

Alex Levy, Mihir Mittal, Ijay Narang

PCMI 2025 - USS XML

Summer 2025

The Sunflower Problem

Let $\mathcal{H} \subseteq \mathcal{P}(X)$ be a set-system on a ground set X.

Definition

A **sunflower** is a set-system \mathcal{F} such that $A \cap B$ is the same for all pairs of distinct sets $A, B \in \mathcal{F}$. An **r-sunflower** implies $|\mathcal{F}| = r$.

A set-system \mathcal{H} is ℓ -bounded if $|S| \leq \ell$ for each $S \in \mathcal{H}$.

Denote by $f_r(\ell)$ the maximum possible size of \mathcal{H} such that it contains no sunflower of size r.

Lemma (Erdős - Rado '60)

$$(r-1)^{\ell} \leq f_r(\ell) \leq (r-1)^{\ell} \ell! \leq O(r\ell)^{\ell}$$

We write $f_r(\ell) \leq C(r,\ell)^{\ell}$. Is $C(r,\ell)$ independent of ℓ ?

Improved bounds on $f_r(\ell)$ and VC-dimension

• $C(r,\ell) \leq O(r\ell)$

(ERDŐS-RADO '60)

- $C(r,\ell) \leq O(r^3 \log \ell \log \log \ell)$
- (ALWEISS-LOVETT-WU-ZHANG '21)

• $C(r,\ell) \leq O(r \log \ell)$

(BELL-CHUELUECHA-WARNKE '21)

Given $\mathcal{H} \subseteq \mathcal{P}(X)$, we say that \mathcal{H} shatters a finite set $T \subseteq X$ if

$$\{T \cap S : S \in \mathcal{H}\} = \mathcal{P}(T).$$

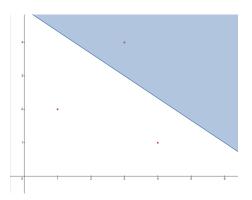
Definition (Vapnik - Chervonenkis, 1971)

The *VC-dimension* of \mathcal{H} is defined as

$$VC(\mathcal{H}) := \sup\{|T| : T \subseteq X, \mathcal{H} \text{ shatters } T\} \in \mathbb{N} \cup \{\infty\}.$$

VC Dimension

VC Dimension: $X = \mathbb{R}^2$, and $\mathcal{H} =$ the set of half-planes in \mathbb{R}^2 Claim: $VC(\mathcal{H}) = 3$:



Motivation

Assume the ℓ -bounded set-system $\mathcal{H} \subseteq \mathcal{P}(X)$ has VC-dimension d, then we get improved bounds on $f_{r,d}(I)$.

•
$$C_d(r,\ell) \leq 2^{10(dr)^{\log^*\ell}}$$
 (FOX-PACH-SUK '23)

•
$$C_d(r,\ell) \leq O(r(\log d + \log^* \ell))$$
 (BALOGH ET AL. '24+)

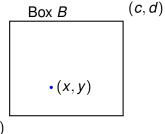
•
$$C_1(r,\ell) \leq r-1$$
 (BALOGH ET AL. '24+)

Fox et al. '23 asked whether we get an independent of ℓ bound on $C(r,\ell)$ for set-systems $\mathcal H$ arising from the intersection of ground set X with semi-algebraic sets of bounded description complexity. These families have bounded VC-dimension.

Sunflower Problem in semi-linear set systems

Definition

Given ground set $X \in \mathbb{R}^{d_1}$ and a defining set $Y \in \mathbb{R}^{d_2}$, $x \sim y$ for $x \in X, y \in Y$ if they satisfy a system (boolean combination) of linear inequalities $\phi(x,y)$. Let $N(y) := \{x \in X : x \sim y\}$ and $\mathcal{H} := \{N(y) : y \in Y\}$.



(a, b)

$$(x, y) \in B \iff \{a < x < c, b < y < d\}$$

Our progress

Theorem

Given ℓ -bounded set system $\mathcal{H} \subseteq \mathcal{P}(X)$ defined by semi-linear sets with bounded description complexity with $|\mathcal{H}| > r\ell^c$, then \mathcal{H} contains an r-sunflower. The constant $c \ge 1$ depends on the description complexity of the set system.

For $r \geq 3$ and $\ell \geq 2$, observe $r\ell^c \leq (r\ell)^c \leq r^{c\ell} = C(r)^{\ell}$.

Corollary

The bound works for families of sets arising from the intersection of $X \subset \mathbb{R}^d$ with polytopes generated by arbitrary translates of finitely many half-spaces in \mathbb{R}^d .

Proof idea

- Induction on the complexity of the semi-linear set system
- ② Rewrite a linear inequality f(x,y) < 0 as $f_1(x) + f_2(y) < 0$ for f_1, f_2 linear. For $y_1, y_2 \in Y$ with $f_2(y_1) < f_2(y_2)$, we have $N(y_2) \subseteq N(y_1)$. Thus, the set of neighbourhoods form a chain w.r.t \subseteq . If a chain of r-many sets contain the same elements, then they form an r-sunflower. Thus, chain with length $> r\ell$ contains an r-sunflower.
- If we find k-sunflowers each w.r.t f(x, y) < 0 and w.r.t g(x, y) < 0 on same set of elements $\{y_1, y_2 \cdots y_r\}$, then we have a k-sunflower w.r.t the boolean combinations of f and g.

