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Ideal Magnetohydrodynamics

The equations in the Torus.

∂tu + div (u ⊗ u − B ⊗ B) +∇Π = 0,
∂tB +∇× B × u = 0,

div u = div B = 0,∫
T3 u(x , t) dx =

∫
T3 b(x , t) dx = 0 for almost every t ∈ [0,T [,

u is the velocity field, B the magnetic field, Π = p + 1
2 |B|

2 the Total
presure.

Ampere law J = ∇× B. Ohm law E = 1
σ J + u × B

The evolution of B is given by Faraday law of induction in
combination with Ohm (and Ampere if there is resistivity).

The first equation is Euler (N-S) with the Lorentz force as external
force. FL = J × B = (∇× B)× B = B · ∇B +∇ 1

2 |B|
2



Three preserved integral cuantities in the smooth regime

Vector Potential of b
∇×Ψ = b and

∫
T3 Ψ(x , t) dx = 0 for every t ∈]0,T [

We define three classically conserved quantities of ideal 3D MHD on the
torus T3; Previous results allow certain Besov regularity in the spirit of
Onsager conjecture.

Total Energy 1
2

∫
T3 (|u(x , t)|2 + |b(x , t)|2) dx ,

Cross Helicity
∫
T3 u(x , t) · b(x , t). dx .

Magnetic Helicity H(t) =
∫
T3 Ψ(x , t) · b(x , t) dx ,

Conserved for u, b ∈ L3 (Kang and Lee, Aluie-Eyink )
Exercise: if we solve the Faraday system.

∂tH(t) = −2

∫
E · Bdx

Corollary: If E = B × u, magnetic helicity is constant. Notice that
E ∈ L

3
2 .
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More Results

Bronzi, Lopes, Lopes. In 3D There exists compactly supported in
time solutions of MHD with non trivial b.

u(x1, x2, x3, t) = (u1(x1, x2, t), u2(x1, x2, t), 0),

b(x1, x2, x3, t) = (0, 0, b3(x1, x2, t)),

Such u, b solve MHD equivalent to solve passive tracer (b) equation
in 2D

F-Lindberg. Magnetic Helicity is preserved in the vanishing
resistivity limit of Leray-Hopff solutions.

Beekie-Buckmaster-Vicol. There exists a β > 0 and a weak solutions
in C [(0,T ),Hβ] which do not preserve magnetic helicity. Extended
by Lie, Zeng and Zhang to vanishing resistivity limits.

Convex integration for Hall MHD (M.Dai), EMHD (M.Dai and Han
Liu)



Theorems F-Lindberg-Székelyhidi Jr

Theorem 1. There exists solutions u,B ∈ L∞[(0,T ), L3,∞ × L3,∞)]
which do not preserve magnetic helicity, nor energy nor cross helicity.

Theorem 2. There exists bounded solutions which do not preserve
energy, nor cross helicity but whose helicity (constant a forteriori) is
an arbitrary constant h.



Faraday system in terms of forms

The compensated compactness of the Faraday system (from Luc Tartar
notes)
The Faraday 2 form: ω ∈ Λ2(R3

x × Rt)

ω =
∑

εijkBidx
j ∧ dxk + Eidx

i ∧ dt

The Faraday system is equivalent to ω being closed. dω = 0.
α = ψidx

i + ϕdt

ω = dα,B = ∇× ψ,E = ∇xϕ− ∂tψ

ω ∧ ω = E · BdV

But ω ∧ ω = d(αdα) which implies is a compensated compactness
(weakly continuous) Quantity!

E · B = 0 in the relaxation of MHD

Relaxed MHD=weak solutions, Subsolutions, coarse-grained solutions.
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Projection from the Faraday system to Relaxed MHD

Theorem 3. Let ω̄ = (B,E ) ∈ L∞(T3 × [0,T ]) be a p.c solution to
d ω̄ = 0 in the sense of distributions, and let p, p′ Hölder-dual exponents
with 3/2 < p <∞.
Then there exist p.c ω = (B,E ) ∈ L1(T3 × [0,T ]) solving dω = 0

B ∈ L∞(0,T ; Lp,∞(T3)), E ∈ L∞(0,T ; Lp
′,∞(T3))

B · E = 0

H(B)(t) = H(B)(t)

The proof is based on the Tartar framework adapted to the Faraday
system, and a convex integration type iteration for unbounded sets
(Staircase laminates).



Projection from Relaxed MHD to MHD

Theorem 4. Let ω̄ = (B̄, Ē ) piecewise constant (p.c) with d ω̄ = 0
ω ∧ ω = B̄ · Ē = 0. Then there exists a constant such that if ξ+, ξ−
regular enough (and positive) , and

|B̄|2 + |Ē | ≤ M0min|ξ+|2, ξ−|2

Then there exists u,B solving MHD and such that

|u + B| = ξ+

|u − B| = ξ−

MH(B̄) = MH(B)

The proof is based on the Tartar framework for the full MHD. Apart from
the fact that the sets live in R15, The KΛ has non empty interior.



Basic Construction

The Faraday wave cone. ΛF = {w = (B̄, Ē ) : B̄ · Ē = 0}. Indeed
Ē = |Ē |ξ, B̄ = |B|η × ξ. Let ω1, ω2 ∈ R3 with ω1 − ω2 ∈ ΛF and
λ1, λ2 ∈ (0, 1) with λ1 + λ2 = 1. For any open bounded domain Q ⊂ R4

with |∂Q| = 0 and any r , ε > 0 there exist p.c ω ∈ L∞(Q;R3) satisfying
dω = 0 with ”boundary conditions” given by ω0 = λ1ω1 + λ2ω2

Q = Q(1) ∪ Q(2) ∪ Q(error) ∪N where N a nullset, Q(1),Q(2) and
Q(error) are open sets where ω is locally constant, and such that
ω = ωi in Qi , i = 1, 2 and |ω − ω0| < r in Q(error).

For i = 1, 2 and any t ∈ R

|Q(error)(t)|+ 1

λi
|Q(i)(t)| ≤ (1 + ε)|Q(t)| (1)

and |Q(error)| ≤ ε|Q|.
If η · B0 = 0 and ω̃ is a p.c with ωχQ = ω0.

H(ω + ω̃) = H(ω)
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Laminates.Definition

The above lemma implies that the measure λδω1 + λ2δω2 is well
approximated with the distribution of a p.c solution to Faraday.
The set of laminates (with respect to Λ), denoted L(Y ), is the smallest
class of atomic probability measures supported on Y with the following
properties:

(i) L(Y ) contains all the Dirac masses with support in Y .

(ii) L(Y ) is closed under splitting along Λ-segments inside Y .

(iii)L(Y ) is weakly closed.

Condition (ii) means that if ν =
∑M

i=1 νiδVi ∈ L(Y ) and
VM ∈ [Z1,Z2] ⊂ Y with Z1 − Z2 ∈ Λ, then

M−1∑
i=1

νiδVi + νM(λδZ1 + (1− λ)δZ2 ) ∈ L(Y ),

where λ ∈ [0, 1] such that VM = λZ1 + (1− λ)Z2.



Staircase Laminates

For any β, ω0 there exist a (Faraday) laminate such that∫
λdν = ω0

ν is supported in |E ||B| = 0

ν({|B|p + |E |p′ ≥ t}) ≤ βp

t



Building block for staircase laminates

Everything as in the building block for laminates but now:

Q = Q(good) ∪ Q(error) ∪N |B||E | = 0 in Q(good).

For all t and all s > 1 we have

I(s, t) ≤ β2(p+1)|Q(t)|min(|B0|p + |E0|p
′
, s), (2)

where I(s, t) is∫
Q(error)(t)

min{|B|p+|E |p
′
, s}dx+s

∣∣∣{x ∈ Q(good)(t) : |B|p + |E |p
′
> s}

∣∣∣
and p′ is the Hölder dual of p.∫ ∫

Q(error) |B|p + |E |p′
dxdt ≤ ε.

Magnetic helicity is conserved.



Theorem

Let ω0, 1 < p <∞ and Q ⊂ R4 an open bounded domain with
|∂Q| = 0. there exist piecewise constant vector fields ω with dω = 0 and
the boundary condition ω0

|B||E | = 0 for a.e. (x , t) ∈ Q;

For all t and any s > 1∣∣∣{x ∈ Q(t) : |B|p + |E |p
′
> s
}∣∣∣ ≤ 2

s
|Q(t)|min(|B0|p + |E |0|p

′
, s),

(3)
so that, in particular, B ∈ L∞t Lp,∞x and E ∈ L∞t Lp

′,∞
x .

There exists a vector potential Ã ∈ Lip0(Q) which guarantees
preservation of magnetic helicity.∫
R3 [(A0 + Ã) · B − A0 · B0] dx = 0 a.e. t ∈ R.



Projecting to MHD

We are given now ω =
∑
ωiχΩi (x,t) such that ωi ∧ ωi = Bi · Ei = 0. The

plan is to apply convex integration at each ωi adding a compactly
supported perturbation ui ,Bi . Now however the linear system is more
complicated and there is a nonlinear constraint.



The linear system.

∇ · u = ∇ · B = 0, (4)

∂tu +∇ · S = 0, (5)

∂tB +∇× E = 0 (6)

S ∈ R3×3
sym

The constitutive relations.
K := {(u,S ,B,E ) : S = u ⊗ u − B ⊗ B + ΠI , Π ∈ R, E = B × u}.
Note that if (u,S ,B,E ) satisfies (??)–(??) and takes values in K
a.e. (x , t), then (u,B,Π) satisfies the MHD equations



The Λ geometry

The Lambda cone (up to corner cases).

ΛMHD = {(u,S ,B,E ) : S(B × u) + (E · u)u = 0 ;E · B = 0}

E · B is still Λ affine (Compensated compactness quantity)

KΛ ⊂M := {(u,S ,B,E ) : B · E = 0}

Problem: When we approximate a laminate by an actual solution to the
linear system, the error falls off the manifold M. KΛ has non empty
interior.
Happily there is hope inspired by Müller Šverák solutions to the two well
problem with det(X ) = 1.
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Simple forms make life simpler

ω ∧ ω = 0 ⇐⇒ ω = v ∧ w .

Lemma

It turns out that ξ = (ξx , ξt) is a Λ direction for (E ,B) if and only if
ω ∧ ξ = 0. Suppose that ω0 and ω 6= 0 are simple bivectors and that
ω ∧ ξ = 0, where ξ ∈ (R3 \ {0})× R. The following conditions are
equivalent:

(i) ω0 + tω is simple for all t ∈ R.

(ii) ω0 ∧ ω = 0.

(iii)We can write ω = v ∧ ξ and either ω0 = v0 ∧ ξ or ω0 = v ∧ w0

In order to find potential, ω0 = v0 ∧ ξ is a bad case, and ω0 = v ∧w0 is a
good case.



Good potentials

set
α = ϕ dψ, ω = dα = dϕ ∧ dψ;

Remark: It is not a Poincare lemma. Thus we need to find specific
potentials for the planar waves This we can not do for all lines ω0 + tω.
Namely if ω0 = v0 ∧ w0 and Φ`(x , t) = x + `−1h′(`x · ξ)a
Φ∗(v0 ∧ w) = Φ∗v0 ∧ Φ∗w0 = dψ ∧ dϕ

dϕ`(x , t)∧dψ`(x , t) = v0∧w0+χ(x , t)h′′(`(x , t)·ξ) (c2v0 − c1w0)︸ ︷︷ ︸
=w

∧ξ+O

(
1

`

)
,



Λ good segments

Unfortunately this does not work for all Λ lines (not directions). If ξ
is the direction of oscillation of ω and ω0 = w ∧ ξ,we can not
construct potentials for the plane wave taking values in the line
ω0 + tω

Thus, segments (ω0, ω) are divided in Λg (segments) and Λb

(segments). Similarly we can speak of Λg laminates and of Λg

lamination hull, where only good segments are involved.

We can talk about good laminates and good Λ hulls and have good
solutions to the linear system but..

A heart breaking discovery

KΛg is rigid; E = B × u
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The simple form formalism at work

Two good news.

For open sets Olc,Λ = OΛg ,lc

If O is M-open then OΛ,lc is M-open

Very difficult to prove if one does not work at the level of the factors of
the simple two forms.



An strategy which do not require the full Λ hull

In order to prescribe the energy density and cross helicity densities we
normlized K . Thus we declare

Kr ,s = {|u + B| = r , |u − B| = s, } Ur ,s = intKΛ,lc
r ,s

An interesting remark is that we do not compute the Λ hull of a
constraint set Kr ,s but we show (lamination of order 12) such that for
any 0 < τ0 < 1, there exists ετ > 0,

Bδ ⊂ Ur ,s = ∪1>τ≥τ0OΛg
τ

with Oτ = BM(Kτ r ,τs , ετ ),Bδ = {|B|2 + |u|2 + |S |+ |E | ≤ δmin r2, s2}
The construction is indeed closer in spirit very to the in-approximation
approach but we argue by a Baire category argument in each subddomain
and glue the solutions. It also helps that the potential dϕ ∧ dψ are good
for magnetic helicity concentration.



Thanks for the hospitality!


