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Approach: Embed  into another set  that is more 
understandable/computable

X(ℚ) S

Examples: ,  ,  S = X(ℚp) X(ℝ) X(𝔸ℚ)

A class of varieties satisfies the  
local-to-global principle 

 if, for every such variety,  .X(𝔸ℚ) ≠ ∅ ⇒ X(ℚ) ≠ ∅
For “most” classes of varieties, LGP fails.
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X(k) ⊂ X(𝔸k)Br ⊂ X(𝔸k): number fieldk

Brauer-Manin set

If  (and ), then 
 has a Brauer-Manin obstruction  
to the existence of rational points.

X(𝔸k)Br = ∅ X(𝔸k) ≠ ∅
X
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 x ↦ x*α  (xv) ↦ (x*v α)
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Approach: Embed  into another set  that is more 
understandable/computable

X(ℚ) S

Can we understand/compute  ?X(𝔸k)Br


