Foundations for Learning in the Age of Big Data

Maria-Florina (Nina) Balcan Carnegie Mellon University

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

• E.g.: Adaboost, SVM, gradient descent, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

 $O\left(\frac{1}{\epsilon}\left(\text{VCdim}(\text{C})\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$

Distributed Machine Learning

Modern ML: massive amounts of data distributed across multiple locations.

E.g., video data, scientific data, medical data

This talk: models and algorithms for reasoning about communication complexity issues.

• Supervised Learning

[Balcan-Blum-Fine-Mansour, COLT 2012] Runner UP Best Paper

[TseChen-Balcan-Chau AISTAT '16]

Clustering, Unsupervised Learning

[Balcan-Ehrlich-Liang, NIPS 2013]

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

Distributed Learning

Many ML problems today involve massive amounts of data distributed across multiple locations.

Often would like low error hypothesis wrt the overall distrib.

E.g.:

- different hospitals with different distributions of patients; want to learn a classifier to identify a common misdiagnosis.
- different research groups collected scientific data; wish to perform learning over the union of all these datasets.

Distributed Learning

- Data distributed across multiple locations.
- Each has a piece of the overall data pie.
- To learn over the combined D, must communicate.

Important question: how much communication? Plus, privacy & incentives.

Distributed PAC learning [Balcan-Blum-Fine-Mansour, COLT 2012]

- X instance space. s players.
- Player i can sample from D_i , samples labeled by c^* .
- Goal: find h that approximates c* w.r.t. D=1/s ($D_1 + ... + D_s$)
- Fix C of VCdim d. Assume s << d. [realizable: c* ∈ C, agnostic:c*∉ C]

Goal: learn good h over D, as little communication as possible

- Total communication (bits, examples, hypotheses)
- Rounds of communication.

Efficient algos for problems when centralized algos exist.

Overview of Our Results

Introduce and analyze Distributed PAC learning.

- Generic bounds on communication.
- Broadly applicable communication efficient distributed boosting.
- Tight results for interesting cases (e.g., conjunctions, parity fns).

Interesting special case to think about

s=2. One has the positives and one has the negatives.

• How much communication, e.g., for linear separators?

A simple communication baseline.

Baseline $d/\epsilon \log(1/\epsilon)$ examples, 1 round of communication

- Each player sends $d/(\epsilon s) \log(1/\epsilon)$ examples to player 1.
- Player 1 finds consistent $h \in C$, whp error $\leq \epsilon$ wrt D

Improving the Dependence on 1/ ϵ

Baseline provides linear dependence in d and $1/\epsilon$

Can get better O(d log $1/\epsilon$) examples of communication!

Recap of Adaboost

• Boosting: algorithmic technique for turning a weak learning algorithm into a strong (PAC) learning one.

Recap of Adaboost

• Boosting: turns a weak algo into a strong (PAC) learner.

<u>Input</u>: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}; weak learner A$

- Weak learning algorithm A.
- For t=1,2, ... ,T
 - Construct D_t on $\{x_1, ..., x_m\}$
 - Run A on D_t producing h_t
- Output H_final=sgn($\sum \alpha_t h_t$)

Recap of Adaboost

- Weak learning algorithm A.
- For t=1,2, ... ,T
 - Construct D_t on $\{x_1, \dots, x_m\}$
 - Run A on D_t producing h_t
- D_1 uniform on $\{x_1, ..., x_m\}$
- D_{t+1} increases weight on x_i if h_t incorrect on x_i ; decreases it on x_i if h_t correct.

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\{-\alpha_t\}} \text{ if } y_i = h_t(x_i)$$
$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\{\alpha_t\}} \text{ if } y_i \neq h_t(x_i)$$

Key points:

- $D_{t+1}(x_i)$ depends on $h_1(x_i), \dots, h_t(x_i)$ and normalization factor that can be communicated efficiently.
- To achieve weak learning it suffices to use O(d) examples.

Distributed Adaboost

- Each player i has a sample S_i from D_i .
- For t=1,2, ... ,T
 - Each player sends player 1, enough data to produce weak hyp h_t. [For t=1, O(d/s) examples each.]
 - Player 1 broadcasts h_t to other players.

Distributed Adaboost

- Each player i has a sample S_i from D_i .
- For t=1,2, ... ,T
 - Each player sends player 1, enough data to produce weak hyp h_t. [For t=1, O(d/s) examples each.]
 - Player 1 broadcasts h_t to other players.
 - Each player i reweights its own distribution on S_i using h_t and sends the sum of its weights $w_{i,t}$ to player 1.
 - Player 1 determines the #of samples to request from each i [samples O(d) times from the multinomial given by w_{i,t}/W_t].

Distributed Adaboost

Can learn any class C with $O(\log(1/\epsilon))$ rounds using O(d) examples + $O(s \log d)$ bits per round.

[efficient if can efficiently weak-learn from O(d) examples]

Proof:

- As in Adaboost, $O(\log 1/\epsilon)$ rounds to achieve error ϵ .
- Per round: O(d) examples, O(s log d) extra bits for weights, 1 hypothesis.

Dependence on $1/\epsilon$, Agnostic learning

Distributed implementation of Robust halving [Balcan-Hanneke'12].

• error $O(OPT)+\epsilon$ using only $O(s \log|C| \log(1/\epsilon))$ examples.

Not computationally efficient in general.

Distributed implementation of Smooth Boosting (access to agnostic weak learner). [TseChen-Balcan-Chau'16]

Better results for special cases

Intersection-closed when fns can be described compactly .

C is intersection-closed, then C can be learned in one round and s hypotheses of total communication.

Algorithm:

- Each i draws S_i of size $O(d/\epsilon \log(1/\epsilon))$, finds smallest h_i in C consistent with S_i and sends h_i to player 1.
- Player 1 computes smallest h s.t. $h_i \subseteq h$ for all i.

Key point:

 h_i , h never make mistakes on negatives, and on positives h could only be better than h_i ($err_{D_i}(h) \le err_{D_i}(h_i) \le \epsilon$)

Better results for special cases

<u>E.g.</u>, conjunctions over $\{0,1\}^d$ [f(x) = $x_2x_5x_9x_{15}$]

- Only O(s) examples sent, O(sd) bits.
 - Each entity intersects its positives.
 - Sends to player 1.

•

• Player 1 intersects & broadcasts.

1101111011010111 1111110111001110 1100110011001111 1100110011000110

[Generic methods O(d) examples, or $O(d^2)$ bits total.]

Interesting class: parity functions

- $s = 2, X = \{0,1\}^d$, C = parity fns, $f(x) = x_{i_1}XOR x_{i_2} \dots XOR x_{i_l}$
- Generic methods: O(d) examples, $O(d^2)$ bits.
- Classic CC lower bound: $\Omega(d^2)$ bits LB for proper learning.

Improperly learn C with O(d) bits of communication!

<u>Key points</u>:

• Can properly PAC-learn C. $S \longrightarrow \square \longrightarrow h \in C$ [Given dataset S of size $O(d/\epsilon)$, just solve the linear system]

f(x)

 Can non-properly learn C in reliable-useful manner [RS'88]

[if x in subspace spanned by S, predict accordingly, else say "?"]

Interesting class: parity functions

Improperly learn C with O(d) bits of communication!

Algorithm:

- Player i properly PAC-learns over D_i to get parity h_i . Also improperly R-U learns to get rule g_i . Sends h_i to player j.
- Player i uses rule R_i: "if g_i predicts, use it; else use h_i"

<u>Key point</u>: low error under D_j because h_j has low error under D_j and since g_i never makes a mistake putting it in front does not hurt.

Distributed PAC learning: Summary

• First time consider communication as a fundamental resource.

- General bounds on communication, communication-efficient distributed boosting.
- Improved bounds for special classes (intersection-closed, parity fns, and linear separators over nice distributions).

Distributed Clustering

[Balcan-Ehrlich-Liang, NIPS 2013] [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

k-median: find center pts $c_1, c_2, ..., c_k$ to minimize $\sum_x \min_i d(x,c_i)$ k-means: find center pts $c_1, c_2, ..., c_k$ to minimize $\sum_x \min_i d^2(x,c_i)$

Distributed Clustering

- Dataset S distributed across s locations.
- Each has a piece of the overall data pie.

Goal: cluster the data, as little communication as possible

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

- Data distributed across s locations.
- Each has a piece of the overall data pie.

Key idea: use coresets, short summaries capturing relevant info w.r.t. all clusterings.

- By combining local coresets, get a global coreset; the size goes up multiplicatively by s.
- We show a two round procedure with communication only the true size of a global coreset of dataset S.

Coresets

Def: An ϵ -coreset for a set of pts S is a set of points \tilde{S} and weights w: $\tilde{S} \rightarrow R$ s.t. for any sets of centers c:

 $(1 - \epsilon) \operatorname{cost}(S, \mathbf{c}) \le \sum_{p \in \tilde{S}} w_p \operatorname{cost}(p, \mathbf{c}) \le (1 + \epsilon) \operatorname{cost}(S, \mathbf{c})$

Centralized Coresets of size $O(kd/\epsilon^2)$ [Feldman-Langberg'11]

- 1. Find a constant factor approx. B, add its centers to coreset
- 2. Sample $O(kd/\epsilon^2)$ pts according to their contribution to the cost of that approximate clustering B. Add them in too.

Key idea (proof reinterpreted):

- Can view B as rough coreset, with $b \in B$ weighted by size of Voronoi cell.
- If p has closest pt $b_p \in B$, then for any center c, $|cost(p,c) - cost(b_p,c)| \le ||p - b_p||$ by triangle inequality.
- So, penalty $f(p) = cost(p, c) cost(b_p, c)$ for p satisfies $f(p) \in [-cost(p, b_p), cost(p, b_p)]$.
- Motivates sampling according to $cost(p, b_p)$.

Distributed Clustering

Key fact: \tilde{S}_i is coreset for S_i , then $\bigcup_i \tilde{S}_i$ is coreset for $\bigcup_i S_i$.

- 1. Each player finds coreset of size $O(kd/\epsilon^2)$ on their own data using centralized method.
- 2. Then they all send local coresets to the center.

Can we do better?

Distributed Coresets [Balcan-Ehrlich-Liang, NIPS 2013]

<u>Key idea</u>: in distributed case, show how to do this using only local constant factor approx.

- 1. Each player i, finds a local constant factor approx. B_i and sends $cost(B_i, P_i)$ and the centers to the center.
- 2. Center samples $n = O(kd/\epsilon^2)$ times $n = n_1 + \dots + n_s$ from multinomial given by these costs. Sends n_i to player i.
- 3. Each player i sends n_i points from P_i sampled according to their contribution to the local approx.

For s players, total communication is only $O\left(\frac{kd}{\epsilon^2} + sk\right)$.

Open questions (Learning and Clustering)

- Efficient algorithms in noisy settings; handle failures, delays.
- Even better dependence on $1/\epsilon$ for communication efficiency for clustering via boosting style ideas.
 - Can use distributed dimensionality reduction to reduce dependence on d. [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]
- More refined trade-offs between communication complexity, computational complexity, and sample complexity.