

• Player 1 broadcasts ht to other players.

• Each player sends player 1, enough 
data to produce weak hyp ht. 
[For t=1, O(d/s) examples each.] ht

ht

ht

ht

Si Sj

Sk



Distributed Adaboost

• For t=1,2, … ,T

• Each player i has a sample Si from Di.

• Player 1 broadcasts ht to other players.

• Each player sends player 1, enough 
data to produce weak hyp ht. 
[For t=1, O(d/s) examples each.] ht

ht

ht

ht• Each player i reweights its own 
distribution on Si using ht and sends 
the sum of its weights wi,t to player 1.

wi,t wj,t

wk,t

• Player 1 determines the #of samples to 
request from each i [samples O(d) times from the 
multinomial given by wi,t/Wt].

nj,t+1

nk,t+1

ni,t+1

Si Sj

Sk



Distributed Adaboost

Can learn any class C with O(log(1/²)) rounds using O(d) 
examples + O(s log d) bits per round. 

• Per round: O(d) examples, O(s log d) extra   bits 
for weights, 1 hypothesis.

• As in Adaboost, O(log 1/²) rounds to achieve error 𝜖.

[efficient if can efficiently weak-learn from O(d) examples]

Proof:



Dependence on 1/², Agnostic learning

Distributed implementation of Robust halving [Balcan-Hanneke’12].

D1 D2 …              Ds

• error O(OPT)+𝜖 using only  O(s log|C| log(1/²))  examples.

Not computationally efficient in general.

Distributed implementation of Smooth Boosting  (access to 
agnostic weak learner). [TseChen-Balcan-Chau’16]



Better results for special cases

+
++

+

-
-

-
-

- -

-
-

C is intersection-closed, then C can be learned in one round
and s hypotheses of total communication.

• Each  i draws Si of size O(d/² log(1/²)), finds smallest hi in C
consistent with Si and sends hi to player 1.

Intersection-closed when fns can 
be described compactly . 

Algorithm:

hi, h never make mistakes on negatives, and on positives h could 
only be better than hi (errDi

h ≤ errDi
hi ≤ ϵ)

Key point:

• Player 1 computes smallest h s.t. hi µ h for all i.



E.g., conjunctions over {0,1}d [f(x) = x2x5x9x15 ]

Better results for special cases

[Generic methods O(d) examples, or O(d2) bits total.]

• Each entity intersects its positives.  

• Sends to player 1.

• Player 1 intersects & broadcasts.

• Only O(s) examples sent, O(sd) bits. 

1101111011010111

1111110111001110

1100110011001111

1100110011000110



Interesting class: parity functions

• Classic CC lower bound: Ω(d2) bits LB for proper learning.

• s = 2, X = 0,1 d, C = parity fns, f x = xi1XOR xi2 … XOR xil

Improperly learn C with O(d) bits of communication!

• Can properly PAC-learn C. 
[Given dataset S of size O(d/²), just solve the linear system]

• Can non-properly learn C in reliable-useful  
manner [RS’88]

Key points:

S h 2 C

S

x
f(x)

??
[if x in subspace spanned by S, predict accordingly, else say “?”] 

• Generic methods: O(d) examples, O(d2) bits.



Interesting class: parity functions

• Player i properly PAC-learns over Di to get parity hi.  Also 
improperly R-U learns to get rule gi.  Sends hi to player j.

• Player i uses rule Ri: “if gi predicts, use it; else use hj“

Algorithm:

Improperly learn C with O(d) bits of communication!

hi

hj

gi gj

Use my reliable
rule first, else 
other guy’s rule

Use my reliable
rule first, else 
other guy’s rule

Key point: low error under Dj because hj has low error under Dj and 
since gi never makes a mistake putting it in front does not hurt.



Distributed PAC learning: Summary

• First time consider communication as a 
fundamental resource.

• General bounds on communication, communication-efficient 
distributed boosting.

• Improved bounds for special classes (intersection-closed, 
parity fns, and linear separators over nice distributions).



Distributed Clustering
[Balcan-Ehrlich-Liang, NIPS 2013] 

zx

y
c1 c2

s c3

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014] 



k-median: find center pts c1, c2, …, ck to minimize x mini d(x,ci)

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci)

zx

y
c1 c2

s c3

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013] 

Goal: cluster the data,  as little communication as possible

• Dataset S distributed across s locations. 

• Each has a piece of the overall data pie.

Distributed Clustering



Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013] 

Goal: cluster the data,  as little communication as possible

• Data distributed across s locations. 

• Each has a piece of the overall data pie.

Key idea: use coresets, short summaries capturing relevant 
info w.r.t. all clusterings.  

• By combining local coresets,  get a global coreset; the  size 
goes up multiplicatively by s. 

• We show a two round procedure with communication only 
the true size of a global coreset of dataset S.



Coresets

1 − ϵ cost S, 𝐜 ≤ σp∈ ሚ𝑆wpcost p, 𝐜 ≤ 1 + ϵ cost S, 𝐜

Def: An ϵ-coreset for a set of pts S is a set of points ෨S and 
weights w: ෨S → R s.t. for any sets of centers c:



1. Find a constant factor approx. B, add its centers to coreset
2. Sample O(kd/ϵ2) pts according to their contribution to the 

cost of that approximate clustering B.  Add them in too.

Centralized Coresets of size 𝑂(𝑘𝑑/𝜖2) [Feldman-Langberg’11]

Key idea (proof reinterpreted):

• Can view B as rough coreset, with 𝑏 ∈ 𝐵
weighted by size of Voronoi cell. 

• If 𝑝 has closest pt 𝑏𝑝 ∈ 𝐵, then for any 

center 𝑐,  𝑐𝑜𝑠𝑡 𝑝, 𝑐 − 𝑐𝑜𝑠𝑡 𝑏𝑝, 𝑐 ≤ ‖𝑝 − 𝑏𝑝‖

by triangle inequality.

p

𝒃𝒑

c

• So, penalty f p = cost p, 𝐜 − cost(bp, 𝐜) for p 

satisfies f p ∈ −cost p, bp , cost p, bp . 

• Motivates sampling according to cost p, bp .



Distributed Clustering

1. Each player finds coreset of 
size 𝑂(𝑘𝑑/𝜖2) on their own 
data using centralized method.

Key fact: ሚ𝑆𝑖 is coreset for 𝑆𝑖, then ⋃𝑖
ሚ𝑆𝑖 is coreset for ⋃𝑖 𝑆𝑖.

2. Then they all send local 
coresets to the center.

S1 S2

ሚ𝑆2

Ss

For 𝑠 players, total communication is 𝑂(𝑠𝑘𝑑/𝜖2).

ሚ𝑆𝑠

ሚ𝑆1

Can we do better?



Distributed Coresets [Balcan-Ehrlich-Liang, NIPS 2013] 

1. Each player i, finds a local constant 
factor approx. Bi and sends cost(Bi , Pi)
and the centers to the center.

Key idea: in distributed case,  show how to do this using only 
local constant factor approx.

2. Center samples n = O(kd/ϵ2) times n =
n1 +⋯+ ns from multinomial given by 
these costs. Sends ni to player i. 

3. Each player i sends ni points from Pi
sampled according to their 
contribution to the local approx.

S1 S2

B2B1

Ss

Bs
ns

n2
n1

෩𝑆𝑠

෪𝑆2෩𝑆1

For 𝑠 players, total communication is only  𝑂
𝑘𝑑

𝜖2
+ 𝑠𝑘 .

S2S1

Ss



Open questions (Learning and Clustering)

• Efficient algorithms in noisy settings; handle failures, delays.

• Even better dependence on 1/𝜖 for communication 
efficiency for clustering via boosting style ideas.

• More refined trade-offs between communication complexity, 
computational complexity, and sample complexity.

• Can use distributed dimensionality reduction to 
reduce dependence on d. [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014] 


