Foundations for Learning in the Age of Big Data

Maria-Florina (Nina) Balcan Carnegie Mellon University

Today's topic: Active Learning (AL)

AL: learning algo takes a much more active role than in classic supervised learning in order to minimize the need for expert intervention.

Classic Fully Supervised Learning Paradigm Insufficient

• Modern applications: massive amounts of raw data.

- E.g., billions of webpages; massive collections of images

• Only a tiny fraction can be annotated by human experts.

Modern ML: New Learning Approaches

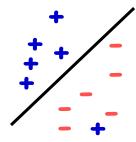
- Modern applications: massive amounts of raw data.
- Techniques that best utilize data, minimizing need for expert/human intervention.
- Paradigms where there has been great progress.
 - Semi-supervised Learning, (Inter)active Learning.

Active Learning

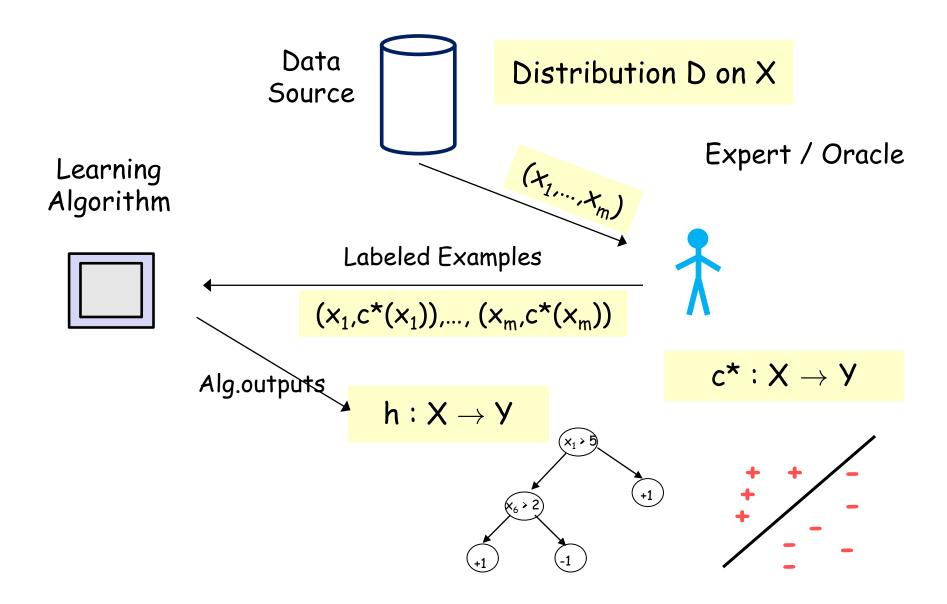
Lots of exciting activity in recent years on understanding the power of active learning. Mostly label efficiency.

This lecture: provable guarantees for active learning.

- Disagreement based active learning.
- Power of aggressive localization for label efficient and poly time active learning for linear separators.



PAC/SLT models for Supervised Learning

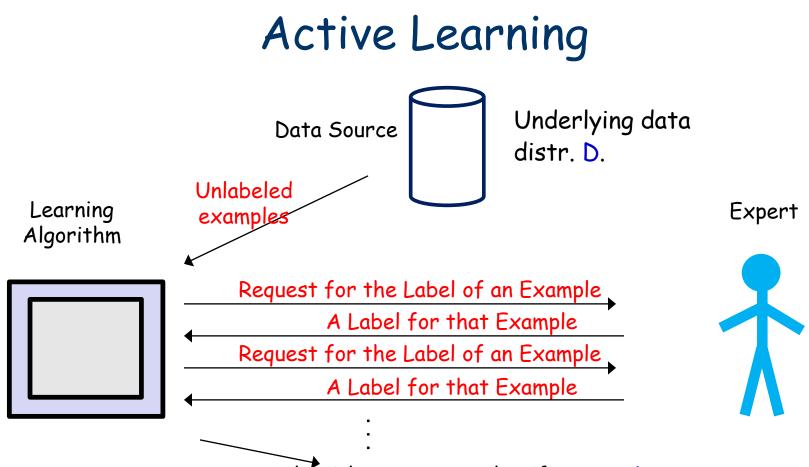


Two Main Aspects in Classic Machine Learning

Algorithm Design. How to optimize? Automatically generate rules that do well on observed data. Runing time: $poly\left(d, \frac{1}{\epsilon}, \frac{1}{\delta}\right)$

Generalization Guarantees, Sample Complexity Confidence for rule effectiveness on future data.

Realizable: $0\left(\frac{1}{\epsilon}\left(\text{VCdim}(\text{H})\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$ E.g, *C*= linear separators in R^d: $0\left(\frac{1}{\epsilon}\left(d\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$ Agnostic: $0\left(\frac{1}{\epsilon^{2}}\left(\text{VCdim}(\text{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$



Algorithm outputs a classifier w.r.t D

- Learner can choose specific examples to be labeled.
- Goal: use fewer labeled examples [pick informative examples to be labeled].

What Makes a Good Active Learning Algorithm?

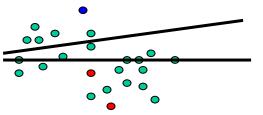
- Guaranteed to output a good classifier for most learning problems.
- Doesn't make too many label requests. Hopefully a lot less than fully supervised passive learning.
- Need to choose the label requests carefully, to get informative labels.

Can adaptive querying really do better than passive sampling?

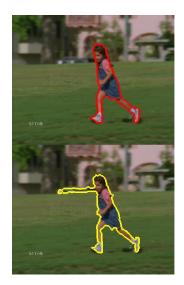
- YES! (sometimes)
- We often need far fewer labels for active learning than for passive.
- This is predicted by theory and has been observed in practice.

Active Learning in Practice

- Text classification: active SVM (Tong-Koller, ICML2000).
 - e.g., request label of the example closest to current separator.

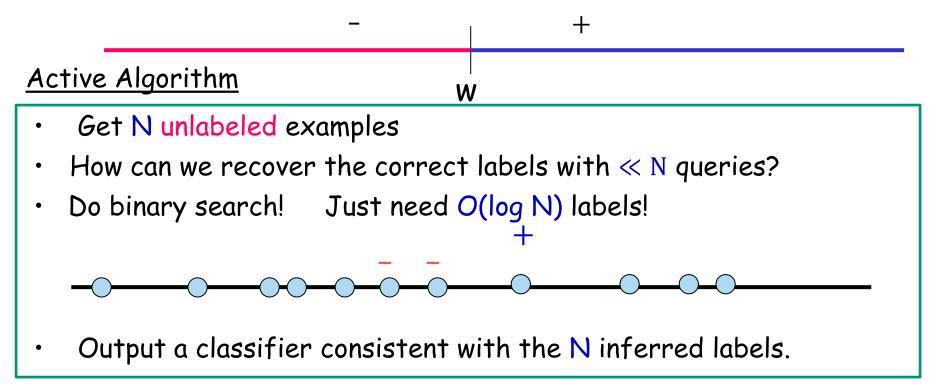


• Video Segmentation (Fathi-Balcan-Ren-Regh, BMVC 11).



Can adaptive querying help? [CAL92, Dasgupta04]

• Threshold fns on the real line: $h_w(x) = 1(x \ge w), H = \{h_w: w \in R\}$



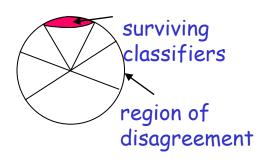
• $N = O(1/\epsilon)$ we are guaranteed to get a classifier of error $\leq \epsilon$. <u>Passive supervised</u>: $\Omega(1/\epsilon)$ labels to find an ϵ -accurate threshold. <u>Active</u>: only $O(\log 1/\epsilon)$ labels. Exponential improvement.

Active Learning, Provable Guarantees

Lots of exciting results on sample complexity. E.g.,

- DasguptaKalaiMonteleoni'05, CastroNowak'07, CavallantiCesa-BianchiGentile'10, YanChaudhuriJavidi'16
- DasguptaHsu'08, UrnerWulffBenDavid'13
- "Disagreement based" algorithms

Pick a few points at random from the current region of disagreement (uncertainty), query their labels, throw out hypothesis if you are statistically confident they are suboptimal.



[BalcanBeygelzimerLangford'06, Hanneke07, DasguptaHsuMontleoni'07, Wang'09, Fridman'09, Koltchinskii10, BHW'08, BeygelzimerHsuLangfordZhang'10, Hsu'10, Ailon'12, …]

Disagreement Based Active Learning

A² Agnostic Active Learner

[Balcan-Beygelzimer-Langford, ICML 2006]

current version space region of disagreement

Let $H_1 = H$.

For t = 1, ...,

- Pick a few points at random from current region of disagreement $DIS(H_t)$ and query their labels.
- Throw out hypothesis if statistically confident they are suboptimal.

Disagreement Based Active Learning

A² Agnostic Active Learner [Balcan-Beygelzimer-Langford, ICML 2006]

Pick a few points at random from the current region of disagreement (uncertainty), query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

Guarantees for A² [Hanneke'07]:

Disagreement coefficient: $\theta_{c^*} = \sup_{r>\eta+\epsilon} \frac{P(\text{DIS}(B(c^*, r)))}{r}$ Realizable: $m = V\text{Cim}(C)\theta_{c^*}\log(1/\epsilon)$ Agnostic: $m = \frac{\eta^2}{\epsilon^2}V\text{Cim}(C)\theta_{c^*}^2\log(1/\epsilon)$ Linear separators, uniform distr.: $\theta_{c^*} = \sqrt{d}$

Disagreement Based Active Learning

Pick a few points at random from the current region of disagreement (uncertainty), query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

[BalcanBeygelzimerLangford'06, Hanneke07, DasguptaHsuMontleoni'07, Wang'09, Fridman'09, Koltchinskii10, BHW'08, BeygelzimerHsuLangfordZhang'10, Hsu'10, Ailon'12, …]

Positives	 Generic (any class), adversarial label noise.
Negatives	 suboptimal in label complexity computationally prohibitive.

Key Question:

Poly Time, Noise Tolerant/Agnostic, Label Optimal AL Algos?

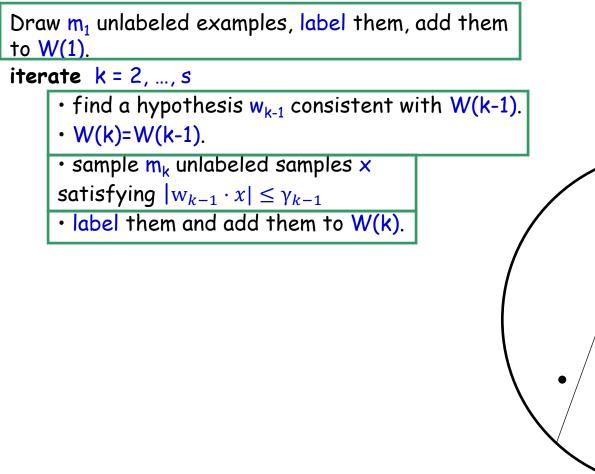
Margin Based Active Learning

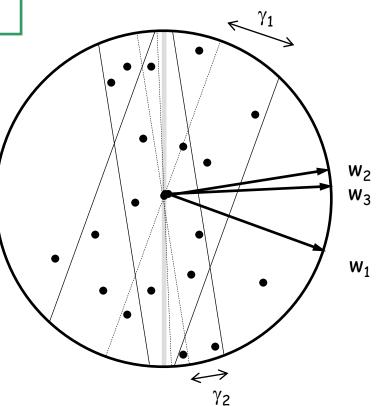
Margin based algo for learning linear separators.

[Balcan-Long, COLT 2013] [Awasthi-Balcan-Long, STOC 2014] [Awasthi-Balcan-Haghtalab-Urner, COLT15] [Awasthi-Balcan-Haghtalab-Zhang, COLT16] [Awasthi-Balcan-Long, JACM 2017]

- Realizable: exponential improvement, only O(d log $1/\epsilon$) labels to find w error ϵ , when D logconcave
- Agnostic: poly-time AL algo outputs w with $err(w) = O(\eta + \epsilon)$, $\eta = err(best lin. sep)$, $O(d \log 1/\epsilon)$ labels when D logconcave.
 - Improves on noise tolerance of previous best passive [KKMS'05], [KLS'09] algos too!

Margin Based Active-Learning, Realizable Case





Margin Based Active-Learning, Realizable Case

Log-concave distributions: log of density fnc concave.

• wide class: uniform distr. over any convex set, Gaussian, etc.

 $f(\lambda x_1 + (1 - \lambda x_2)) \ge f(x_1)^{\lambda} f(x_2)^{1-\lambda}$

Theorem D log-concave in \mathbb{R}^d . If $\gamma_k = O\left(\frac{1}{2^k}\right)$ then $\operatorname{err}(w_s) \leq \epsilon$ after $s = \log\left(\frac{1}{\epsilon}\right)$ rounds using $\widetilde{O}(d)$ labels per round.

Active learning

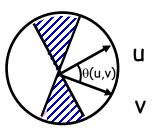
 $\begin{array}{l} O\left(d \log\left(\frac{1}{\epsilon}\right) \right) \text{ label requests} \\ \Theta\left(\frac{d}{\epsilon}\right) \text{ unlabeled examples} \end{array}$

Passive learning

 $\Theta\left(\frac{d}{\epsilon}\right)$ label requests

Linear Separators, Log-Concave Distributions

Fact 1 $d(u,v) \approx \frac{\theta(u,v)}{\pi}$

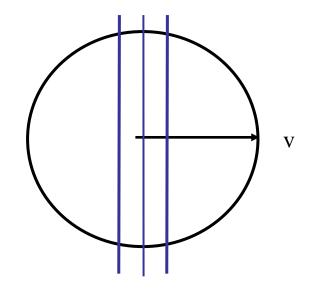


Proof idea:

- project the region of disagreement in the space given by u and v
- use properties of log-concave distributions in 2 dimensions.

Fact 2

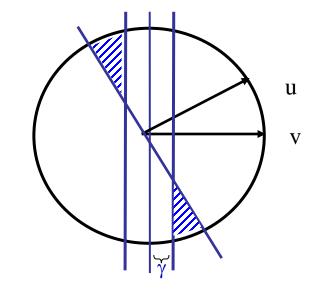
 $\Pr_{\mathsf{X}}\left[|\mathsf{v}\cdot\mathsf{x}| \leq \gamma\right] \leq \gamma.$



Linear Separators, Log-Concave Distributions

Fact 3 If
$$\theta(u,v) = \beta$$
 and $\gamma = C\beta$

 $\Pr_{\mathsf{X}}\left[(\mathsf{u}\cdot\mathsf{X})(\mathsf{v}\cdot\mathsf{X})<0,|\mathsf{v}\cdot\mathsf{X}|\geq\gamma\right]\leq\frac{\beta}{4}.$



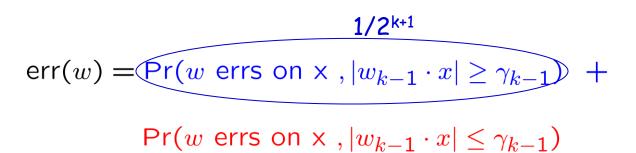
Margin Based Active-Learning, Realizable Case iterate k=2, ...,s • find a hypothesis w_{k-1} consistent with W(k-1). W • W(k)=W(k-1). \cdot sample m_k unlabeled samples \times W_{k-1} satisfying $|w_{k-1} \cdot x| \leq \gamma_{k-1}$ label them and add them to W(k). W Proof Idea

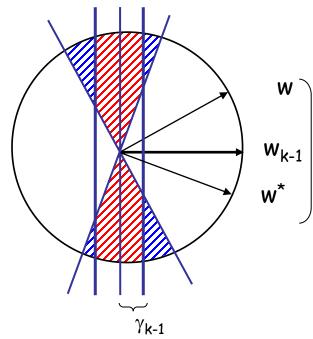
Induction: all w consistent with W(k) have error at most $1/2^k$; so, w_k has error at most $1/2^k$.

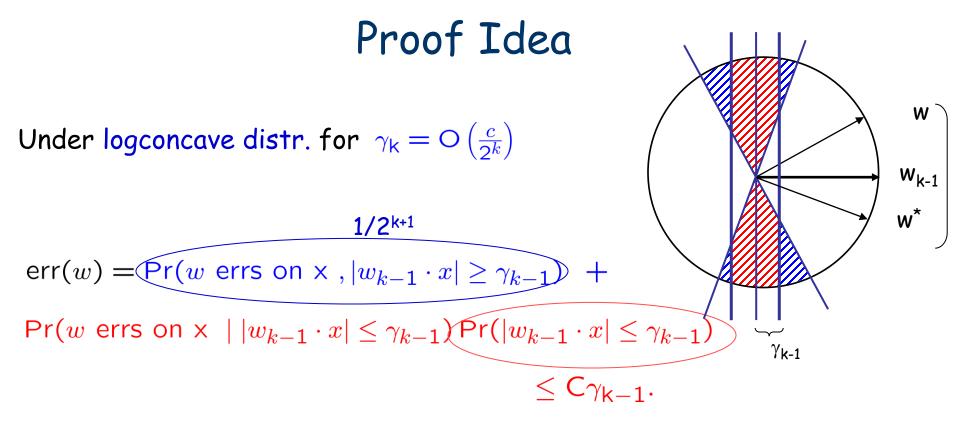
For
$$\gamma_{k} = O\left(\frac{c}{2^{k}}\right)$$

$$\frac{1/2^{k+1}}{\operatorname{err}(w)} = \frac{\operatorname{Pr}(w \text{ errs on } x, |w_{k-1} \cdot x| \ge \gamma_{k-1})}{\operatorname{Pr}(w \text{ errs on } x, |w_{k-1} \cdot x| \le \gamma_{k-1})} +$$

Proof Idea





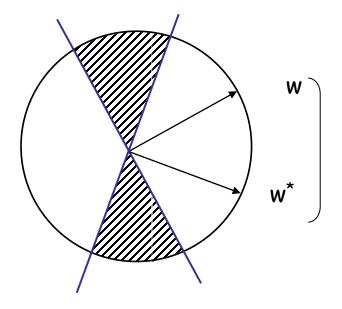


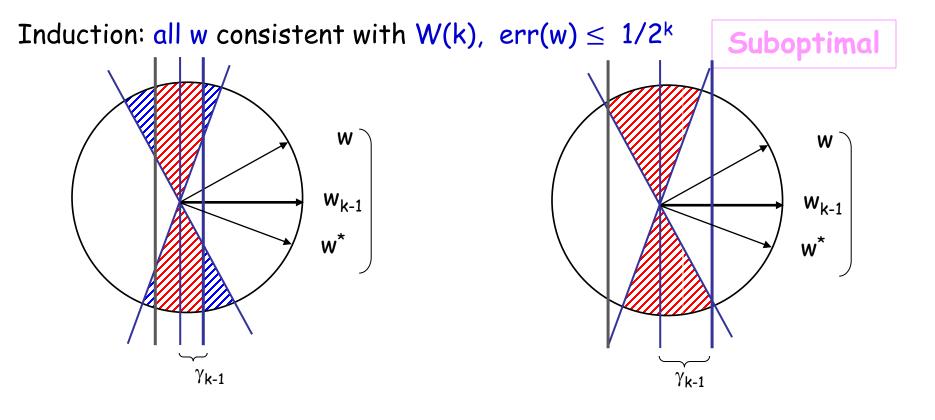
Enough to ensure

$$\Pr(\text{w errs on } x \mid |w_{k-1} \cdot x| \le \gamma_{k-1}) \le C_1$$

Can do with only $m_k = O(d + \log \log(1/\epsilon))$ labels.

Induction: all w consistent with W(k), $err(w) \le 1/2^k$

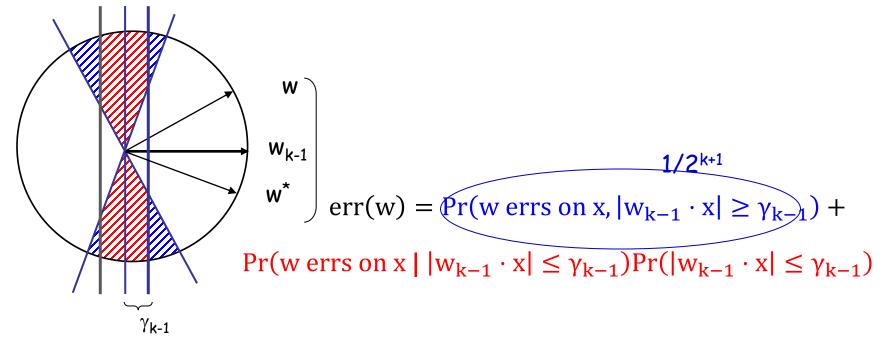




Induction: all w consistent with W(k), $err(w) \leq 1/2^{k}$



Induction: all w consistent with W(k), $err(w) \le 1/2^{k}$

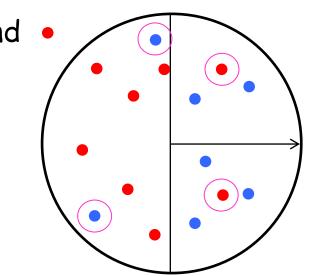


Enough to ensure $Pr(w \operatorname{errs} \operatorname{on} x | |w_{k-1} \cdot x| \le \gamma_{k-1}) \le C$ Need only $m_k = \widetilde{O}(d)$ labels in round k.

Key point: localize aggressively, while maintaining correctness.

- No linear separator can separate
- Best linear separator error η

Algorithm still margin based



Draw m_1 unlabeled examples, label them, add them to W.

iterate k=2, ..., s

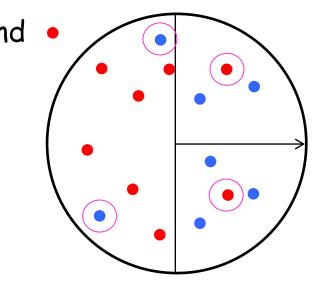
- find w_{k-1} in $B(w_{k-1}, r_{k-1})$ of small τ_{k-1} hinge loss wrt W.
 - Clear working set.
 - \cdot sample m_k unlabeled samples x

satisfying $|w_{k-1} \cdot x| \leq \gamma_{k-1}$;

label them and add them to W.

end iterate

- No linear separator can separate
- Best linear separator error η

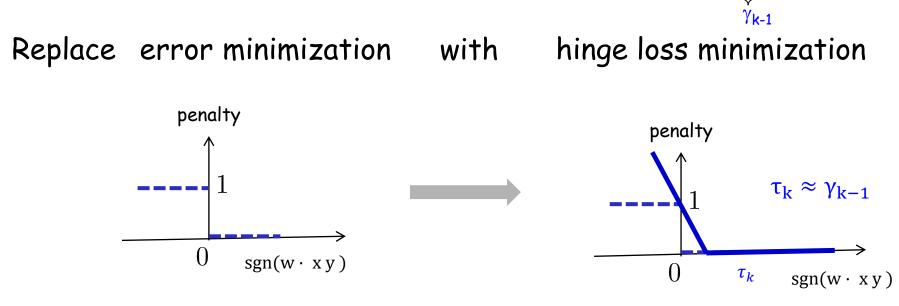


Wk

 W_{k-1}

- No linear separator can separate
- Best linear separator error η

Key idea 1:



- No linear separator can separate
- Best linear separator error η

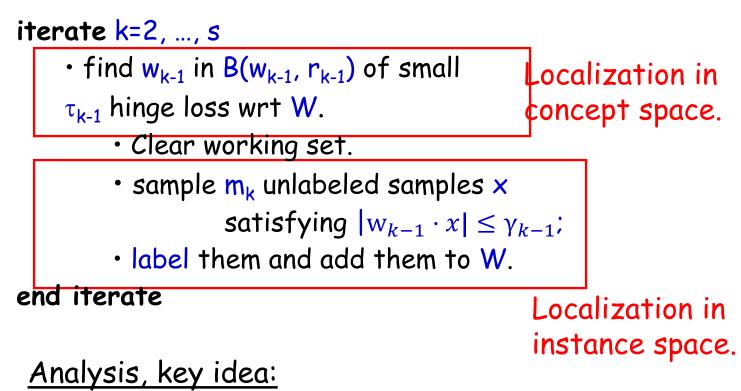
 V_{k-1}

Key idea 2:

Stay close to the current guess: w_k in small ball around w_{k-1}

Margin Based Active-Learning, Agnostic Case

Draw m_1 unlabeled examples, label them, add them to W.



- Pick $\tau_k \approx \gamma_k$
- Localization & variance analysis control the gap between hinge loss and 0/1 loss (only a constant).

Improves over Passive Learning too!

Passive Learning	Prior Work	Our Work
Malicious	$err(w) = O(\eta^{2/3}\log^{2/3}(d/\eta))$ [KLS'09]	$err(w) = O(\eta)$ Info theoretic optimal
Agnostic	$err(w) = O(\eta^{1/3} \log^{1/3}(1/\eta))$ [KLS'09]	err(w) = 0(η)
Bounded Noise $ P(Y = 1 x) - P(Y = -1 x) \ge \beta$	NA	$\eta + \epsilon$
Active Learning [agnostic/malicious/ bounded]	NA	<mark>same as above!</mark> Info theoretic optimal

Key insights:

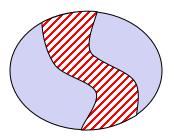
Localization both algorithmic and analysis tool!

Useful for active and passive learning!

- Well known for analyzing sample complexity. [Bousquet-Boucheron-Lugosi'04], [BBL'06], [Hanneke'07], ...
- We show useful for noise tolerant poly time algorithms.
 - Previously observed in practice, e.g. for SVMs [Bottou'07]

Further Margin Based Refinements

- Efficient algorithms
 - [Hanneke-Kanade-Yang, ALT'15] O(d log 1/€) label complexity for our poly time agnostic algorithm.
 - [Daniely, COLT '15] achieve C η for any constant C in poly time in the agnostic setting [tradeoff running time with accuracy].
 - [Awasthi-Balcan-Haghtalab-Urner, COLT15], [Awasthi-Balcan-Haghtalab-Zhang, COLT16] Bounded noise, get error $\eta + \epsilon$ in time $poly(d, 1/\epsilon)$
 - [YanZhang, NIPS'17] modified Perceptron enjoys similar guarantees.
- Active & Differentially Private [Balcan-Feldman, NIPS'13]
- General concept spaces: [Zhang-Chaudhuri, NIPS'14].
 - Compute the region to localize in each round by using unlabeled data and writing an LP



Discussion, Open Directions

AL: important paradigm in the age of Big Data. Lots of exciting developments.

- Disagreement based AL, general sample complexity.
- Margin based AL: label efficient, noise tolerant, poly time algo for learning linear separators.
 - Better noise tolerance than known for passive learning via poly time algos. [KKM5'05] [KLS'09]
 - Solve an adaptive sequence of convex optimization pbs on smaller & smaller bands around current guess for target.