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Brief Overview

ML: automatic methods for extracting info from data and for
learning to make accurate predictions or useful decisions based
on past observations and experience.

Amazing impact on many application areas. E.qg.,
«  Document categorization, Natural Language Processing
« Image Classification, Speech Recognition
*  Fraud Detection, Spam Detection

« Computational biology.

This lecture series focus: theoretical foundations for learning
in the age of big data.



Brief Overview

This lecture series: theoretical foundations for learning in the
age of big data.

Lectures 1 & 2: Foundations of classic ML.

« Generalization and Overfitting.

Lectures 3: Active Learning.

Lectures 4: Distributed Learning.



Today's topic: Generalization and Overfitting
in Machine Learning

Focus on sample complexity for supervised
classification

- Statistical Learning Theory (Vapnik)
+ PAC (Valiant)



Supervised Classification

from data to discrete classes



Supervised Learning

- E.g., classify objects as chairs vs non chairs.

Not chair

a
o

chair

« E.g., which emails are spam and which are important.

Not spam

We are looking forward
to your upcoming lecture
at our summer school.

Click here to get out of
debt fast. No charge or
tricks, we promise!




Supervised Classification. Example: Spam Detection

Decide which emails are spam and which are important.
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Nina:
You might have already ssen this announcement, but I would like to
personally congratulate you for your outstanding dissertation. I would
like to invite you to return to CHU to give a distinguished lecture
sometime in the winter of 2010. Catherine Copetas will work out the
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Supervised Classification. Example: Spam Detection

Represent each message by features. (e.g., keywords, spelling, etfc.)

/ “money” “pills”  "Mr.” bad spelling known-sender | spam? \
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Reasonable RULES:

+
Predict SPAM if unknown AND (money OR pills) N
Predict SPAM if 2money + 3pills -5 known > O

Linearly separable



Two Core Aspects of Machine Learning

[ Algorithm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

E.g.: Adaboost, logistic regression, SVM, etc.

[Confidence Bounds, Generalization J (Labeled) Data

Confidence for rule effectiveness on future data.



PAC/SLT models for Supervised Learning

B
Data “‘ Distribution D on X

Source A_@N
—Eﬁ‘ - Expert / Oracl
Learning (e xpert / Oracle
Algorithm L)

Labeled Examples
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PAC/SLT models for Supervised Learning
%O
Data Distribution D on X

Source
Ay

Learning —
Algorithm C,.., X Expert/Oracle

) Labeled Examples %
(X1,*(X1))--. (X, € (X))
Am h . X . y C* . X — y
| Today: Y={-1,1}

Algo sees training sample S: (x;,c*(xq)),..., (X,,.c*(X,,)), X; independently
and identically distributed (i.i.d.) from D; labeled by c*

Does optimization over S, finds hypothesis h (e.g., a linear separator).
Goal: h has small error over D.



PAC/SLT models for Supervised Learning

X - feature or instance space; distribution D over X
e.g., X=R% or X = {0,1}4
« Algo sees training sample S: (x1,c*(xy))...., (X,,,c*(x,,)), X; i.i.d. from D

- labeled examples - assumed to be drawn i.i.d. from some distr.
D over X and labeled by some target concept ¢

- labels € {-1,1} - binary classification

» Algo does optimization over S, find hypothesis h.

« Goal: h has small error over D.

C*
i | @

Instance space X

Need a bias: no free lunch.



PAC/SLT models for Supervised Learning

X - feature or instance space; distribution D over X
eg.,X=R4orX=1{0,1}4
« Algo sees training sample S: (x,c*(xy)),..., (X,,,c*(x,,))., X; i.i.d. from D

- labeled examples - assumed to be drawn i.i.d. from some distr.
D over X and labeled by some target concept ¢

- labels € {-1,1} - binary classification

- Algo does optimization over S, find hypothesis h.

« Goal: h has small error over D.

C*
errp(h) = xErD(h(x) * c*(x)) @ -

Bias: Fix hypotheses space H . -
(whose complexity is not too large). | Instance space X

Realizable: ¢* € H.
Agnostic: ¢* "close 10" H.



PAC/SLT models for Supervised Learning

« Algo sees training sample S: (x;,c*(X1)),..., (X,,c*(X,)), X; i.i.d. from D
Does optimization over S, find hypothesis h € H.
* Goal: h has small error over D.
True error: errp(h) = xlzrD(h(x) * c*(x))

How often h(x) # c*(x) over future
instances drawn at random from D

 But, can only measure:
Training error: errg(h) = %Zil(h(xi) % c*(x;))

How often h(x) # c*(x) over training
instances

Sample complexity: bound err,(h) in terms of errg(h)



Sample Complexity for Supervised Learning

Consistent Learner
Input: St (%,c*(Xy)),..., (X,* (X))
- Output: Find h in H consistent with the sample (if one exits).

T heorem

o i3]

labeled examples are sufficient so that with prob. 1 — 4, all h € H with
errp(h) > e have errg(h) > 0.

Contrapositive: if the target is in H, and we have an algo that
can find consistent fns, then we only need this many
examples to get generalization error < € with prob. > 1 -6



Sample Complexity for Supervised Learning

Consistent Learner

* Input: Si(%1,c*(xy)),..., (X,* (X))

- Output: Find h in H consistent with the sample (if one exits).
Bound inversely linear in €

o i1

labeled examples are sufficient so that with prob. 1 — 4, all h € H with
errp(h) > e have errg(h) > 0.

T heorem

Bound only logarithmic in |H|

€ is called error parameter

D might place low weight on certain parts of the space

« § is called confidence parameter

there is a small chance the examples we get are not representative of
the distribution



Sample Complexity for Supervised Learning

Consistent Learner
* Input: Si(%1,c*(xy)),..., (X,* (X))
- Output: Find h in H consistent with the sample (if one exits).

T heorem

o i3]

labeled examples are sufficient so that with prob. 1 — 4, all h € H with
errp(h) > e have errg(h) > 0.

Example: H is the class of conjunctions over X = {0,1}". |H| = 3"
E.g., h =x; X3x5 or h = X X5X4Xg

Then m > ﬂn In3 +In (%)] suffice

n=10,e=0.1,6 =0.01 thenm > 156 suffice



Sample Complexity for Supervised Learning

T heorem

s o +in(2)

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > & have errg(h) > 0.

Proof Assume k bad hypotheses h;,h,, ..., hy with errp(h;) > €
1) Fix h;. Prob. h; consistent with first training example is <1 — €.

Prob. h; consistent with first m fraining examples is < (1 — e)™.

2) Prob. that at least one h; consistent with first m training
examplesis <k (1 —¢e)™ < [H|(1 —e)™.

3) Calculate value of m so that |H|(1 —e)™ <6

3) Use the fact that 1 — x < e7%, sufficient to set
H[(1—e)™ < |H|e™*™ < 6



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

T heorem

m > ! [In(|H|) + In :
£

@n pron. 13
Probability over different samples
of m training examples

labeled examples are sufficient so tha all h € H with

errp(h) > & have errg(h) > 0.



Sample Complexity: Finite Hypothesis Spaces
Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

T heorem

s o +in(2)

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > & have errg(h) > 0.

2) Statistical Learning Way:

With probability at least 1 — §, for all h € H s.t. errg(h) = 0 we have

errp(h) < é(ln |H| + In (%))



Supervised Learning: PAC model (Valiant)

- X - instance space, e.g., X = {0,1}" or X = R4
* S{(x;, ¥;)} - labeled examples drawn i.i.d. from some
distr. D over X and labeled by some target concept ¢’

- labels € {-1,1} - binary classification

* Algorithm A PAC-learns concept class H if for any
target c* in H, any distrib. D over X, any ¢, 6 > O:
- A uses at most poly(d,1/¢,1/5 size(c*)) examples and running

time.
- With probab. 1-5, A produces h in H of error at <.



What if ¢* & H?



Uniform Convergence

Theorem
oz [+ (2)

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > & have errg(h) > 0.

This basic result only bounds the chance that a bad hypothesis looks
perfect on the data. What if there is no perfect heH (agnostic case)?

What can we say if c* ¢ H?
Can we say that whp all heH satisfy |erry(h) - errg(h)| < ¢?

- Called "uniform convergence”.

- Motivates optimizing over S, even if we can't find a
perfect function.



Sample Complexity: Uniform Convergence
Agnostic Case

Empirical Risk Minimization (ERM)
Input: Si (xq,c*(x)),..., (X.c* (X))

* Output: Find h in H with smallest errg(h)

T heorem

m z@m(wn +n (2]

labeled examples are sufficienfk.t. with probab. > 1 -4, all h € H

have h) — h)| <e.
lerrp(h) —errg(h)| <e 1/€¢# dependence [as opposed

tol/e for realizable]



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

Theorem
1 2
m > —= In(|H]) + In (_)]
> 5 In(HD +1n (5
labeled examples are sufficient s.t. with probab. > 1 -9, all h € H

have |errp(h) — errg(h)| < e.

Important Conclusion:

W.hp.>1-§errp(h) < errp(h®) + 2¢, h is ERM output, h* is hyp. of
smallest true error rate.

errp(h*) l errg(h™)




Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

1/e* dependence as opposed to 1/¢
Theorem for realizable], but 961’ fOI"

> : {In(|H|) Tn (?)] something stronger.
labeled examples are suffictent s.t. with probab. > 1 -9, all h € H
have |errp(h) — errg(h)| < e.

2) Statistical Learning Theory style:

\/% as opposed fo % for
With prob. at least 1 — &, for all h € H: realizable

(, _— £1\ )
errp(h) < errg(h) +@ (Z[H]) + In \EU>




Sample Complexity: Finite Hypothesis Spaces

Realizable Case
T heorem

s o +in(2)

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > & have errg(h) > 0.

Agnostic Case
What if there is no perfect h?

Theorem After m examples, with probab. > 1 — 4§, all h € H have
lerrp(h) —errg(h)| < e, for

s i )

To prove bounds like this, need some good tail inequalities.



Hoeffding bounds

Consider coin of bias p flipped m times.
Let N be the observed # heads. Let c€ [0,1].
Hoeffdmg bounds:

+ Pr[N/m > p +¢] < e®™°, and
* Pr[N/m < -a]SeZmS.

Exponentially decreasing tails

» Tail inequality: bound probability mass in tail of
distribution (how concentrated is a random variable
around its expectation).




Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

Theorem After m examples, with probab. > 1 — 4§, all h € H have

lerrp(h) —errg(h)| < e, for
2

m> o In(H) +in (7))

Proof: Just apply Hoeffding.
- Chance of failure at most 2|H|e-2!SIs*.

- Set to 4. Solve.
So, whp, best on sample is e-best over D.

- Note: this is worse than previous bound (1/¢ has become 1/¢?),
because we are asking for something stronger.

- Can also get bounds "between” these two.



What if H is infinite?

+
E.g., linear separators in R¢ +
+

E.g., thresholds on the real line |

E.g., infervals on the real line




Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

o)
then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

m > é [|092(2H[2m]) T 1092 (l)]

Sauer's Lemma: H[m] = O(mVCdim(H))

Theorem
m = O G [VC’dim(H) log (é) + log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Summary

« PAC/SLT models for supervised learning.
* Notion of sample complexity.

« Sample complexity bounds for finite H (realizable and
aghostic).



