Weak solutions to Ideal MHD

Daniel Faraco
Joint work with Sauli Lindberg and László Székelyhidi Jr

Universidad Autónoma de Madrid and ICMAT
Financed by ERC GFTIPFD, ERC QUAMAP
IAS
Special Year in H-Principle, 2022

European Research Council
Established by the European Commission

Ideal Magnetohydrodynamics

The equations in the Torus.

$$
\begin{gathered}
\partial_{t} u+\operatorname{div}(u \otimes u-B \otimes B)+\nabla \Pi=0, \\
\partial_{t} B+\nabla \times B \times u=0, \\
\operatorname{div} u=\operatorname{div} B=0, \\
\int_{\mathbb{T}^{3}} u(x, t) d x=\int_{\mathbb{T}^{3}} b(x, t) d x=0 \quad \text { for almost every } t \in[0, T[,
\end{gathered}
$$

- u is the velocity field, B the magnetic field, $\Pi=p+\frac{1}{2}|B|^{2}$ the Total presure.
- Ampere law $J=\nabla \times B$. Ohm law $E=\frac{1}{\sigma} J+u \times B$
- The evolution of B is given by Faraday law of induction in combination with Ohm (and Ampere if there is resistivity).
- The first equation is Euler ($\mathrm{N}-\mathrm{S}$) with the Lorentz force as external force. $\mathcal{F}_{L}=J \times B=(\nabla \times B) \times B=B \cdot \nabla B+\nabla \frac{1}{2}|B|^{2}$

Vector Potential of b
$\nabla \times \Psi=b$ and $\int_{\mathbb{T}^{3}} \Psi(x, t) d x=0$ for every $\left.t \in\right] 0, T[$
We define three classically conserved quantities of ideal 3D MHD on the torus \mathbb{T}^{3}; Previous results allow certain Besov regularity in the spirit of Onsager conjecture.

Total Energy $\frac{1}{2} \int_{\mathbb{T}^{3}}\left(|u(x, t)|^{2}+|b(x, t)|^{2}\right) d x$,

Cross Helicity $\int_{\mathbb{T}^{3}} u(x, t) \cdot b(x, t) . d x$.
Magnetic Helicity $\mathcal{H}(t)=\int_{\mathbb{T}^{3}} \Psi(x, t) \cdot b(x, t) d x$,
Conserved for $u, b \in L^{3}$ (Kang and Lee, Aluie-Eyink)

Exercise: if we solve the Faraday system.

Vector Potential of b
$\nabla \times \Psi=b$ and $\int_{\mathbb{T}^{3}} \Psi(x, t) d x=0$ for every $\left.t \in\right] 0, T[$
We define three classically conserved quantities of ideal 3D MHD on the torus \mathbb{T}^{3}; Previous results allow certain Besov regularity in the spirit of Onsager conjecture.

Total Energy $\frac{1}{2} \int_{\mathbb{T}^{3}}\left(|u(x, t)|^{2}+|b(x, t)|^{2}\right) d x$,

Cross Helicity $\int_{\mathbb{T}^{3}} u(x, t) \cdot b(x, t) \cdot d x$.
Magnetic Helicity $\mathcal{H}(t)=\int_{\mathbb{T}^{3}} \Psi(x, t) \cdot b(x, t) d x$,
Conserved for $u, b \in L^{3}$ (Kang and Lee, Aluie-Eyink)
Exercise: if we solve the Faraday system.

$$
\partial_{t} \mathcal{H}(t)=-2 \int E \cdot B d x
$$

Corollary: If $E=B \times u$, magnetic helicity is constant. Notice that $E \in L^{\frac{3}{2}}$.

More Results

- Bronzi, Lopes, Lopes. In 3D There exists compactly supported in time solutions of MHD with non trivial b.

$$
\begin{aligned}
& u\left(x_{1}, x_{2}, x_{3}, t\right)=\left(u_{1}\left(x_{1}, x_{2}, t\right), u_{2}\left(x_{1}, x_{2}, t\right), 0\right), \\
& b\left(x_{1}, x_{2}, x_{3}, t\right)=\left(0,0, b_{3}\left(x_{1}, x_{2}, t\right)\right),
\end{aligned}
$$

Such u, b solve MHD equivalent to solve passive tracer (b) equation in $2 D$

- F-Lindberg. Magnetic Helicity is preserved in the vanishing resistivity limit of Leray-Hopff solutions.
- Beekie-Buckmaster-Vicol. There exists a $\beta>0$ and a weak solutions in $C\left[(0, T), H^{\beta}\right]$ which do not preserve magnetic helicity. Extended by Lie, Zeng and Zhang to vanishing resistivity limits.
- Convex integration for Hall MHD (M.Dai), EMHD (M.Dai and Han Liu)
- Theorem 1. There exists solutions $\left.u, B \in L^{\infty}\left[(0, T), L^{3, \infty} \times L^{3, \infty}\right)\right]$ which do not preserve magnetic helicity, nor energy nor cross helicity.
- Theorem 2. There exists bounded solutions which do not preserve energy, nor cross helicity but whose helicity (constant a forteriori) is an arbitrary constant h.

Faraday system in terms of forms

The compensated compactness of the Faraday system (from Luc Tartar notes)
The Faraday 2 form: $\omega \in \Lambda^{2}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{t}\right)$

$$
\omega=\sum \epsilon_{i j k} B_{i} d x^{j} \wedge d x^{k}+E_{i} d x^{i} \wedge d t
$$

The Faraday system is equivalent to ω being closed. $d \omega=0$. $\alpha=\psi_{i} d x^{i}+\varphi d t$

$$
\omega=d \alpha, B=\nabla \times \psi, E=\nabla_{x} \varphi-\partial_{t} \psi
$$

$$
\omega \wedge \omega=E \cdot B d V
$$

But $\omega \wedge \omega=d(\alpha d \alpha)$ which implies is a compensated compactness (weakly continuous) Quantity!

Faraday system in terms of forms

The compensated compactness of the Faraday system (from Luc Tartar notes)
The Faraday 2 form: $\omega \in \Lambda^{2}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{t}\right)$

$$
\omega=\sum \epsilon_{i j k} B_{i} d x^{j} \wedge d x^{k}+E_{i} d x^{i} \wedge d t
$$

The Faraday system is equivalent to ω being closed. $d \omega=0$. $\alpha=\psi_{i} d x^{i}+\varphi d t$

$$
\omega=d \alpha, B=\nabla \times \psi, E=\nabla_{x} \varphi-\partial_{t} \psi
$$

$$
\omega \wedge \omega=E \cdot B d V
$$

But $\omega \wedge \omega=d(\alpha d \alpha)$ which implies is a compensated compactness (weakly continuous) Quantity!

$$
E \cdot B=0 \text { in the relaxation of MHD }
$$

Relaxed MHD=weak solutions, Subsolutions, coarse-grained solutions.

Projection from the Faraday system to Relaxed MHD

Theorem 3. Let $\bar{\omega}=(\bar{B}, \bar{E}) \in L^{\infty}\left(\mathbb{T}^{3} \times[0, T]\right)$ be a p.c solution to $d \bar{\omega}=0$ in the sense of distributions, and let p, p^{\prime} Hölder-dual exponents with $3 / 2<p<\infty$.
Then there exist p.c $\omega=(B, E) \in L^{1}\left(\mathbb{T}^{3} \times[0, T]\right)$ solving $d \omega=0$

- $B \in L^{\infty}\left(0, T ; L^{p, \infty}\left(\mathbb{T}^{3}\right)\right), \quad E \in L^{\infty}\left(0, T ; L^{p^{\prime}, \infty}\left(\mathbb{T}^{3}\right)\right)$
- $B \cdot E=0$
- $\mathcal{H}(B)(t)=\mathcal{H}(\bar{B})(t)$

The proof is based on the Tartar framework adapted to the Faraday system, and a convex integration type iteration for unbounded sets (Staircase laminates).

Theorem 4. Let $\bar{\omega}=(\bar{B}, \bar{E})$ piecewise constant (p.c) with $d \bar{\omega}=0$ $\omega \wedge \omega=\bar{B} \cdot \bar{E}=0$. Then there exists a constant such that if ξ_{+}, ξ_{-} regular enough (and positive), and

$$
|\bar{B}|^{2}+|\bar{E}| \leq M_{0} \min \left|\xi_{+}\right|^{2},\left.\xi_{-}\right|^{2}
$$

Then there exists u, B solving MHD and such that

- $|u+B|=\xi_{+}$
- $|u-B|=\xi_{-}$
- $M H(\bar{B})=M H(B)$

The proof is based on the Tartar framework for the full MHD. Apart from the fact that the sets live in R^{15}, The K^{\wedge} has non empty interior.

Basic Construction

The Faraday wave cone. $\Lambda^{F}=\{w=(\bar{B}, \bar{E}): \bar{B} \cdot \bar{E}=0\}$. Indeed $\bar{E}=|\bar{E}| \xi, \bar{B}=|B| \eta \times \xi$. $\lambda_{1}, \lambda_{2} \in(0,1)$ with $\lambda_{1}+\lambda_{2}=1$. For any open bounded domain $Q \subset \mathbb{R}^{4}$ with $|\partial Q|=0$ and any $r, \epsilon>0$ there exist p.c $\omega \in L^{\infty}\left(Q ; \mathbb{R}^{3}\right)$ satisfying $d \omega=0$ with "boundary conditions" given by $\omega_{0}=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$
 $Q^{(\text {error })}$ are open sets where ω is locally constant, and such that $\omega=\omega_{i}$ in $Q_{i}, i=1,2$ and $\left|\omega-\omega_{0}\right|<r$ in $Q^{\text {(error) }}$

- For $i=1,2$ and any $t \in \mathbb{R}$

$$
\begin{equation*}
\left|Q^{(\text {error })}(t)\right|+\frac{1}{\lambda_{i}}\left|Q^{(i)}(t)\right| \leq(1+\epsilon)|Q(t)| \tag{1}
\end{equation*}
$$

and $\left|Q^{\text {(error) }}\right| \leq \epsilon|Q|$.
■ If $\eta \cdot B_{0}=0$ and $\tilde{\omega}$ is a p.c with $\omega \chi_{Q}=\omega_{0}$.

$$
\mathcal{H}(\omega+\tilde{\omega})=\mathcal{H}(\omega)
$$

The Faraday wave cone. $\Lambda^{F}=\{w=(\bar{B}, \bar{E}): \bar{B} \cdot \bar{E}=0\}$. Indeed $\bar{E}=|\bar{E}| \xi, \bar{B}=|B| \eta \times \xi$. Let $\omega_{1}, \omega_{2} \in \mathbb{R}^{3}$ with $\omega_{1}-\omega_{2} \in \Lambda^{F}$ and $\lambda_{1}, \lambda_{2} \in(0,1)$ with $\lambda_{1}+\lambda_{2}=1$. For any open bounded domain $Q \subset \mathbb{R}^{4}$ with $|\partial Q|=0$ and any $r, \epsilon>0$ there exist p.c $\omega \in L^{\infty}\left(Q ; \mathbb{R}^{3}\right)$ satisfying $d \omega=0$ with "boundary conditions" given by $\omega_{0}=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$

- $Q=Q^{(1)} \cup Q^{(2)} \cup Q^{(\text {error })} \cup \mathcal{N}$ where \mathcal{N} a nullset, $Q^{(1)}, Q^{(2)}$ and $Q^{(\text {error })}$ are open sets where ω is locally constant, and such that $\omega=\omega_{i}$ in $Q_{i}, i=1,2$ and $\left|\omega-\omega_{0}\right|<r$ in $Q^{(\text {error })}$.
- For $i=1,2$ and any $t \in \mathbb{R}$

$$
\begin{equation*}
\left|Q^{(\text {error })}(t)\right|+\frac{1}{\lambda_{i}}\left|Q^{(i)}(t)\right| \leq(1+\epsilon)|Q(t)| \tag{1}
\end{equation*}
$$

and $\left|Q^{(\text {error })}\right| \leq \epsilon|Q|$.

- If $\eta \cdot B_{0}=0$ and $\tilde{\omega}$ is a p.c with $\omega \chi_{Q}=\omega_{0}$.

$$
\mathcal{H}(\omega+\tilde{\omega})=\mathcal{H}(\omega)
$$

Laminates．Definition

The above lemma implies that the measure $\lambda \delta_{\omega_{1}}+\lambda_{2} \delta_{\omega_{2}}$ is well approximated with the distribution of a p．c solution to Faraday． The set of laminates（with respect to Λ ），denoted $\mathcal{L}(Y)$ ，is the smallest class of atomic probability measures supported on Y with the following properties：
［d］ $\mathcal{L}(Y)$ contains all the Dirac masses with support in Y ．
［⿴囗十 $\mathcal{L}(Y)$ is closed under splitting along Λ－segments inside Y ．
困 $\mathcal{L}(Y)$ is weakly closed．
Condition（ii）means that if $\nu=\sum_{i=1}^{M} \nu_{i} \delta_{v_{i}} \in \mathcal{L}(Y)$ and $V_{M} \in\left[Z_{1}, Z_{2}\right] \subset Y$ with $Z_{1}-Z_{2} \in \Lambda$ ，then

$$
\sum_{i=1}^{M-1} \nu_{i} \delta_{V_{i}}+\nu_{M}\left(\lambda \delta_{Z_{1}}+(1-\lambda) \delta_{Z_{2}}\right) \in \mathcal{L}(Y)
$$

where $\lambda \in[0,1]$ such that $V_{M}=\lambda Z_{1}+(1-\lambda) Z_{2}$ ．

Staircase Laminates

For any β, ω_{0} there exist a (Faraday) laminate such that

- $\int \lambda d \nu=\omega_{0}$
- ν is supported in $|E||B|=0$
- $\nu\left(\left\{|B|^{p}+|E|^{p^{\prime}} \geq t\right\}\right) \leq \frac{\beta^{p}}{t}$

Everything as in the building block for laminates but now:

- $Q=Q^{(\text {good })} \cup Q^{(\text {error })} \cup \mathcal{N}|B||E|=0$ in $Q^{(\text {good })}$.
- For all t and all $s>1$ we have

$$
\begin{equation*}
\mathcal{I}(s, t) \leq \beta^{2(p+1)}|Q(t)| \min \left(\left|B_{0}\right|^{p}+\left|E_{0}\right|^{p^{\prime}}, s\right), \tag{2}
\end{equation*}
$$

where $\mathcal{I}(s, t)$ is
$\int_{Q^{(\text {error })}(t)} \min \left\{|B|^{p}+|E|^{p^{\prime}}, s\right\} d x+s\left|\left\{x \in Q^{(\text {good })}(t):|B|^{p}+|E|^{p^{\prime}}>s\right\}\right|$
and p^{\prime} is the Hölder dual of p.

- $\iint_{Q^{\text {(error) }}}|B|^{p}+|E|^{p^{\prime}} d x d t \leq \epsilon$.
- Magnetic helicity is conserved.

Theorem

Let $\omega_{0}, 1<p<\infty$ and $Q \subset \mathbb{R}^{4}$ an open bounded domain with $|\partial Q|=0$. there exist piecewise constant vector fields ω with $d \omega=0$ and the boundary condition ω_{0}

- $|B \| E|=0$ for a.e. $(x, t) \in Q$;
- For all t and any $s>1$

$$
\begin{equation*}
\left|\left\{x \in Q(t):|B|^{p}+|E|^{p^{\prime}}>s\right\}\right| \leq \frac{2}{s}|Q(t)| \min \left(\left|B_{0}\right|^{p}+\left.|E|_{0}\right|^{p^{\prime}}, s\right), \tag{3}
\end{equation*}
$$

so that, in particular, $B \in L_{t}^{\infty} L_{x}^{p, \infty}$ and $E \in L_{t}^{\infty} L_{x}^{p^{\prime}, \infty}$.

- There exists a vector potential $\tilde{A} \in \operatorname{Lip} 0(Q)$ which guarantees preservation of magnetic helicity.

$$
\int_{\mathbb{R}^{3}}\left[\left(A_{0}+\tilde{A}\right) \cdot B-A_{0} \cdot B_{0}\right] d x=0 \text { a.e. } t \in \mathbb{R} .
$$

Projecting to MHD

We are given now $\omega=\sum \omega_{i} \chi_{\Omega_{i}(x, t)}$ such that $\omega_{i} \wedge \omega_{i}=B_{i} \cdot E_{i}=0$. The plan is to apply convex integration at each ω_{i} adding a compactly supported perturbation u_{i}, B_{i}. Now however the linear system is more complicated and there is a nonlinear constraint.

- The linear system.

$$
\begin{align*}
& \nabla \cdot u=\nabla \cdot B=0, \tag{4}\\
& \partial_{t} u+\nabla \cdot S=0, \tag{5}\\
& \partial_{t} B+\nabla \times E=0 \tag{6}
\end{align*}
$$

$S \in \mathbb{R}_{\text {sym }}^{3 \times 3}$

- The constitutive relations.
$K:=\{(u, S, B, E): S=u \otimes u-B \otimes B+\Pi I, \Pi \in \mathbb{R}, E=B \times u\}$. Note that if (u, S, B, E) satisfies (??)-(??) and takes values in K a.e. (x, t), then (u, B, Π) satisfies the MHD equations
- The Lambda cone (up to corner cases).

$$
\Lambda^{M H D}=\{(u, S, B, E): S(B \times u)+(E \cdot u) u=0 \quad ; E \cdot B=0\}
$$

■ $E \cdot B$ is still Λ affine (Compensated compactness quantity)

$$
K^{\wedge} \subset \mathcal{M}:=\{(u, S, B, E): B \cdot E=0\}
$$

Problem: When we approximate a laminate by an actual solution to the linear system, the error falls off the manifold $\mathcal{M} . K^{\wedge}$ has non empty interior.
Happily there is hope inspired by Müller Šverák solutions to the two well problem with $\operatorname{det}(X)=1$.

- The Lambda cone (up to corner cases).

$$
\Lambda^{M H D}=\{(u, S, B, E): S(B \times u)+(E \cdot u) u=0 \quad ; E \cdot B=0\}
$$

- $E \cdot B$ is still Λ affine (Compensated compactness quantity)

$$
K^{\wedge} \subset \mathcal{M}:=\{(u, S, B, E): B \cdot E=0\}
$$

Problem: When we approximate a laminate by an actual solution to the linear system, the error falls off the manifold $\mathcal{M} . K^{\wedge}$ has non empty interior.
Happily there is hope inspired by Müller Šverák solutions to the two well problem with $\operatorname{det}(X)=1$.

Simple forms make life simpler

$\omega \wedge \omega=0 \Longleftrightarrow \omega=v \wedge w$.

Lemma

It turns out that $\xi=\left(\xi_{x}, \xi_{t}\right)$ is a Λ direction for (E, B) if and only if $\omega \wedge \xi=0$. Suppose that ω_{0} and $\omega \neq 0$ are simple bivectors and that $\omega \wedge \xi=0$, where $\xi \in\left(\mathbb{R}^{3} \backslash\{0\}\right) \times \mathbb{R}$. The following conditions are equivalent:
(d.) $\omega_{0}+t \omega$ is simple for all $t \in \mathbb{R}$.

困 $\omega_{0} \wedge \omega=0$.
䧃 We can write $\omega=v \wedge \xi$ and either $\omega_{0}=v_{0} \wedge \xi$ or $\omega_{0}=v \wedge \omega_{0}$
In order to find potential, $\omega_{0}=v_{0} \wedge \xi$ is a bad case, and $\omega_{0}=v \wedge \omega_{0}$ is a good case.

Good potentials

set

$$
\alpha=\varphi d \psi, \omega=d \alpha=d \varphi \wedge d \psi
$$

Remark: It is not a Poincare lemma. Thus we need to find specific potentials for the planar waves This we can not do for all lines $\omega_{0}+t \omega$. Namely if $\omega_{0}=v_{0} \wedge w_{0}$ and $\Phi_{\ell}(x, t)=x+\ell^{-1} h^{\prime}(\ell x \cdot \xi) a$ $\Phi^{*}\left(v_{0} \wedge w\right)=\Phi^{*} v_{0} \wedge \Phi^{*} w_{0}=d \psi \wedge d \varphi$

$$
d \varphi_{\ell}(x, t) \wedge d \psi_{\ell}(x, t)=v_{0} \wedge w_{0}+\chi(x, t) h^{\prime \prime}(\ell(x, t) \cdot \xi) \underbrace{\left(c_{2} v_{0}-c_{1} w_{0}\right)}_{=w} \wedge \xi+O\left(\frac{1}{\ell}\right),
$$

- Unfortunately this does not work for all Λ lines (not directions). If ξ is the direction of oscillation of ω and $\omega_{0}=w \wedge \xi$, we can not construct potentials for the plane wave taking values in the line $\omega_{0}+t \omega$
- Thus, segments (ω_{0}, ω) are divided in Λ_{g} (segments) and Λ_{b} (segments). Similarly we can speak of Λ_{g} laminates and of Λ_{g} lamination hull, where only good segments are involved.
- We can talk about good laminates and good Λ hulls and have good solutions to the linear system but..
A heart breaking discovery
- Unfortunately this does not work for all Λ lines (not directions). If ξ is the direction of oscillation of ω and $\omega_{0}=w \wedge \xi$, we can not construct potentials for the plane wave taking values in the line $\omega_{0}+t \omega$
- Thus, segments $\left(\omega_{0}, \omega\right)$ are divided in Λ_{g} (segments) and Λ_{b} (segments). Similarly we can speak of Λ_{g} laminates and of Λ_{g} lamination hull, where only good segments are involved.
- We can talk about good laminates and good Λ hulls and have good solutions to the linear system but..
A heart breaking discovery

$$
K^{\wedge_{g}} \text { is rigid; } E=B \times u
$$

Two good news.

- For open sets $\mathcal{O}^{l c, \Lambda}=\mathcal{O}^{\wedge_{g}, l c}$
- If \mathcal{O} is \mathcal{M}-open then $\mathcal{O}^{\wedge, l c}$ is \mathcal{M}-open

Very difficult to prove if one does not work at the level of the factors of the simple two forms.

An strategy which do not require the full Λ hull

In order to prescribe the energy density and cross helicity densities we normlized K. Thus we declare

$$
K_{r, s}=\{|u+B|=r,|u-B|=s,\} \quad \mathcal{U}_{r, s}=\operatorname{int} K_{r, s}^{\wedge, l c}
$$

An interesting remark is that we do not compute the Λ hull of a constraint set $K_{r, s}$ but we show (lamination of order 12) such that for any $0<\tau_{0}<1$, there exists $\epsilon_{\tau}>0$,

$$
B_{\delta} \subset \mathcal{U}_{r, s}=\cup_{1>\tau \geq \tau_{0}} \mathcal{O}_{\tau}^{\Lambda_{g}}
$$

with $\mathcal{O}_{\tau}=B_{\mathcal{M}}\left(K_{\tau r, \tau s}, \epsilon_{\tau}\right), B_{\delta}=\left\{|B|^{2}+|u|^{2}+|S|+|E| \leq \delta \min r^{2}, s^{2}\right\}$
The construction is indeed closer in spirit very to the in-approximation approach but we argue by a Baire category argument in each subddomain and glue the solutions. It also helps that the potential $d \varphi \wedge d \psi$ are good for magnetic helicity concentration.

Thanks for the hospitality!

