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Abstract—The object of study of this paper is the follow-
ing multi-determinantal algebraic variety, SINGn,m, which
captures the symbolic determinant identity testing (SDIT)
problem (a canonical version of the polynomial identity testing
(PIT) problem), and plays a central role in algebra, algebraic
geometry and computational complexity theory. SINGn,m is
the set of all m-tuples of n× n complex matrices which span
only singular matrices. In other words, the determinant of any
linear combination of the matrices in such a tuple vanishes.

The algorithmic complexity of testing membership in
SINGn,m is a central question in computational complexity.
Having almost a trivial probabilistic algorithm, finding an effi-
cient deterministic algorithm is a holy grail of derandomization,
and to top it, will imply super-polynomial circuit lower bounds!

A sequence of recent works suggests efficient deterministic
“geodesic descent” algorithms for memberships in a general
class of algebraic varieties, namely the null cones of (reductive)
linear group actions. Can such algorithms be used for the
problem above? Our main result is negative: SINGn,m is not
the null cone of any such group action! This stands in stark
contrast to a non-commutative analog of this variety (for which
such algorithms work), and points to an inherent structural
difficulty of SINGn,m. In other words, we provide a barrier
for the attempts of derandomizing SDIT via these algorithms.

To prove this result we identify precisely the group of
symmetries of SINGn,m. We find this characterization, and
the tools we introduce to prove it, of independent interest. Our
characterization significantly generalizes a result of Frobenius
for the special case m = 1 (namely, computing the symmetries
of the determinant). Our proof suggests a general method for
determining the symmetries of general algebraic varieties, an
algorithmic problem that was hardly studied and we believe is
central to algebraic complexity.

Keywords-polynomial identity testing; null cone membership;
symmetries of algebraic varieties;

We begin with a general discussion of the main problems

and their motivations. Next we turn to describe our main

object of study - singular spaces of matrices. We then state

our main results. Finally, we end by discussing some open

problems and future directions. While a few technical terms

here may be unfamiliar to some readers, we will have a

simple running example to demonstrate all essential notions.

Throughout, the underlying field is the complex numbers C.

I. MOTIVATION AND MAIN PROBLEMS

Consider a (reductive1) group G acting (algebraically) on

a vector space V by linear transformations. Understanding

this very general setting is the purview of invariant theory.

As a simple, and very relevant running example, consider

the following.

Example 1.1 (Running example): Consider G = SLn

acting on n × n matrices (namely V = C
n2

) by left

multiplication, i.e, the action of P ∈ SLn sends the matrix

X to PX .

A group action partitions V into orbits: the orbit of v is

the set of all points in V it can be moved to by an element

g ∈ G. An even more natural object in our setting is the

orbit closure: all limit points of an orbit2.

The null cone of a group action is the set of points

v ∈ V whose orbit closure contains the origin, namely the

point 0. Null cones of group actions are central to invariant

theory, and are interesting algebraic objects to study in

mathematics and physics. More recently, connections to

fundamental problems in computational complexity have

surfaced. Diverse problems (see [GGOW16], [BGO+18])

such as bipartite matching, equivalence of non-commutative

rational expressions, tensor scaling and quantum distillation,

can each be formulated (for specific choices of G, V and an

action) as a null cone membership problem – given a point

v ∈ V , decide if it is in the null cone. Note that in our

running example, i.e., Example 1.1, the null cone is precisely

the set of singular matrices.

A closely related problem is the orbit closure intersection
problem – given v, w ∈ V , decide if the orbit closures of

v and w intersect. The orbit closure intersection problem is

a generalization of the null cone membership problem, and

this too has many connections with arithmetic complexity.

For example, the graph isomorphism problem can be phrased

as an orbit closure intersection problem! We refer to [Mul17]

for more details on the aforementioned problems and their

1A technical term that includes all classical groups.
2where limits can be equivalently taken in the Euclidean or Zariski

topology
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relevance in the Geometric Complexity Theory (GCT) pro-

gram, which is an algebro-geometric approach to the VP

vs VNP problem (Valiant’s algebraic analog of P vs NP), a

starting point of which is that the determinant and permanent

polynomials are determined by their symmetries. Note that

in Example 1.1, the orbit closure of two matrices X and Y
intersect precisely when det(X) = det(Y ).

In an exciting series of recent works, efficient algorithms

for the null cone membership and orbit closure intersection

problems in various cases have been discovered, and more-

over techniques have developed that may allow significant

generalization of their applicability [GGOW16], [IQS18],

[FS13], [DM17b], [DM18a], [GGOW18], [AZGL+18],

[BGO+18], [BFG+18], [Fra18], [DM17a], [DM18b]. Cu-

riously, Geometric Complexity Theory (morally) predicts

efficient algorithms for null cone membership problems

in great generality (see [Mul17] for precise formulations),

although establishing this remains an elusive goal.

What is remarkable is the possibility that such efficient

algorithms, through the work of [KI04], enable proving non-

trivial lower bounds on computation, the major challenge

of computational complexity. Specifically, what is needed

is a deterministic polynomial time algorithm for a problem

called Symbolic Determinant Identity Testing (SDIT)3 that

is central to this work, and will be defined soon. SDIT

happens to be a membership problem in an algebraic variety,

a context generalizing null cones.

A subset S ⊆ V is called an algebraic variety4 (or

simply a variety) if it is the zero locus of a collection of

polynomial functions on V .5 Many algorithmic problems can

be phrased as “membership in a variety”, and is non-trivial

when the underlying set of polynomials is given implicitly

or are difficult to compute. It is a fundamental result of

invariant theory that every null cone is an algebraic variety,

a connection which goes through invariant polynomials of

group actions. A polynomial function f on V is called

invariant if it is constant along orbits, i.e., f(gv) = f(v)
for all g ∈ G, v ∈ V . Invariant polynomials form a graded

subring of C[V ], the ring of polynomial functions on V .

Mumford proved that the orbit closures of any two points

v, w ∈ V intersect, if and only if f(v) = f(w) for all

invariant polynomials6, see [MFK94]. As a consequence, the

null cone can also be described as the zero locus of all (non-

constant) homogenous invariant polynomials. Indeed, this

analytic-algebraic connection provides the path to structural

and algorithmic understanding of the null cone membership

and orbit closure intersection problems via invariant theory.

Summarizing, if a variety S ⊆ V happens to be a

3A canonical version of the Polynomial Identity Testing (PIT) problem.
4We do not require irreducibility in our definition of varieties.
5All our varieties are explicitly described with coordinates in Euclidean

space. In the literature, they are sometimes called (affine) embedded
varieties.

6Reductivity is essential for this.

null cone for some group action, then the aforementioned

algorithms can be used to decide “membership in S”, with

the exciting possibility that they could very well be efficient.

Of course, not every variety is a null cone, which leads to

the following interesting problem:

Problem 1.2: Given a variety S ⊆ V , is it the null cone

for the (algebraic) action of a (reductive) group G on V ?

We now make an important observation. If S is to be

the null cone for the action of a group G, then the group

must “preserve” S, i.e., for all g ∈ G, we must have gS =
S. We define the group of symmetries to be the (largest)

subgroup of GL(V ) consisting of all linear transformations

that preserve S. With reference to Example 1.1, one might

ask which is the largest group of symmetries in GLn2 which

preserves the set of n × n the singular matrices (which is

defined by the zeros of the single determinant polynomial).

This question was resolved by Frobenius [Fro97] as we will

later see, and is a very special case of our main technical

result.

So, the (hypothetical) acting group G must be a subgroup7

of the group of symmetries of S. Roughly speaking, this

provides an important “upper bound” to the groups that one

must consider while resolving Problem 1.2.

Problem 1.3: Given a variety S ⊆ V , compute its group

of symmetries.

Needless to say, the important role of symmetries in math-

ematics is present in just about every branch, and exploiting

symmetries is an immensely powerful tool. Specifically, the

fact that the determinant and permanent polynomials are

defined by their symmetries form the starting point to the

GCT program of Mulmuley and Sohoni [MS01], [MS08]

mentioned earlier towards the VP �= VNP conjecture. Com-

puting the group of symmetries of an algebraic variety

is an extremely natural problem (even in the absence of

Problem 1.2!), and may be useful for other purposes. We

now elaborate informally on the path we take to solve

Problem 1.3, and another natural problem it raises.

The group of symmetries of an algebraic variety S ⊆ V
is always an algebraic subgroup of GL(V ) (and hence a Lie

subgroup). Suppose that H is an algebraic group that acts

linearly on a vector space V . It is a fact that the null cone

for the action of its identity component8 (denoted H◦) is

the same as the null cone for the action of H . Thus, for

Problem 1.2, one might as well study the connected group
of symmetries, i.e., the identity component of the group of

symmetries. Indeed, if S is the null cone for the action of

a reductive group G, then it is the null cone for the action

of its identity component G◦, which must be a subgroup of

7Any group G acting on V gives a map ρ : G → GL(V ). The null
cone for G is the same as the null cone for ρ(G), so we can always restrict
ourselves to subgroups of GL(V ) when concerned about Problem 1.2.
Moreover, note that if G is reductive, so is ρ(G).

8The identity component is the connected component of H that contains
the identity element. It is always an algebraic subgroup.
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the connected group of symmetries. Thus, we are led to the

problem below.

Problem 1.4: Given a variety S ⊆ V , compute its con-

nected group of symmetries.

Problem 1.4 turns out to be much easier than Problem 1.3.

Indeed, while both are non-linear, Problem 1.4 can be

“linearized”. The reason is that the connected group of

symmetries is a connected algebraic subgroup of GL(V ),
and so in particular is determined by its Lie algebra (which

is a Lie subalgebra of the Lie algebra of GL(V )). The benefit

of the Lie algebra perspective is that computations tend to

be linear algebraic in nature.

To do such a computation, we will however need a

sufficient understanding of the ideal of all polynomials

vanishing on S. For S = SINGn,m, the ideal of polyno-

mials is quite complicated and we do not know how to

determine the ideal (we list this as an open problem, i.e.,

Problem 4.6). Nevertheless, we are able to extract sufficient

information about the ideal to proceed with the computation

using techniques from representation theory, see [MW19]

for details.

Perhaps the most important point to note is that the com-

putation is algorithmically efficient if one is given the ideal

generators explicitly (say in the monomial representation).

It is interesting to further study the algorithmic issues in

computing symmetries when the ideal generators are given

in a more implicit or concise form (as in the case of

SINGn,m that we solve). We state this also as an open

problem, see Problem 4.3.

Algebraic varieties are defined as the zero locus of a

collection of polynomials. Suppose we have a collection of

homogeneous polynomials {fi : i ∈ I}, and let S be its

zero locus. If the ring of invariants for the action of some

group G is precisely C[fi : i ∈ I], then S would be the null

cone (recall that the null cone can be seen as the zero locus

of non-constant homogeneous invariant polynomials). This

brings us to another interesting problem, which can be seen

as a scheme-theoretic version of Problem 1.2.

Problem 1.5: Given a collection of polynomials {fi : i ∈
I} on V , is there a group G acting on V by linear transfor-

mations such that the ring of invariants is C[{fi : i ∈ I}].
Curiously, the above problem is in some sense is an

inverse problem to the classical one in invariant theory:

there, given a group action on V , we seek its invariant

polynomials, whereas here we are given the polynomials,

and seek the group which makes them all invariant.

Remark 1.6: Both Problem 1.3 and Problem 1.5 belong to

a general class of problems called linear preserver problems.

We refer the reader to the survey [LP01] which contains in

particular some general techniques for approaching linear

preserver problems. These techniques do not seem to be

sufficient for us.

All the aforementioned problems are very natural struc-

tural and algorithmic problems at the interface of compu-

tational complexity (especially algebraic complexity) and

algebra (mainly representation theory, invariant theory and

algebraic geometry). To the best of our knowledge, very little

work on them was done so far, and we expect that further

progress will be fruitful for both sides of this collaboration.

II. THE ALGEBRAIC VARIETY SING AND THE

COMPUTATIONAL PROBLEM SDIT

Having introduced the problems of interest, let us intro-

duce the variety which we will be the main focus of this

paper. Let Matn denote n×n matrices with entries in C. Let

t1, . . . , tm be indeterminates, and let C(t1, . . . , tm) denote

the function field in m indeterminates. Define

SINGn,m �
{

X = (X1, . . . , Xm) ∈ Matmn :∑m
i=1 tiXi singular (over C(t1, . . . , tm))

}
.

(1)

Note that SINGn,m ⊆ V = Matmn = C
mn2

, given by the

zero locus of all polynomials {det(c1X1 + c2X2 + · · · +
cmXm) : ci ∈ C}. While this is an uncountable set, one

can easily replace it with a finite set whose zero locus is still

SINGn,m. Another important note is that the case m = 1 is

the null cone for our simple running example (Example 1.1)

of the previous subsection!

The variety SINGn,m is of central importance in compu-

tational complexity. The membership problem for SINGn,m

(i.e., given X ∈ Matmn , decide if X ∈ SINGn,m) is often

called Symbolic Determinant Identity Testing (SDIT). This

problem is also sometimes referred to as the Edmonds’
problem, as Edmonds’ paper [Edm67] first explicitly defined

it and asked if it has a polynomial time algorithm. Note that

any fixed tuple X = (X1, . . . , Xm) ∈ SINGn,m if and only

if the symbolic determinant det(t1X1 + t2X2 + . . . tmXm)
vanishes identically when viewed now as a polynomial in

the new variables t1, . . . , tm. This viewpoint immediately

provides an efficient probabilistic algorithm for the SDIT

[Lov79]: given X , simply pick (appropriately) at random

values for the variables ti and evaluate the resulting numeric
determinant.

The importance of determining the complexity of SDIT

stems from several central results in arithmetic complexity

and beyond. First, Valiant’s completeness theorem for VP

[Val79] implies that SDIT captures the general problem of

Polynomial Identity Testing (PIT) (see the survey [SY09],

for background and status of this problem, and more gen-

erally on arithmetic complexity).9 An equivalent way of

phrasing Valiant’s result is that SDIT is the word problem
for C(t1, . . . , tm), namely testing if a rational expression in

C(t1, . . . , tm) is identically zero. A second, and far more

surprising result of Kabanets and Impagliazzo [KI04] shows

that efficient deterministic algorithms for PIT would imply

9Derandomizing special cases of PIT has been (and continues to be) the
subject of attention for many complexity theorists (although most often
with techniques that don’t seem to generalize to SDIT).
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circuit lower bounds, a holy grail of complexity theory.

SDIT also plays an important role in the GCT program,

see [Mul17]. Finally, the structural study of the variety

SINGn,m, namely of singular spaces of matrices is a rich

subject in linear algebra and geometry (see e.g. [FR07],

[EH88], [RW19], [Mes85], [Mes90], [GM02] and references

therein).
It is illustrative to compare with the non-commutative

version of the above story, and we will do so. Let

t1, . . . , tm be now non-commuting indeterminates, and let

C (<t1, . . . , tm>) denote the free skew field10. Consider

NSINGn,m �
{

X = (X1, . . . , Xm) ∈ Matmn :∑
i tiXi singular (over C (<t1, . . . , tm>) )

}
,

which is clearly a non-commutative analog of SINGn,m.

Moreover, membership in NSINGn,m captures the word

problem over the free skew field C (< t1, . . . , tm >) (often

called non-commutative rational identity testing (RIT)) in

precisely the same manner as membership in SINGn,m cap-

tures the word problem over the function field C(t1, . . . , tm).
The surprising fact is that membership in NSINGn,m

does have polynomial time deterministic algorithms, see

[GGOW16], [IQS18]. The main point to note is that the

algorithms use crucially the fact that NSINGn,m is a null

cone! Indeed, it is the null cone for the so called left-right

action of SLn × SLn on Matmn which is defined by:

(P,Q) · (X1, . . . , Xm) = (PX1Q
t, PX2Q

t, . . . , PXmQt),

where Qt denotes the transpose of the matrix Q. In view

of this, it is only natural to ask whether a similar approach

can be used to give an efficient algorithm for membership

in SINGn,m. This provides the principal motivation for

studying Problem 1.2.

III. MAIN RESULTS

In this paper, we will answer Problem 1.2 and Problem 1.3

(and hence also Problem 1.4) for S = SINGn,m. Moreover,

recall that SINGn,m is the zero locus of a natural collection

of polynomials, namely {det(∑i ciXi) : ci ∈ C}. We also

give a negative answer to Problem 1.5 for this collection

of polynomials. We will now proceed to give precise state-

ments.
We first state our main result, which is a negative answer

to Problem 1.2 for SINGn,m.
Theorem 3.1: Let n,m ≥ 3. Let G be any reductive

group acting algebraically on Matmn by linear transforma-

tions. Then the null cone for the action of G is not equal to

SINGn,m.

10The free skew field is intuitively the natural non-commutative analog of
C(t1, . . . , tm), namely may be viewed as the field of fractions completing
non-commutative polynomials. However, we note that its very existence,
let alone its construction is highly non-trivial, and was first established by
Amitsur [Ami66] (see also [Coh95]). For one illustration of the complexity
of this field, it is easy to see that unlike in the commutative case, its elements
cannot be represented as ratios of polynomials (or any finite number of
inversions - an important result of [Reu96]).

First, and foremost, let us observe that the condition

n,m ≥ 3 cannot be removed or even improved. Indeed,

if n ≤ 2 or m ≤ 2, we have SINGn,m = NSINGn,m

and hence it is a null cone! Thus, the above theorem gives

the strongest possible statement of this nature. The above

theorem follows from the following one, which has no

restrictions on n and m.

Theorem 3.2: Let G be any reductive group acting alge-

braically on V = Matmn by linear transformations which

preserve SINGn,m (i.e., g · SINGn,m = SINGn,m for all

g ∈ G). Let N = NG(V ) denote the null cone for this

action. If the null cone N ⊆ SINGn,m, then the null cone

N ⊆ NSINGn,m.

Indeed, Theorem 3.1 follows from the above theorem as

n,m ≥ 3 is precisely the condition needed to ensure that

NSINGn,m is a proper subset of SINGn,m.

A crucial component in the proof of the above theorem is

the computation of the group of symmetries for SINGn,m.

The importance of this computation is well beyond the

context of this paper. For example, it should serve as the

starting point for any approach to SDIT that aims at utilizing

symmetry. Let us formally define the group of symmetries

for a variety.

Definition 3.3 (Group of symmetries): For a variety S ⊆
V , we define its group of symmetries

GS = {g ∈ GL(V ) | gS = S}.
The group of symmetries GS is always an algebraic subgroup

of GL(V ). We call its identity component (denoted G◦S) the

connected group of symmetries.

In order to compute the group of symmetries for

SINGn,m, we first compute the connected group of symme-

tries. Viewing Matmn as C
m ⊗C

n⊗C
n elucidates a natural

linear action of GLm ×GLn ×GLn on Matmn . Concretely,

the action is given by the formula:

(P,Q,R) · (X1, . . . , Xm) =⎛
⎝ m∑

j=1

p1jQXjR
−1,

m∑
j=1

p2jQXjR
−1, . . . ,

m∑
j=1

pnjQXjR
−1

⎞
⎠ ,

where pij denotes the (i, j)th entry of P . A linear action is

simply a representation, so we have a map GLm ×GLn ×
GLn → GL(Matmn ). We will call the image of this map

Gn,m.

Theorem 3.4: Let S = SINGn,m ⊆ V = Matmn . Then

the connected group of symmetries G◦S is the subgroup

Gn,m.

For more details regarding the strategy of proof for the

above theorem, see [MW19] . However, it is worth mention-

ing that it is essentially a linear algebraic computation on the

level of Lie algebras, and is applicable in more generality.

At this juncture, we note a classical result of Frobenius that

addresses the special case of m = 1 (see [Fro97], [Die49]),
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which deals with our simple running example earlier. This

result is essential for our proof of the above theorem for any

value of m. We will also give our own proof of this result

as it allows us to illustrate our proof strategy in the simple

case.

Theorem 3.5 (Frobenius): Let S = SINGn,1 ⊆ V =
Matn. The group of symmetries GS consists of linear

transformations of the form X 	→ PXQ or of the form

X 	→ PXtQ where P,Q ∈ SLn.

First, note that the above result computes the entire group

of symmetries! In the general case, let us first note that

apriori there could be an incredible number of groups whose

identity component is Gn,m. However, it turns out that they

are actually manageable, and with some fairly elementary

results on semisimple Lie algebras, we can determine the

entire group of symmetries for any m.

Theorem 3.6: Let S = SINGn,m ⊆ V = Matmn .

Let τ denote the linear transformation that sends X =
(X1, . . . , Xm) 	→ (Xt

1, . . . , X
t
m). Then the group of sym-

metries GS = Gn,m ∪Gn,m · τ = Gn,m � Z/2.

The key idea here is that the entire group of symmetries

must normalize the connected group of symmetries, i.e.,

Gn,m. So, we compute the normalizer of Gn,m. To do so,

we utilize heavily that the group Gn,m is reductive, and use

ad-hoc arguments that are particularly suited to this special

case. A slightly more abstract approach via automorphisms

of Dynkin diagrams such as the one in [Gur94] would work

in this case (see also [Lan17]). We do not quite know a

general strategy to bridge the gap between the connected

group of symmetries and the entire group of symmetries.

We also note that the same strategy yields the group of

symmetries for NSINGn,m

Theorem 3.7: Let S = NSINGn,m ⊆ Matn. Then the

group of symmetries GS = Gn,m � Z/2 (as defined in the

above theorem).

Once we compute the group of symmetries, the rest of

the argument relies on an understanding of the Hilbert–

Mumford criterion which tells us that the null cone is a union

of G-orbits of coordinate subspaces (linear subspaces that

are defined by the vanishing of a subset of coordinates). In

particular, we will show that the union of all the coordinate

subspaces contained in SINGn,m moved around by the

action of its group of symmetries does not cover all of

SINGn,m, which will give the contradiction, see [MW19]

for details.

Remark 3.8 (Positive characteristic): Our choice in

working with C as a ground field is essentially for

simplicity of the exposition and proofs. All our results

above (specifically Theorems 3.1, 3.2, 3.4, 3.5, 3.6 and

3.7) hold for every algebraically closed fields of every

characteristic. The issues that arise in positive characteristic

and the appropriate modifications needed to deal with them

are discussed in [MW19, Appendix C].

The variety SINGn,m is the zero locus of some very

structured polynomials. Observe that for any ci ∈ C,

the polynomial det(
∑

i ciXi) vanishes on SINGn,m. It is

easy to see that the zero locus of the collection of all

det(
∑

i ciXi) (for all choices of ci) is precisely SINGn,m.11

We prove a negative result for Problem 1.5 for this collection

of polynomials.

Theorem 3.9: Suppose n,m ≥ 3. Then the subring R =
C[{det(∑i ciXi) : ci ∈ C}] ⊆ C[Matmn ] is not the invariant

ring for any linear action of any group G on Matmn .

If we restrict to reductive groups, then the above theorem

is a simple consequence of Theorem 3.1 and the alternate

definition of null cone as the zero locus of non-constant ho-

mogenous invariants. However, we use a different argument

that works for any group, irrespective of reductivity.

In recent years, problems that look very similar to SDIT

have been solved by new invariant theoretic algorithms. Our

main result, i.e., Theorem 3.1 can be interpreted as a barrier
to utilizing such algorithms for SDIT. A variety of barrier

results have the subject of several investigations in com-

plexity, see [BGS75], [RR94], [AW09], [Raz89], [Pot16],

[FSV17], [GKSS17], [BIJL18], [EGdOW18], [GMdOW19].

Our result, however, has a slightly different flavor from the

aforementioned works and provides a structural barrier by

exhibiting a structural feature (or rather a non-feature) that

hinders our ability to approach SDIT through a collection

of new and powerful algorithms.

IV. DISCUSSION AND OPEN QUESTIONS

This paper demonstrates another collaboration of dif-

ferent fields in mathematics. Expanding on ongoing work

cited in the introduction, here too fundamental problems in

computational complexity have given rise to a new flavor

of problems that are purely algebraic in nature, some of

which arise from analyzing analytic (rather than symbolic)

algorithms. We feel that it is important to introduce these

problems to representation theorists, algebraic geometers

and commutative algebraists. The results of this paper open

the door for several further avenues of research, inviting a

further collaboration between theoretical computer scientists

and mathematicians to resolve them.

Let us begin with the stating that SINGn,m is a very

important variety to study due to its connection to circuit

lower bounds ([KI04]) that we mentioned earlier. Insights

from any field of mathematics may be helpful! The major

open problem is of course:

Problem 4.1: Is there a deterministic polynomial time

algorithm for SDIT?

11It seems plausible that these polynomials generate the ideal of polyno-
mials that vanish on SINGn,m, but it is well known in the commutative
algebra community such plausible statements can be quite subtle, difficult
to prove, and may not always be true. For example, it is a famous long
standing open problem to determine the ideal of polynomials that vanish on
the variety of commuting matrices, i.e., {(X,Y ) ∈ Mat2n | XY = Y X},
for n > 3.
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Various subclasses of SDIT (and PIT) have polynomial

time algorithms. For example, we say an m-tuple of n× n
matrices X = (X1, . . . , Xm) satisfies the property (R1)
if the linear subspace in Matmn spanned by X1, . . . , Xm

has a basis consisting of rank 1 matrices. It turns out that

if X satisfies (R1), then X ∈ SINGn,m if and only if

X ∈ NSINGn,m. Thus, SDIT restricted to tuples with the

(R1) property can be solved via a null cone membership al-

gorithm! (this is implicit in [Gur04]). One direction of future

research is to consider the following natural generalization

of the (R1) property.

For fixed k ∈ Z≥1 We say X = (X1, . . . , Xm) satisfies

the property (Rk) if the linear subspace in Matmn spanned

by X1, . . . , Xm has a basis consisting of rank ≤ k matrices.

Problem 4.2: Is there a deterministic polynomial time

algorithm for SDIT for tuples satisfying (Rk)? How about

(R2)?
Next, we turn to the symmetry group of an algebraic

variety.

Problem 4.3: What algorithms can one use to determine

the group of symmetries of a variety? How efficient are these

algorithms?

In this paper, we explicitly determined the group of

symmetries of one family of varieties. It is however very

clear that most steps are algorithmic. Roughly speaking, if

the generators for the ideal of polynomials vanishing on

the variety are given as an input, then determining the Lie

algebra of symmetries reduces to solving a system of linear

equations. So, in terms of the input size of such generating

polynomials given by their coefficients, this Lie algebra part

is efficient. It is not entirely clear to us how to obtain the

group itself efficiently from the Lie algebra. Moreover, if

we are given the generating polynomials that describes the

variety (set-theoretically) in an implicit, concise way (as in

SING) it seems that more work is needed even to define the

computational task. It is possible that when the generators

themselves have some symmetries, or rich relations (as in

SING), one can do more.

Another general problem to be pursued is to get a better

understanding of null cones (and orbit closure equivalence

classes)

Problem 4.4: Can one classify null cones? What features

must a variety satisfy in order to possibly be a null cone?

In this paper, we used mainly the fact that the null cone

must be the translation (by a group element) of a union of

coordinate subspaces (i.e., the Hilbert–Mumford criterion).

It will be interesting to find other properties of null cones

which distinguish them from arbitrary varieties.

A different direction to pursue is the following. The main

result of this paper is that SINGn,m is not a null cone

for any reductive group action. Natural as this condition is

mathematically (and we use it and consequences of it here),

it is not important algorithmically, and one can potentially

implement and analyze null cone membership algorithms

using non-reductive groups.12 So, what if we drop the

reductivity assumption?

Problem 4.5: Can SINGn,m be the null cone for the

action of a non-reductive group?

Now, we mention a few more problems which are a little

bit more technical, and of interest to commutative algebraists

and algebraic geometers.

Problem 4.6: Let I be the ideal of polynomials vanishing

on SINGn,m. Determine the ideal generators of I . Do the

determinantal polynomials det(
∑

i ciXi) generate the ideal?

Problem 4.7: Consider the ring C[{det(∑i ciXi) : ci ∈
C}] ⊆ C[Matmn,n]. Is it Cohen–Macaulay? What is its

regularity, etc?
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