Number fields [K:G]<
How many number fields are there Detertorektiex?
K/A K Galois closure Gal(K/A) acts on
$$\{K \rightarrow \tilde{K}\}$$

permitation group
Ques What are the asymptotics of
N_G(X):= $\{ K/G_{A} \ | \ Gal(\tilde{K}/A) = G_{A}, D_{K} \leq X \}$?
First case: $G = C_{2}$, counting quadratic fields
How do we know quadratic fields?
Each generated by $x = W/a^{2} + aat = 0$ alf Z
 $a^{2} - d = 0$ $d \in Z$
square-free
. These are all different.
. We can compute $D_{K} = d_{A} + d$
 $\Re need to court square-free integers.$
 $N(X) = \{D_{L}, free \in [L_{A} \times I]\}$
 $N(X) = N_{L}(X) - \sum N_{L}(X) + \sum N_{L} p_{Q}(X) - \cdots$
 $P prime P(I)$
 $= \sum_{n} \mu(n) N_{n}(X)$
 $N_{n}(X) \neq 0 \Rightarrow n \leq \sqrt{X}$
 $= \sum_{n} \mu(n) (\frac{X}{n^{2}} + o(1))$
 $n \leq X$
 $= \sum_{n} \mu(n) (\frac{X}{n^{2}} + o(1))$
 $n \leq X$
 $= \sum_{n} \mu(n) (\frac{X}{n^{2}} - \sum_{n > 1X} \mu(n) \frac{X}{n^{2}} + o(\sqrt{X}))$
 $= \sum_{n} Q(n) (X + o(X))$

Also (see notes)
$$N_{c_2}(x) = \frac{x}{30} + o(x)$$

Next: higher degree? [K:Ch]=3 generated by α : $f(\alpha)=\alpha^3 + p\alpha + q=0$ Prgez • When do 2 (prg) give same field? • What is discriminent of Or(α)? Dk (disc(f)) We can onswer in induidual cases, but not systematically evough to count. easily Moral: isom. classes of fields \neq polynomials

Three Approaches to Count NG(X) (D) Class Field Theory Gabelian Hom (Gal (0, 102), Cz) = Hom (Co, Cz) ((ohn) G=C3 idele class group $\mathbb{T}^{\mathbb{Z}_{p}^{*}} \times \mathbb{R}_{>o}^{*} \cong C_{\mathbf{G}}$ $Hom(Gal(Gal(Gal(Gal), C_3)) = TT' Hom(Zp^*, C_s)$ P = 2 non-trivial $P = 3 Zp^* \rightarrow (Zp)^* = Zp = 2 \text{ maps when}$ $P = 1 \pmod{3}$ $P = 1 \pmod{3}$ What is discriminant? (unramified @ 3) $D_{k} = \left(\prod_{p \in J.} \right)^{2}$ $Z_{p}^{*} \rightarrow C_{3} \text{ hon-trivial}$ Analytic number theory: D(s)= Zanns

asymptotics of
$$\sum_{n \leq X} c_{n}$$
 come from right-most
poles of D(s)
 $D(s) = \sum_{n} n^{-s} \sum_{k=1}^{s} H_{ons} = \prod_{p \geq 1} (1 + 2p^{-2s})$
 $p \geq 1 \pmod{3}$
 $f(z_s) = \prod_{n} (1 - p^{-2s})^{-2} \prod_{p \geq 1} (1 - p^{-4s})$ $(p \circ right p)^{-3}$
 $p \geq 1 \pmod{3}$
 $p \geq 2 \pmod{3}$
 $\frac{D(s)}{p \geq 2} = \prod_{p \geq 1} (1 - 3p^{-4s} + 2p^{-5s}) \prod_{p \geq 2} (1 - p^{-4s})$ analytic for
 $p \geq 2 \pmod{3}$
 $\frac{D(s)}{p \geq 2} = \prod_{p \geq 1} (1 - 3p^{-4s} + 2p^{-5s}) \prod_{p \geq 2} (1 - p^{-4s})$ analytic for
 $g \geq 2 (z_s) \perp (z_s) \geq 2 p \geq 1$
 $\sum_{p \geq 2} (z_s) \perp (z_s) \geq 2 p \geq 2 (z_s) = 2 p \geq 2 (z_s) \geq 2 p \geq 2 (z_s) \geq 2 p \geq 2 p$

2) Parametrizations 8 geometry of numbers (Davenport-) [K: CA]=3 OK Z-module basis 1, w, O WHW+& OHO+2 k, ltZ To determine OK: $w\Theta = -ad + O w + O \Theta$ a,b... $W^2 = -ac + bw + a \Theta$ €Д eqns of association $\theta^2 = -bd + -d\omega + c \Theta$ So (OK W/ Z-basis 7 5 Some 7 (a,b,c,d) 7 OK/Z 5 CZ4 5 A different basis of OK/2 ->>> a GL2(Z) action Can work out explicitly. GL(Z) ~Z4 • which $(a,b,c,d) \in \mathbb{Z}^4$ correspond to Ok Key: "generic" (a,b,c,d) correspond to Ox

(3) Extensions of extensions

$$D_{ij} = quartic extensions$$

$$(Cohen, Dio2, p Dio2, Olivier)$$

$$N_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,ra}(Dac KF) \\ \le \chi \end{cases}$$

$$M_{F,S_{2}}(x) = \begin{cases} [K:F]:2, N_{F,S_{2}}(x) \\ Tail bound : N_{F,S_{2}}(x) \le C D_{F}^{2/3} X$$

$$M_{Y}(x) = \sum_{\substack{[F:G_{1}]:2 \\ D_{F} \le Y \end{bmatrix}} N_{F,S_{2}}(x) \le C D_{F}^{2/3} X$$

$$\begin{split} \underset{X \to \infty}{\text{imin}} & \frac{N(x)}{x} \ge \sum_{F} C_{F} \\ F & D_{F} \end{aligned}$$

$$N(X) \le N_{Y}(x) + \sum_{F} N_{F,S_{2}} \left(\frac{x}{D_{F}^{2}} \right)$$

$$D_{F} > Y$$

$$\le N_{Y}(x) + \sum_{F} CD_{F}^{-4/3} \times \sum_{F} D_{F}^{-4/3} \text{ converges}$$

$$D_{F} > Y$$

$$\lim_{F \to 0} \sup_{D_{F}} \frac{N(x)}{x} \le \sum_{F} \frac{C_{F}}{D_{F}^{2}} + \lim_{Y \to \infty} \sum_{D_{F} > Y} CD_{F}^{-4/3}$$

$$N(x) = \left(\sum_{F} \frac{C_{F}}{D_{F}^{2}} \right) X + o(x) \longrightarrow N_{D_{4}}(x) = C_{D_{4}} X + o(x)$$
See notes for
$$\cdot \text{ Conjectures}$$

$$More results$$

$$Nariations$$

· Suggested projects

Distribution of class groups of number fields As K number field varies, what is distribution of (2k): $(2kEp^{oo}]$? Now $\frac{\# \{k(2k \text{ Gext}n, D_k \in X, C_kEp^{oo}] = A\}}{\# \{k(2k \text{ Gext}n, D_k \in X, C_kEp^{oo}] = A\}}$ Nove generally, $\sum_{\substack{k \in \mathcal{F} \\ T_k \in X}} f(C_k)$ $\stackrel{\text{orrecoge}}{\to} f(C_k)$ $\lim_{\substack{k \in \mathcal{F} \\ T_k \in X}} 2k (k \in T)$ $\lim_{\substack{k \in \mathcal{F} \\ T_k \in X$

What do we know? · Cex finite abelian group

IK SX

·genus theory
Today: genus theory through class field theory
$$Cl_{k} = Gal(K^{unsab}/K)$$

maximal anramified, abelian extension

 $\pi_{p} \mathbb{Z}_{p}^{*} \xrightarrow{\qquad -7 \mathbb{Z}_{2\mathbb{Z}}^{*} \mathbb{Z}_{2\mathbb{Z}}^{*}} \downarrow$ Zp* are inertia groups,

$$\begin{array}{rcl} \underbrace{\operatorname{Conj}}_{X \to \infty} & \operatorname{For} "reosonable" f \\ & \underset{X \to \infty}{\lim} & \underset{D_{k} \leq X}{\sum} & f(\mathcal{Cl}_{k} \mathbb{E} p^{3}) \\ & \underset{X \to \infty}{\sum} & \frac{1}{D_{k} \leq X} \end{array} = & \underbrace{\sum_{\substack{A \text{ finab.} \\ p - g \cap P}} \frac{1}{|A + (A)|} f(A) \\ & \underset{P = g \cap P}{\sum} & \frac{1}{|A + A|} \\ & \underset{P = g \cap P}{\sum} & \frac{1}{|A + A|} \\ & \underset{P = g \cap P}{\sum} & \frac{1}{|A + A|} \\ & \underset{P = g \cap P}{\sum} & \frac{1}{|A + (A)|} f(A) \\ & \underset{X \to \infty}{\sum} & D_{k} \leq X \end{array}$$

2

(KLPJ) K reol quod DK = X lim χ≫∞

Moral ((orj))
Moral ((orj))
A appears
$$\frac{C}{|AJA|}$$

A appears $\frac{C}{|AJA|}$
of the time

A Matrix Model
(Verkolder) [K: Gi]=2 S a set of primes of K sufficient to generate
$$C_{K}$$

S-units $O_{S}^{*} = \{a \in K \mid val_{p}(a)=0 \forall p \notin S\}$
S-ideals Is froctional ideals generated by $p \in S$
 M_{K} roots of unity in K
 $M: O_{S}^{*} \longrightarrow I_{S}$
 $M_{K} \longrightarrow (A)$
 $(o_{K} M = I_{S} M(O_{M_{K}}^{*}) = C_{K}$
 $C_{K} Ep^{\infty}] = co_{K} M_{p}: O_{M_{K}}^{*} \otimes Z_{p} \longrightarrow I_{S} \otimes Z_{p}$

Pick a Z-module basis of

Universality Advally, many more distributions of random ME Mat $n \times n \times u(\mathbb{Z}_p)$ [from theory] have cok Mp \approx cohen - Lenstra distribution Take any distribution on Zp not all same mod p. Np & Matnante (Zp) entries i.i.d. from it (W.) $\lim_{n \to \infty} \operatorname{Prob}(\operatorname{cok}(N_p) \simeq B) = \frac{c}{|B|^{\mu}|AJB|}$ Ques What is the distribution (empircally) of these Mp (defining class groups) and does this universality hold for that distribution?

Moments of Class Group Distributions

We are interested in averages

$$\lim_{\substack{k \text{ imag quod} \\ D_{k} \leq x}} f(\mathcal{O}_{k} \mathbb{E}p^{\overline{q}}) \qquad (p \text{ odd prime})$$

$$\lim_{\substack{k \text{ imag quod} \\ D_{k} \leq x}} =: \mathcal{E}(f(\mathcal{O}_{k} \mathbb{E}p^{\overline{q}}))$$

So far, mostly thought about $f=1_B$ characteristic function of a finite abelian p-group.

Rmk Averages of 1 B's don't determine other averages because of the limit.

Another important class of $f = f_B(x) = \#Sur(x, B)$

Average of #Sw(-,B) is the B-moment of a distribution of groups [Analogy: Average of X^k is kth-moment of a distribution of real numbers]

(Wong
-W.) Thm Let X,Y be random finite abelian groups
If for every finite abelian group B, we have

$$\int_{X} \#Sur(X,B)d_{1}x = \prod (\#Sur(X,B)) = \prod (\#Sur(Y,B)) = O((\Lambda^{2}BI))$$

then for every finite abelian group A,
Prob(X=A) = Prob(Y=A).

We are interested in limits of random variables/ distributions.

Thm Let p be a prime.
(W.) Let Y, X1, X2,... be random abelian p-groups.
If for every abelian p-group B, we have

$$\lim_{n \to \infty} \mathbb{E} (\# Sur(X_n, B)) = \mathbb{E} (\# Sur(Y, B)) = O((\Lambda^2 B))$$

then for every finite abelian group A,
 $\lim_{n \to \infty} \operatorname{Prob}(X_n = A) = \operatorname{Prob}(Y = A).$

Class field theory
$$\Rightarrow$$

•L/CA Galois
•Gal(L/CA) = $B \times_{-1} \frac{7}{2\pi}$

The only average $\mathcal{E}(f(ce_{k}Ep_{j}))$ we know uses this.

(Davenport
-Heilbronn) Thm
$$E(\#Sur(Cl_{K}, Z_{322}))=1.$$

 $K imag avad$
 $Z_{32}A_1Z_2=S_3$ S_3 Galois extensions \longrightarrow non-Galois
 $Culeics$
 $+ imposing conditions on inertia$

Thm as predicted by the (later) Cohen-Lenstra heuristics.

Indeed:
$$\sum_{\substack{\text{HSr}(A,B)\\ |A,J(A)|}} \frac{\#Sr(A,B)}{|A,J(A)|} \qquad \text{for all} \\ B abelian \\ p-group \\ P-group$$

Recall our matrix model NE Matnum (Zp) from Hoar measure?

$$E(\# Sur(cok N, B))$$

$$= E(\# Sur(Zp^{n}, B))$$

$$= \sum_{p \in Sur(Zp^{n}, B)} (NZp^{n} c ker \Phi) \qquad each column of N independent from Hoar measure on Zp^{n}$$

$$= \sum_{p \in Sur(Zp^{n}, B)} (IBI^{n}) \qquad n \Rightarrow \infty$$

$$= \# Sur(Zp^{n}, B) \qquad n \Rightarrow \infty$$
This doesn't automatically give

[But not vice versa!]

Next lecture · generalization to class groups of higher degree extrs

In higher degree, smaller tables + no conjectured speed of convergence) challenges to using empirical evidence for conjectures.

Suggestion Would be good to have heuristics for Speed of convergence error terms secondary terms for about terms for Cohen-Lenstra conjectures. [confident in answer] How does it depend on which moment /group? in a way that could give insight for higher degree.

Figure 2. Plots of difference (3-1) with fitted curve from (3-2) for p = 5, 7, 11, and 29.

Follow-up from yesterday

$$E(\# Sur((Q_{k}, \mathbb{Z}_{/RZ})) = 1 - c X^{-\frac{1}{2} + \frac{1}{R}} + o(X^{-\frac{1}{2} + \frac{1}{R}})$$

$$K \text{ imog quod}$$

$$R \text{ odd}$$

$$R = 3 - \frac{1}{2} + \frac{1}{3} = -\frac{1}{6}$$

$$R = 5 - \frac{1}{2} + \frac{1}{5} = -\frac{3}{10}$$

$$Says \text{ for } R = 5,7 \text{ looks good w/data}$$

$$R \ge 9 \text{ looks not so good}$$

Class Group Distributions for higher degree extensions

G finite grap
K/Q Galois G-extn
Cl_K is a ZEGJ-module.
We should ask for its distribution as such.
[Thought experiment: What if the CoherrLenstra
conjectures had been about only ICe_K1?
Try to write
$$\sum_{|A|=n}^{l} \frac{1}{A!(AJAI)}$$
 without mentioning graps.]

$$\begin{array}{c|c} & & & \\ \hline X \rightarrow \infty & & \\ & & \\ \hline \\ & & \\ &$$

" Cl_kEp[∞]] is distributed as a R-module with relative probabilities | | |AG[∞] ||Autp(A)] This distribution has moments $E(\#Sur_{R}(-,B)) = \frac{1}{1B^{G_{\infty}}}$

(Wang Thm These moments determine a unique distribution. (of R-modules)

WARNING: These conjectures need some modifications.

① Malle: through empirical computations of class groups ...

(2) Bartel-Lenstra: for some G, ordered by discriminant, a positive propertion of G-fields contain a fixed subfield.

·So replace Dk by an invariant that doesn't have this property (perhaps Tramprimes)

Rmk For pX/MK, I tordored by Thramprimes, Liv-W.-Zureick-Brown prove that conjectures hold over Ko=Ffg(t) with an (early) grow limit.

Class group distributions of non-Gabis extrs

G finite grap, H subgrap
L/G Galois G-extension
$$K=L^{H}$$

For p prime pX161
 $CQ_{K}Ep^{\infty}] \simeq CQ_{L}Ep^{\infty}]^{H}$
So in principle, Cohen-Martinet eonjectures
for distribution of
 $CQ_{L}Ep^{\infty}]$ as $CI_{K}Ep^{\infty}]$
 $\alpha \in -module$ as a p-grap
 $g \in -modules$ $A \stackrel{AH}{\longrightarrow} A^{H}$ sakelian
 $groups$ g
In Wang-W. we work out what this
pushforward is.

Case when VG, His (absolutely) irreducible:

Aut(K) OCLK

EX G=A5 H=<(123),(12)(45)> (index 10) L G-extr K=LH [AJ+(K)]=1 but VG,H not irreducible

Let
$$e = \prod_{HI} \sum_{b \in H} GR = Z_p [G]_{M}$$
.
(idempotent (not necessarily central))
 $T = eRe \subseteq R$ (order in Hecke doebra
GEHNG/H])
 $Ce_{L} [p^{\infty}] R - mod$
If B is on R-module, ²) Ch[p^{\infty}]^H
T naturally acts on B^H Ch_{E}p^{\infty}]
B^H is a T-module
(using pXIGI makes this much simpler)
Thm $T \approx Z_p$ iff V_{G,H} is irreducible.
So we ask about dist of $Ch_{LH} [p^{\infty}]$

as a T-module.
Cohen-Martinet
$$\Rightarrow$$
 (p prime pXIGI)

$$\sum_{\substack{L \in S_{G,G^{\infty}} \\ X \to \infty}} \frac{f(\mathcal{U}_{L^{H}} \mathbb{E}p^{\infty}])}{\sum_{\substack{L \in S_{G,G^{\infty}} \\ D_{L} \in X}} \sum_{\substack{D \in X \\ L \in S_{G,G^{\infty}} \\ D_{L} \in X}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ D_{L} \in X}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ D_{L} \in X}} \sum_{\substack{D \in Y \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ T-module}} \sum_{\substack{D \in Y \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ T-module}} \sum_{\substack{D \in Y \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty} \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty} \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty}} \\ T-module}} \sum_{\substack{L \in S_{G,G^{\infty} \\ T-module}}$$

It would be great to have computational evidence for Gragainst!) these predictions

Many specific suggestions in notes, especially • around the "caveats" + corrections • in cases where no prediction is made (p [16]) sometimes Cohen Martinet makes a prediction & sometimes not Further

when plied more to say Alex Smith determined distribution of cyclic grad QKEL® J for Cerextus (see his webpage for seminar annancement) asmith-math.org