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• Image Classification, Speech Recognition 

• Document categorization, Natural Language Processing

• Fraud Detection, Spam Detection

Brief Overview

ML: automatic methods for extracting info from data and for

learning to make accurate predictions or useful decisions based

on past observations and experience.

Amazing impact on many application areas. E.g.,

• Computational biology.

This lecture series focus: theoretical foundations for learning

in the age of big data.



• Generalization and Overfitting.

Brief Overview

Lectures 1 & 2: Foundations of classic ML.

This lecture series: theoretical foundations for learning in the

age of big data.

Lectures 3: Active Learning.

Lectures 4: Distributed Learning.



Focus on sample complexity for supervised 
classification

• PAC (Valiant)

• Statistical Learning Theory (Vapnik)

Today’s topic: Generalization and Overfitting 

in Machine Learning



Supervised Classification

from data to discrete classes



Supervised Learning

• E.g., classify objects as chairs vs non chairs.

Not chair chair

• E.g., which emails are spam and which are important.

Not spam spam

We are looking forward 
to your upcoming lecture 
at our summer school.

Click here to get out of 
debt fast.  No charge or 
tricks, we promise!



Supervised Classification. Example: Spam Detection

Goal: use emails seen so far to produce good prediction 
rule for future data.

Not spam spam

Decide which emails are spam and which are important.

Supervised classification



example label

Reasonable RULES:

Predict SPAM if unknown AND (money OR pills)

Predict SPAM if 2money + 3pills –5 known > 0

Represent each message by features. (e.g., keywords, spelling, etc.)
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Linearly separable

Supervised Classification. Example: Spam Detection



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

(Labeled) Data

• E.g.: Adaboost, logistic regression, SVM, etc.



Labeled Examples  

PAC/SLT models for Supervised Learning

Learning 
Algorithm

Expert / Oracle

Data 
Source

Alg.outputs

Distribution D on X

c* : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! Y
x1 > 5

x6 > 2
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Labeled Examples  

Learning 
Algorithm Expert/Oracle

Data 
Source

Alg.outputs c* : X ! Y
h : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi independently 
and identically distributed (i.i.d.) from D; labeled by 𝑐∗

Distribution D on X

• Does optimization over S, finds hypothesis h (e.g., a linear separator).

• Goal: h has small error over D.

PAC/SLT models for Supervised Learning

Today: Y={-1,1}



• X – feature or instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

• Algo does optimization over S, find hypothesis ℎ.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - assumed to be drawn i.i.d. from some distr. 
D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

h c*

Instance space X
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Need a bias: no free lunch.

PAC/SLT models for Supervised Learning

• Goal:  h has small error over D.

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))



• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.
h c*

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - assumed to be drawn i.i.d. from some distr. 
D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

Instance space X
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Realizable: 𝑐∗ ∈ 𝐻. 
Agnostic: 𝑐∗ “close to” H. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature or instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

Bias: Fix hypotheses space H .
(whose complexity is not too large).



• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

Training error: 𝑒𝑟𝑟𝑆 ℎ =
1

𝑚
σ𝑖 𝐼 ℎ 𝑥𝑖 ≠ 𝑐∗ 𝑥𝑖

True error: 𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

• Does optimization over S, find hypothesis ℎ ∈ 𝐻.

PAC/SLT models for Supervised Learning

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over future 
instances drawn at random from D 

• But, can only measure:

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over training 
instances

Sample complexity: bound 𝑒𝑟𝑟𝐷 ℎ in terms of 𝑒𝑟𝑟𝑆 ℎ



Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Contrapositive: if the target is in H, and we have an algo that 
can find consistent fns, then we only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿



Sample Complexity for Supervised Learning

Consistent Learner

• 𝜖 is called error parameter

• 𝛿 is called confidence parameter
• there is a small chance the examples we get are not representative of 

the distribution

• D might place low weight on certain parts of the space

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Bound inversely linear in 𝜖

Bound only logarithmic in |H|



Sample Complexity for Supervised Learning

Consistent Learner

Example: H is the class of conjunctions over X = 0,1 n.

E.g., h = x1 x3x5 or h = x1 x2x4𝑥9

|H| = 3n

Then 𝑚 ≥
1

𝜖
𝑛 ln 3 + ln

1

𝛿
suffice

𝑛 = 10, 𝜖 = 0.1, 𝛿 = 0.01 then 𝑚 ≥ 156 suffice

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))



Sample Complexity for Supervised Learning

Assume k bad hypotheses h1, h2, … , hk with errD hi ≥ ϵProof

1)  Fix hi. Prob. hi consistent with first training example is

Prob. hi consistent with first m training examples is ≤ 1 − ϵ m. 

2) Prob. that at least one ℎ𝑖 consistent with first m training 
examples is

3) Calculate value of m so that H 1 − ϵ m ≤ δ

3) Use the fact that 1 − x ≤ e−x, sufficient to set

H 1 − ϵ m ≤ H e−ϵm ≤ δ

≤ k 1 − ϵ m ≤ H 1 − ϵ m.

≤ 1 − ϵ. 



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Probability over different samples 
of m training examples



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

1) PAC: How many examples suffice to guarantee small error whp. 

2) Statistical Learning Way:

errD(h) ≤
1

m
ln H + ln

1

𝛿
.

With probability at least 1 − 𝛿, for all h ∈ H s.t. errS h = 0 we have



Supervised Learning: PAC model (Valiant)

• X - instance space, e.g., X = 0,1 n or X = Rd

• Sl={(xi, yi)} - labeled examples drawn i.i.d. from some 
distr. D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

• Algorithm A PAC-learns concept class H if for any 
target c* in H, any distrib. D over X, any ,  > 0:

- A uses at most poly(d,1/,1/,size(c*)) examples and running 
time.
- With probab. 1-, A produces h in H of error at · .



What if c∗ ∉ H?



Uniform Convergence

• This basic result only bounds the chance that a bad hypothesis looks 
perfect on the data. What if there is no perfect h∈H (agnostic case)?

• What can we say if c∗ ∉ H?

• Can we say that whp all h∈H satisfy |errD(h) – errS(h)| ≤ ?

– Called “uniform convergence”.

– Motivates optimizing over S, even if we can’t find a 
perfect function.



Sample Complexity: Uniform Convergence

Agnostic Case

Empirical Risk Minimization (ERM)

• Output: Find h in H with smallest errS(h)

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

1/𝜖2 dependence [as opposed 
to1/𝜖 for realizable]



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

Important Conclusion: 

W.h.p. ≥ 1 − 𝛿,errD ℎ ≤ errD h∗ + 2ϵ, h is ERM output, h∗ is hyp. of 
smallest true error rate. 

errD h∗

≤ 𝝐

errS h∗

errS ℎ errD ℎ

≤ 𝝐



Sample Complexity: Finite Hypothesis Spaces

Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h +
1

2m
ln (2 H ) + ln

1

𝛿
.

With prob. at least 1 − 𝛿, for all h ∈ H:

1/𝜖2 dependence [as opposed to 1/𝜖

for realizable], but get for 
something stronger.

1

𝑚
as opposed to 

1

𝑚
for 

realizable



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

What if there is no perfect h? 

Agnostic Case

To prove bounds like this, need some good tail inequalities.



Hoeffding bounds
Consider coin of bias p flipped m times.  
Let N be the observed # heads.  Let ∈ [0,1].
Hoeffding bounds:
• Pr[N/m > p + ] ≤ e-2m2, and
• Pr[N/m < p - ] ≤ e-2m2.

• Tail inequality: bound probability mass in tail of 
distribution (how concentrated is a random variable 
around its expectation).

Exponentially decreasing tails



• Proof: Just apply Hoeffding.

– Chance of failure at most 2|H|e-2|S|2.

– Set to . Solve.
• So, whp, best on sample is -best over D.

– Note: this is worse than previous bound (1/ has become 1/2), 
because we are asking for something stronger.

– Can also get bounds “between” these two.

Sample Complexity: Finite Hypothesis Spaces

Agnostic Case



What if H is infinite?

E.g., linear separators in Rd
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E.g., intervals on the real line

a b

+- -

E.g., thresholds on the real line
w

+-



Sample Complexity: Infinite Hypothesis Spaces

Sauer’s Lemma: H m = O mVCdim H

H[m] - max number of ways to split m points using concepts in H



Summary

• Notion of sample complexity.

• Sample complexity bounds for finite H (realizable and 
agnostic).

• PAC/SLT models for supervised learning.


