Number fields $[K: Q]<\infty$
How many number fields are there of $\frac{\text { deg } d \text { and }}{D_{k}:=\left|D_{i s c} k\right| \leq x}$ (asymptotically) $?$
$K / Q \mathrm{~K}$ Galois closure $\frac{\operatorname{Gal}\left(\widetilde{K} / Q_{n}\right) \text { acts on }\{K \rightarrow \widetilde{K}\}}{\text { permutation group }}$
Ques what are the asymptotic of

$$
N_{G}(x):=\left\{K / G \mid \text { Gal }(\tilde{K} / Q)=G, D_{k} \leq x\right\} ?
$$

First case: $G=C_{2}$, counting quadratic fields
How do we know quadratic fields?
Each generated by α w/ $\alpha^{2}+a \alpha+b=0 \quad a, b \in \mathbb{Z}$

$$
\alpha^{2}-d=0 \quad d \in \mathbb{Z}
$$ square-free

- These are all different.
- We can compute $D_{k}=d, 4 d$
\approx need to count square-free integers.

$$
\begin{aligned}
N(x) & =\{D \square \text {-free } \in[1, x]\} \quad N_{n}(x)=\left\{D=n^{2} d \quad \in[1, x]\right\} \\
N(x) & =N_{1}(x)-\sum_{p} N_{p}(x)+\sum_{p \cdot 2} N_{p q}(x)-\cdots \\
& =\sum_{n} \mu(n) N_{n}(x) \quad N_{n}(x) \neq 0 \Rightarrow n \leqslant \sqrt{x} \\
& =\sum_{n \leqslant \sqrt{x}} \mu(n)\left(\frac{x}{n^{2}}+O(1)\right) \\
& =\sum_{n} \mu(n) \frac{x}{n^{2}}-\sum_{n>\sqrt{x}} \mu(n) \frac{x}{n^{2}}+O(\sqrt{x}) \\
& =x \prod_{p}\left(1-p^{-2}\right)+O(\sqrt{x}) \\
& =3(2)^{-1} x+o(x)
\end{aligned}
$$

Also (see notes)

$$
N_{C_{2}}(x)=\frac{x}{\zeta(2)}+o(x)
$$

Next: higher degree?
$\left[K: Q_{3}\right]=3$ generated by $\alpha: f(\alpha)=\alpha^{3}+p \alpha+q=00^{p, q \in \mathbb{Z}}$

- When do $2(p, q)$ give same field?
- What is discriminant of $Q(\alpha)$?
$D_{K} \mid \operatorname{disc}(f)$
We can answer in individual cases, but not systematically enough to count. easily
Moral: isom.classes of fields \neq polynomials
None thees:
- looking for algebraic numbers gives best general approach to tabulation of $d e g a$ fields
listing each field with $\left|D_{k}\right| \leq x$ once
-w /heuristics, can give conjecture for $N_{s d}(x)$

Shankar [\& unconditional $N_{S_{3}}(x)$]

- best upper 8 lower bounds $N_{S d}(x)$
- much less access to $N_{G}(x) \quad G \nsubseteq S d$

Three Approaches to Count $N_{G}(X)$
(1) Class Field Theory G abelian
(Conn) $G=C_{3} \quad \operatorname{Hom}\left(G a l(\bar{Q} / C a), C_{3}\right)=\operatorname{Hom}\left(C a, C_{3}\right)$ ide le class group

$$
\prod_{P}^{\prime} \mathbb{Z}_{P}^{*} \times \mathbb{R}_{>0}^{*} \simeq C_{\mathbb{Q}}
$$

$$
\left.P \neq 3 \mathbb{Z}_{P}^{*} \xrightarrow{\text { kurnepoproup }}\left(\mathbb{Z} / p_{R}\right)^{*} \simeq \mathbb{Z} / P-1 \left\lvert\,>\rightarrow C_{3} \quad \begin{array}{l}
2 \text { nontrivial } \\
\text { maps when } \\
p \equiv 1(\text { mod 3) }
\end{array}\right.\right)
$$ $p \equiv 1(\bmod 3)$

What is discriminant? (unramified e 3)

$$
D_{K}=\left(\prod_{\substack{p \\ p \\ s+C_{j}}}^{\mathbb{Z}_{p}^{*} \rightarrow C_{3} \text { nontrivial }}\right.
$$

Analytic number theory: $D(S)=\sum_{n} a_{n} n^{-s}$
asymptotic of $\sum_{n \leq x} a_{n}$ come from right-most
poles of $D(s)$

$$
\begin{gathered}
D(s)=\sum_{n} n^{-s}\left\{\begin{array}{c}
\text { Homs } \\
D_{k}=n
\end{array}\right\}=\prod_{p \equiv 1(\bmod 3)}\left(1+2 p^{-2 s}\right) \\
\zeta(2 s) L(x, 2 s)=\prod_{p \equiv 1(\bmod 3)}\left(1-p^{-2 s}\right)^{-2} \prod_{P \equiv 2(\bmod 3)}\left(1-p^{-4 s}\right)
\end{gathered}
$$ factors

Dirichlet char $\bmod 3$

$$
\frac{D(s)}{\zeta(2 s) L(x, 2 s)}=\prod_{p \equiv 1}\left(1-3 p^{-4 s}+2 p^{-5 s}\right) \prod_{p \equiv 2}\left(1-p^{-4 s}\right) \quad \begin{aligned}
& \text { analytic for } \\
& \operatorname{Re}(s)>\frac{1}{4}
\end{aligned}
$$

So $D(s)$ rightmost pole e $s=\frac{1}{2}$ like $\zeta(2 s) L(x, 2 s)$ $\approx N_{C_{3}}(X)=C X^{1 / 2}+o\left(X^{2}\right)$.
Con count all abelian fields this way. [Mäki,....]
Also reasonable for tabulation
(2) Parametrization 8 geometry of numbers
 $\omega \mapsto \omega+$ be $\theta \mapsto \theta+l$

$$
\text { To determine } \theta_{k}: \quad \omega \theta=\underline{-a d}+\underline{0} w+\underline{0} \theta
$$

equs of assoc

$$
\text { So }\left\{\begin{array}{ccc}
\theta_{k} & w / \mathbb{Z} \text {-basis } \\
\text { of } & \theta_{t} / \mathbb{\pi}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { some } \\
\left(\cos b, c_{d}\right) \\
\in \mathbb{T}^{4}
\end{array}\right\}
$$

A different basis of $\theta_{k / \mathbb{Z}} \longrightarrow a G L_{2}(\mathbb{Z})$ action
Can work out explicitly. $G L_{2}(\mathbb{Z}) \curvearrowright \mathbb{Z}^{4}$

- which $(a, b, c, d) \in \mathbb{Z}^{4}$ correspond to Q_{k}
Key: "generic" (a, b, c, d) correspond to θ_{k}

Count (a, b, c, d) in a fundamental domain to count one per orbit
Use geometry of numbers

$$
\approx N_{s_{3}}(X)=\frac{1}{3 \xi(3)} X+0(X)
$$

Gives very fast tabulation of cubic fields (Belabas)

Potential for fast tabulation of quartic, quintic using Bhargave's parametrization
(3) Extensions of extensions
D_{4}-quartic extensions
(Cohen,
Diaz y Diaz,
Olivier)

$$
\begin{array}{r}
N_{F, S_{2}}(x)=\left\{[K: F]=2, N_{m_{F / C}}(\operatorname{Disck/F})\right. \\
\leq x\}
\end{array}
$$

k
F
K could be $C_{4}, C_{2} \times C_{2}$, or D_{4}
these have already been counted

$$
\begin{aligned}
N(X) & =\sum_{[F: Q]=2} N_{F, S_{2}}\left(\frac{X}{D_{F}^{2}}\right) \\
& =\sum_{[F: Q]=2} \frac{C_{F} X}{D_{F}^{2}}+o(x)
\end{aligned}
$$

$$
D_{k}=\operatorname{NmFlO}_{2} \text { (Disc K/F) }
$$

$$
\times D_{F}^{2}
$$

Use this to interchange w/ the sum.
Tail bound: $N_{F, S_{2}}(X) \leq C D_{F}^{2 / 3} X$

$$
N_{y}(x)=\sum_{\substack{\left[F: Q_{h}\right]=2 \\ D_{F} \leq Y}} N_{F, S_{2}}\left(\frac{x}{D F^{2}}\right)=\left(\sum_{\sum_{F}} \frac{C_{F}}{D_{F}^{2}}\right)+o(x)
$$

$$
\begin{aligned}
& \liminf _{x \rightarrow \infty} \frac{N(x)}{x} \geqslant \sum_{F} \frac{C_{F}}{D_{F}^{2}} \\
& N(x) \leq N_{Y}(x)+\sum_{F} N_{F, S_{2}}\left(\frac{x}{D_{F}^{2}}\right) \\
& D_{1} \Rightarrow Y \\
& \leq N_{Y}(x)+\sum_{\substack{[F=C, C] \\
D F}}^{C D_{F}^{-4 / 3}} x \\
& \sum_{[F: C Q]=2} D_{F}^{-4 / 3} \text { converges } \\
& {[F: C Q]=2} \\
& \limsup _{X \rightarrow \infty} \frac{N(X)}{X} \leqslant \sum_{F} \frac{C_{F}}{D_{F}^{2}}+\lim _{Y \rightarrow \infty} \sum_{D_{F}>Y} C D_{F}^{-4 / 3} \\
& N(x)=\left(\sum_{[F ; C a]=2} \frac{c_{F}}{D_{F}^{2}}\right) x+o(x) \rightarrow N_{D_{4}}(x)=c_{D_{4}} X+{ }_{0}(X)
\end{aligned}
$$

See notes for

- Conjectures
- More results
- Variations
- Suggested projects

Distribution of class groups of number fields
As K numberfiedd varies, what is distribution of $C e_{k} ? C e_{k}\left[p^{\infty}\right]$?

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{k l a \text { Gextn, } D_{k} \leq x, C_{k}\left[p^{\infty}\right]=A\right\}}{\#\left\{k c a \text { Gextn, } D_{k} \leq x\right\}}
$$

$$
\text { More generally, } \frac{\sum_{\substack{k \in F \\ I_{k} \leq x}} f\left(c Q_{k}\right)}{\sum_{x \rightarrow \infty} 1}
$$

$$
\begin{array}{ll}
? & Q_{k} \text { for } k \in \mathcal{F}
\end{array}
$$

$$
b_{y} I_{k}
$$

Start w/ quadratic fields
${ }^{-} C l_{k}$ quite different for K iraq vs. real finitely many $C_{k}=1$ infinitely mary $w / Q_{k}=1$???

What do we know? Ce finite abelian group

- genus theory

Today: genus theory through class field theory

$$
C Q_{k}=G a l\left(K_{j}^{u n, a b} / K\right)
$$

maximal unramified, abelian extension
abelian

Genus field: maximal ext of K, unram, abelian, \& EK for some E/O a belian

$$
E K \subset K^{u n, a b}
$$

$$
C_{k} \rightarrow \underbrace{\text { Gal (Ek(k) }}_{\text {genus group }}
$$

What can EK be? K quadratic field
Class field theory $\Rightarrow \operatorname{Gal}\left(E K / Q_{1}\right)=\operatorname{Gal}(E K / K) \times-\operatorname{Gal}(\mathrm{K} / Q)$

$$
C \operatorname{Gal}(E / Q) \times \operatorname{Gal}(+/ Q)
$$

So $G a l(E K / K)$ must be 2 -torsion.

$$
\operatorname{Gal}\left(\overline{Q_{h}} / Q_{1}\right) \cdots \operatorname{Gal}\left(L / Q_{\mathrm{h}}\right)=\mathbb{\pi} / 2 \mathbb{\pi}^{\times} \mathbb{D} / 2 \mathbb{\pi}
$$

Class field.
lass field : $\operatorname{Hom}(\operatorname{Gal}(\overline{C a} / Q), A) \quad$ A finite abelion
theory
$\operatorname{Hom}\left(C_{G}, A\right)$ idele class group
$\operatorname{Hom}\left(\prod_{p}^{11} \mathbb{Z}_{p}^{*}, A\right)$

$$
\pi_{p} \mathbb{Q}_{p}^{*} \xrightarrow[\operatorname{corr} t_{0} k]{\cdots / 2 \mathbb{\pi} \times \mathbb{\mathbb { R }} / 2 \mathbb{Z}}
$$

\mathbb{Z}_{P}^{*} are inertia groups,
image canst intersect $(\langle 1,0\rangle)$, non-trivially
So p unrom in $K \Rightarrow \mathbb{Z}_{P}^{*} \mapsto 1$
pramink $\Rightarrow 2$ options of a lift

So $2^{\text {\#ramprimes }}$ maps

- 2 not surjection
- Each field gives 2 maps
- Some may be ramified e

$$
2^{\text {\#ram }-1} \geqslant|\operatorname{Gal}(E K C K)| \geqslant 2^{\text {\#ram primes }} \text { of } K
$$ genus group $\approx(\mathbb{Z} / 2 \mathbb{Z})^{t}$ some t

Moral: we know $C_{k}[2]$ for K quedratic

Cohen-Lenstra Heuristics
pad prime
Conj For "reasonable" f

$$
\begin{aligned}
& \sum_{\left.\lim _{x \rightarrow \infty} \sum_{\substack{k \text { rect quad } \\
D_{k} \leq x}} f\left(C_{k}\left[p^{\infty}\right]\right)=\sum_{\substack{A \operatorname{sinab} \\
p-g r a p}} \frac{1}{|A||A u+(A)|} f(A)\right]} \frac{1}{}
\end{aligned}
$$

$$
\sum_{\substack{k r a l \\ D_{k} \leq x}} 1
$$

$$
\sum_{\substack{A \text { fin } a b . \\ p-g r a p}} \frac{1}{|A||A+A|}
$$

Moral (Conj)
A appears $\frac{\text { amongimagad }}{\frac{C}{|A+A|}}$ among real quad.
of the time
Tables of class groups of quadratic fields both

- helped motivate these conjectures
- provided evidence for the conjectures

A Matrix Model
$\left.\begin{array}{c}\text { Venkatesth- } \\ \text { Enlenberg }\end{array}\right)\left[K: C_{h}\right]=2 \quad S$ a set of primes of K sufficient to generate C_{K}

$$
\text { S-units } \quad \theta_{S}^{*}=\left\{\alpha \in K \mid \operatorname{val}_{p}(\alpha)=0 \quad \forall p \notin S\right\}
$$

S-ideals I_{S} fractional ideals generated by $p \in S$ μ_{k} roots of unity ink

$$
\begin{gathered}
M: \theta_{s}^{*} \rightarrow I_{s} \\
\alpha \longmapsto(\alpha) \\
\operatorname{cok} M=\frac{I_{s}}{M\left(\theta_{s}^{*} / \mu_{k}\right)}=C_{k} \\
C_{k}[p \infty]=\operatorname{cok} M_{p}: \theta_{s}^{*} / \mu_{k} \otimes \mathbb{Z}_{P} \longrightarrow I_{s} \otimes \mathbb{Z}_{P}
\end{gathered}
$$

Pick a \mathbb{Z}-module basis of

$$
\begin{aligned}
& \theta_{s}^{*} / \mu_{k} \simeq\left\{\begin{array}{lll}
\mathbb{Z}^{|s|} & \text { (image) } & I_{s} \simeq 巴^{|s|} \\
\mathbb{Z}^{|s|+\mid} & \text { (real) }
\end{array}\right. \\
& M_{p} \in \operatorname{Mat}_{n \times n+u}\left(\mathbb{Z}_{p}\right)
\end{aligned} \quad u=0,1 .
$$

How might these be distributed?

$\operatorname{Mod} P ?$	uniform
$\operatorname{Mod} P^{2}$?	uniform
\vdots	\vdots
Over \mathbb{Z}_{P}	Haar

A random matrix question
Take $N_{p} \in$ Matnentu $\left(\mathbb{Z}_{p}\right)$ from Haar measure. What is distribution of col N_{p} ?

Sketch
$|B|^{n}$ maps $\mathbb{Z}_{p}^{n} \rightarrow B$
Given one, what is prob f gives?

- Prob $|B|^{-n-u} \quad N_{p} \mathbb{B}^{n+u}$ ocker f
- Compute prob generates ken (can be checked mod P by Nakyama's Lemma)

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\mathbb{Z}_{p}^{n} /_{N_{p} \mathbb{Z}_{p}^{n+u}} \simeq B\right)=\frac{C_{p, u}}{|B|^{u}|A u t B|}
$$

$u=0$ cohen-Lenstra dist conj for mag quad $u=1$

Maybe: * these $\theta_{s}^{*} \mu_{\mu_{k}}^{*} \otimes \mathbb{P}_{p} \rightarrow I_{s} \otimes \mathbb{Z}_{p}$ are
\approx distributed from Haar measure on Matn*n+u (Th)?
Would \Rightarrow Cohen-Lenstra distrilection for quadratic fields.
Caveat: to even make sense of this, need basis for

$$
\theta_{s}^{*} / \mu_{k} .
$$

Preliminary computations suggest * fails

Universality
Actually, many more distributions of random $M_{p} \in$ Mat $_{n \times n+u}\left(\beth_{p}\right)\left[\begin{array}{l}\text { not } j u s t \\ \text { from Her } \\ \text { measure! }\end{array}\right]$ have $\operatorname{cok} M_{p} \approx$ cohen-Lenstra distribution

Take any distribution on \mathbb{Z}_{p} not all same $\bmod p$.
(W.) $N_{p} \in \operatorname{Mat}_{n+n+u}\left(\mathbb{Z}_{p}\right)$ entries i.i.d. from it

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\operatorname{cok}\left(N_{p}\right) \simeq B\right)=\frac{c}{|B|^{n}|A+B|}
$$

Ques What is the distribution (empircally) of these Mp (defining class groups) and does this universality hold for that distribution?

Moments of Class Group Distributions
We are interested in averages

$$
\lim _{x \rightarrow \infty} \frac{\sum_{\substack{k_{\text {mag }} \\ D_{k} \pm x}} f\left(C_{k}\left[p^{\text {mad }}\right)\right.}{\sum_{\substack{\text { Kimag quod }}} 1} \quad(p \text { odd prime })
$$

So far, mostly thought about $f=\mathbb{1}_{B}$ characteristic function of a finite abelian p-group.
Rok Averages of $\mathbb{1}_{B}$'s don't determine other averages because of the limit.
Another important class of $f \quad f_{B}(x)=\# \operatorname{Sur}(x, B)$
Average of $\# \operatorname{Sur}(-, B)$ is the B-moment of a distribution of groups
[Analogy: Average of x^{k} is $k^{t h}$-moment of a distribution of real numbers]
[wang The Let X, Y be random finite abelian groups If for every finite abelian group B, we have

$$
\int_{X} \# \operatorname{Sur}(X, B) d \mu=\mathbb{E}(\# \operatorname{sur}(X, B))=\mathbb{E}(\# \operatorname{Sur}(Y, B))=O\left(\left|\wedge^{2} B\right|\right)
$$

then for every finite abelian group A,

$$
\operatorname{Prob}(X \simeq A)=\operatorname{Prob}(Y \simeq A)
$$

We are interested in limits of random variables/ distributions.

Thu Let p be a prime.
(w.) Let Y, X_{1}, X_{2}, \ldots be random abelian p-groups.

If for every abelian P-group B, we have

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\# \operatorname{sur}\left(x_{n}, B\right)\right)=\mathbb{E}(\# \operatorname{sur}(Y, B))=O\left(\left|\wedge^{2} B\right|\right)
$$

then for every finite abelian group A,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(X_{n} \simeq A\right)=\operatorname{Prob}(Y \simeq A)
$$

Moral Averages of \#Sur $(-, B)$ over class groups for all B

II
Averages of $\mathbb{1}_{A}$ over class groups for all A

Relationship of moments to field counting

Class field theory \Rightarrow

- L/ ca Galois

Conversely, $L / C a$ Gabs, $G a l\left(L / C_{n}\right)=B^{x}-1 / 2 \mathbb{Z}$ gives K / Q quadratic, $L / K B$-extension
L / K unram \Longleftrightarrow inertia in $\operatorname{Gal}(L /(a) \cap B=1 *$

The only average $\varepsilon\left(f\left(C_{k}[p]\right)\right)$ we know uses this.
Davenport
-Heilbronn) The $\left.\left.\mathcal{E} \underset{\operatorname{kimag} \text { quad }}{\operatorname{Sur}\left(C_{k}, ~ Z / Z D\right.}\right)\right)=1$.
$D_{3 B} A_{-1} T_{2 \mathbb{D}}=S_{3} \quad S_{3}$ Galois extensions $\longleftrightarrow \begin{gathered}\text { non -Galois } \\ \text { culeics }\end{gathered}$ timposing conditions on inertia
The as predicted by the (later) Cohen-Lenstra heuristics.

$$
\text { Indeed: } \sum_{\substack{\text { Aabelian } \\ p-\text { group }}} \frac{\# \operatorname{sur}(A, B)}{|A u t(A)|}=1
$$

for all B abelian p-graps

Recall our matrix model $N \in \operatorname{Mat}_{n \times n}\left(\mathbb{Z}_{p}\right)$ from Hoar measure?

$$
\begin{aligned}
& \mathbb{E}(\# \operatorname{Sur}(\operatorname{cok} N, B)) \\
= & \mathbb{E}\left(\# \operatorname{Sur}\left(\mathbb{Z}_{p}^{n} /{/ \mathbb{\mathbb { Z }}_{p}^{n}}_{n}^{n}, B\right)\right) \\
= & \sum_{\phi \in \operatorname{Sur}\left(t_{p}^{n}, B\right)} \mathbb{P r o b}\left(N \mathbb{Z}_{p}^{n} c \operatorname{ker} \phi\right) \\
= & \sum_{\phi \in \operatorname{Sur}\left(\mathbb{Z}_{p}^{n}, B\right)}|B|^{-n} \\
= & \frac{\# \operatorname{Sur}\left(\mathbb{Z}_{p}^{n}, B\right)}{|B|^{n}} \xrightarrow[n \rightarrow \infty]{ } 1
\end{aligned}
$$

each column of N independent from Hoar measure on \mathbb{T}_{P}^{n}

This doesn't automatically give

$$
\mathbb{E}(\# \operatorname{Sur}(\underbrace{\left.\left.\lim _{n \rightarrow \infty} \operatorname{cok} N, B\right)\right)=1}_{\text {Cohen-Lenstra distribution }}
$$

but $w /$ a converge theorem we can show in.

Summary

$$
\begin{array}{ll}
\forall B, \\
\mathcal{E}\left(\# \operatorname{Sur}\left(C_{k}\left[p^{m}, B\right)\right)\right. \\
=1
\end{array} \quad \begin{aligned}
& \forall A \\
& \text { proportion of } \\
& k \text { with } \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned} Q_{k}\left[p^{0}\right] \simeq A
$$

[But not vice versa!]
Next lecture. generalization to class groups of higher degree extus
class groups elements orbits of of quad \longrightarrow binary fields (Dedekind) quad forms
\approx Very large tables of class groups of quadratic fields
Ss
Cohen-Lenstra conjectures for quadratic fields look good

In higher degree, smaller tables + no conjectured speed of convergence
\Rightarrow challenges to using empirical evidence for conjectures.

Suggestion Would be good to have heuristics for $\left\{\begin{array}{l}\text { speed of convergence } \\ \text { error terms } \\ \text { secondary terms fol qua field. }\end{array}\right.$
for Cohen-Lenstra conjectures'. [Where we are pretty $\left.\begin{array}{l}\text { confident in answer }\end{array}\right]$ How does it depend on which moment/group? in a way that could give insight for higher degree.

Known secondary term

Figure 2. Plots of difference (3-1) with fitted curve from (3-2) for $p=5,7,11$, and 29 .

Follow-up from yesterday
Hought's paper "Equidistribution of
Bounded Torsion CM pts"
gives theoretical heuristic suggesting

$$
\varepsilon\left(\# \operatorname{Sur}\left(l_{k}, \mathbb{Z} / k \mathbb{Z}\right)\right)=1-c X^{-\frac{1}{2}+\frac{1}{R_{k}}+\theta\left(X^{-\frac{1}{2} \frac{1}{k}}\right)}
$$

K image quad
k odd

$$
\begin{array}{ll}
k=3 & -\frac{1}{2}+\frac{1}{3}=-\frac{1}{6} \\
k=5 & -\frac{1}{2}+\frac{1}{5}=\frac{-3}{10}
\end{array}
$$

Says for $R=5,7$ looks good $w /$ data $k \geqslant 9$ looks not so good

Class Group Distributions for higher degree extensions
G finite group
K/Q Galois 6 -ext
$C l_{k}$ is a $\mathbb{Z}[G]$-module
We should ask for its distribution as such.
[Thought experiment: What if the Coheu-Lenstra conjectures had been abut only $\left|C Q_{k}\right|$?
Try to write $\sum_{|A|=n} \frac{1}{|A||A+A|}$ without mentioning groups.]
$C l_{k}$ as a $\mathbb{Z}[G]$-module

$$
N=\sum_{g \in G} g \in \mathbb{Z}[G]
$$

$$
N C_{k}\left[p^{\infty}\right]=0
$$

P prime $p^{X(G)}$

Let P prime, $p X|G|$
$R=\mathbb{Z}_{P}[G] / N \quad Q_{k}\left[p^{\infty}\right]$ is an R-module

$$
S_{G, G_{\infty}}=\left\{\begin{array}{r}
G a b i s G \text {-extns } k / Q \\
\omega / \text { decompgrap } @ \infty
\end{array}\right\}
$$

keeping track of conjugacy class in G of complex conjugation

Cohen and Martinet have conjectures which imply (see wang $\begin{gathered}\text { w." } \\ -{ }^{2}\end{gathered}$ "reasonable"
$P \times(6)$ and $f a^{\prime}$ function of R-modules
" $Q_{k}\left[p^{\infty}\right]$ is distributed as a R-module with relative probabilities

$$
\frac{1}{\left|A^{G^{\infty}} \| A \operatorname{trt}_{R}(A)\right|}
$$

This distribution has moments

$$
\mathbb{E}(\# S \operatorname{cer} R(-, B))=\frac{1}{\left|B^{G \infty}\right|}
$$

(Wang.) Thu These moments determine a unique distribution. (of R-modules)

WARNING: These conjectures need some modifications.
(1) Malle: through empirical computations of class groups...

- conjs wrong at $p=2$ bor replacing Q_{n} by ko, when $p l\left|\mu_{k_{0}}\right|$
"roots of unity issues")
(2) Bartel-Lenstra: for some G, ordered by discriminant, a positive proportion of G-fields contain a fixed subfield.
- So replace D_{k} by an invariant that doesn't have this property (perhaps Tram primes)

Rok For pX $\mu_{k_{0}} \mid$ t ordered by Tram primes, Liv-W.-Zureick Brown prove that conjectures hold over $k_{0}=\mathbb{F}_{q}(t)$ with an (early) $q \rightarrow \infty$ limit.

Class group distributions of non-Galois externs
G finite group, It subgroup
L / Q Galois G-extension $K=L^{H}$
For p prime $p \times|G|$

$$
Q_{k}\left[\rho^{\infty}\right]=Q_{L}\left[\rho^{\infty}\right]^{H}
$$

So in principle, cohen-Martinet conjectures for distribution of

$$
C l_{L}\left[p^{\infty}\right] \text { as } \Longrightarrow C I_{k}\left[p^{\infty}\right]
$$

a G-module as a p-grap

$$
\{G-\text { modules }\} \xrightarrow{A \longmapsto A^{H}}\left\{\begin{array}{l}
\text { abelian } \\
\text { groups }
\end{array}\right\}
$$

In Wang-W. we work out what this pushforward is.

Easiest case

$$
\begin{aligned}
G \rightarrow G / H \\
\text { (closets) }
\end{aligned} \leadsto G \subset \mathbb{C}^{G / H}=\operatorname{lnd}_{H}^{G} \mathbb{C}
$$

Case when $V_{G, H}$ is (absolutely) irreducible:
Cohen-Martinet conj \Rightarrow (p prime $p \times 161$)

$$
\sum_{\substack{L \in S_{G, G \infty} \\ D_{L} \leq x}} \sum_{\substack{\text { A abelian } \\ \text { P-grop }}} \frac{1}{|A|^{u}|A|}
$$

where $u=$ \# cycles of G_{∞} on $G / H=$ unit rank of $L^{H} \leqslant K$
$K=L^{H}$
$C C_{k}\left[p^{\infty}\right]$ is distributed as an abelian group with relative probabilities

$$
\frac{1}{|A|^{k}|\operatorname{Act} A|}
$$

This is distribution determined by

$$
B \text {-moment }=|B|^{-u}
$$

Same caveats (ROU, countinginut) apply
Takeaway When $V_{G, H}=\mathbb{T}^{G / H}$ is irreducible, $C L_{L^{H}}\left[p^{\infty}\right]$ has no additional structure.

Next when $V_{G, H}$ is reducible,

$$
C_{L^{H}}\left[p^{\infty}\right] \text { has extra structure }
$$

Ex $G=D_{4}=\langle(1234),(24)\rangle \quad H=\langle(24)\rangle^{\langle\text {index } 4}$

1. .2 $\quad K \quad K=L^{H}$ is a quartic D4-extn \mid Autck)| $=2$
$\operatorname{Aut}(k) \subset C l_{k}$
Ex $G=A_{5} \quad H=\langle(123),(12)(45)\rangle$ (index 10)
L G-extn $K=L^{H} \quad|A u t(K)|=1$
but $V_{G_{0} H}$ not irreducible

Let $e=\frac{1}{|H|} \sum_{h \in H} h \in R=\mathbb{Z}_{P}[G] / N$.
$\hat{\imath}^{\prime}$
idempotent (no tnecessarily central)

$$
T=\underbrace{e R e} c R
$$

(order in Heck algebra

$$
\left.a_{p}[H G / H]\right)
$$

Ce $\left[p^{\infty}\right] R-\bmod$
If B is an R-module,
T naturally acts on $B^{H} \quad C_{k}^{\prime \prime}\left[p^{\infty}\right]$
B^{H} is a T-module (using pX|G| makes this much simpler)

Thm $T \simeq \mathbb{Z}_{p}$ iff $V_{G, H}$ is irreducible.
So we ask about dist of $C_{L^{H}}[p \infty]$
as a T-module.
Cohen-Martinet \Rightarrow (p prime $p \times|G|$)
$C_{k}\left[p^{\infty}\right]$ is distributed as a T-module with relative probabilities

$$
\frac{1}{\left|\left(\operatorname{Re}^{\otimes}, B\right)^{G \infty}\right|\left|A t_{T} B\right|}
$$

It would be great to have computational evidence for (or against!) these predictions

Many specific suggestions in notes, especially

- around the "caveats" * corrections
- in cases where no prediction is made Cpl|G|) sometimes Cohen -Martinet makes a prediction \& sometimes not

Further
when pl|G| more to say
Alex Smith determined distribution of cyclic gide of $Q_{k}\left[e^{\infty}\right]$ for C_{l}^{l}-exths
(see his webpage for seminar annancement) asmith-math.org

