Rational points on varieties and the Brauer-Manin obstruction

Bianca Viray

University of Washington

My work appearing in this talk was predominantly completed on the lands of the Coast Salish, Duwamish, Stillaguamish, and Suquamish nations, \& I am reporting on it from the lands of the East Shoshone and Ute nations.

Rational points on varieties and the Brauer-Manin obstruction

PCMI 2022

Number theory informed by computation

Rational points on varieties and the Brauer-Manin obstruction

Rational points on varieties and the Brauer-Manin obstruction

What are the computational questions?

Rational points on varieties and the Brauer-Manin obstruction

What are the computational questions?
How does computation inform/aid theory?

Rational points on varieties and the Brauer-Manin obstruction

What are the computational questions? How does computation inform/aid theory? How does theory inform/aid computation?

Given a variety X / \mathbb{Q}, how do we determine $X(\mathbb{Q})$?

Given a variety X / \mathbb{Q}, how do we determine $X(\mathbb{Q})$?

Naïve approach: Search in a box of bounded height

Given a variety X / \mathbb{Q}, how do we determine $X(\mathbb{Q})$?

Naïve approach: Search in a box of bounded height
How do we know if the bound was large enough?

Given a variety X / \mathbb{Q}, how do we determine if $X(\mathbb{Q})=\varnothing$?

Naïve approach: Search in a box of bounded height
How do we know if the bound was large enough?

Given a variety X / \mathbb{Q}, how do we prove that $X(\mathbb{Q})=\varnothing$?

Given a variety X / \mathbb{Q}, how do we prove that $X(\mathbb{Q})=\varnothing$?

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

Given a variety X / \mathbb{Q}, how do we prove that $X(\mathbb{Q})=\varnothing$?

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

$$
\text { Examples: } S=X\left(\mathbb{Q}_{p}\right), X(\mathbb{R}), X\left(\mathbb{A}_{\mathbb{Q}}\right)
$$

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

Examples: $S=X\left(\mathbb{Q}_{p}\right), X(\mathbb{R}), X\left(\mathbb{A}_{\mathbb{Q}}\right)$

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

Examples: $S=X\left(\mathbb{Q}_{p}\right), X(\mathbb{R}), X\left(\mathbb{A}_{\mathbb{Q}}\right)$

If $X(\mathbb{Q}) \hookrightarrow S$ and $S=\varnothing$, then $X(\mathbb{Q})=\varnothing$.

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

$$
\begin{gathered}
\text { Examples: } S=X\left(\mathbb{Q}_{p}\right), X(\mathbb{R}), X\left(\mathbb{A}_{\mathbb{Q}}\right) \\
\text { A class of varieties satisfies the } \\
\text { local-to-global principle }
\end{gathered}
$$

if, for every such variety, $X\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \varnothing \Rightarrow X(\mathbb{Q}) \neq \varnothing$.
Examples: quadrics, Severi-Brauer varieties

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

$$
\begin{gathered}
\text { Examples: } S=X\left(\mathbb{Q}_{p}\right), X(\mathbb{R}), X\left(\mathbb{A}_{\mathbb{Q}}\right) \\
\text { A class of varieties satisfies the } \\
\text { local-to-global principle }
\end{gathered}
$$

if, for every such variety, $X\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \varnothing \Rightarrow X(\mathbb{Q}) \neq \varnothing$.
For "most" classes of varieties, LGP fails.

The Brauer-Manin obstruction to

 the existence of rational points
Goal: Define an intermediate obstruction set

$$
X(\mathbb{Q}) \subset X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}} \subset X\left(\mathbb{A}_{\mathbb{Q}}\right)
$$

Goal: Define an intermediate obstruction set

$$
X(\mathbb{Q}) \subset X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}} \subset X\left(\mathbb{A}_{\mathbb{Q}}\right)
$$

Brauer-Manin set

Goal: Define an intermediate obstruction set

 k : number field $X(k) \subset X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}} \subset X\left(\mathbb{A}_{k}\right)$Brauer-Manin set

Goal: Define an intermediate obstruction set

 k : number field $X(k) \subset X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}} \subset X\left(\mathbb{A}_{k}\right)$Brauer-Manin set

$$
\begin{aligned}
& \text { If } X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing\left(\operatorname{and} X\left(\mathbb{A}_{k}\right) \neq \varnothing\right) \text {, then } \\
& X \text { has a Brauer-Manin obstruction } \\
& \text { to the existence of rational points. }
\end{aligned}
$$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

$$
\begin{gathered}
X(k) \\
\vdots \\
\left\{\stackrel{C}{C}_{x}\right\}
\end{gathered}
$$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

$$
\left.\begin{array}{l}
X(k) \\
\vdots \\
\left\{C_{x}\right\}
\end{array}\right\}
$$

$$
\begin{gathered}
X\left(\mathcal{A}_{k}\right) \\
\vdots \\
\left.\vdots\left(C_{x_{v}}\right)\right\}
\end{gathered}
$$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

$$
\begin{gathered}
X(k) \\
\left\{C_{x}\right\} \\
\#\left\{v: C_{x}\left(k_{v}\right)=\varnothing\right\} \equiv 0(\bmod 2) \\
\\
\text { QR }
\end{gathered}
$$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \rightsquigarrow\{$ conics $\}, x \mapsto C_{x}$

$$
\begin{aligned}
& X(k) \\
& \vdots \\
& \left.\left\{C_{x}\right\} \subset\left\{\left(C_{x_{v}}\right): \begin{array}{c}
\#\left(\mathbb{A}_{k}\right) \\
\vdots
\end{array}\right\} \begin{array}{c}
\left.C_{x_{k}}\left(k_{v}\right)=\varnothing\right\} \\
\text { is even }
\end{array}\right\} \subset\left\{\left(C_{x_{v}}\right)\right\}
\end{aligned}
$$

$\#\left\{v: C_{x}\left(k_{v}\right)=\varnothing\right\} \equiv 0(\bmod 2)$
QR

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \leadsto \operatorname{Br} F, \quad x \mapsto\left[C_{x}\right]$

$$
\begin{aligned}
& X(k) \\
& \vdots \\
& \left.\left\{C_{x}\right\} \subset\left\{\left(C_{x_{v}}\right): \begin{array}{c}
\#\left(\mathbb{A}_{k}\right) \\
\vdots
\end{array}\right\} \begin{array}{c}
\left.\# v: C_{x_{k}}\left(k_{v}\right)=\varnothing\right\} \\
\text { is even }
\end{array}\right\} \subset\left\{\left(C_{x_{v}}\right)\right\}
\end{aligned}
$$

$$
\#\left\{v: C_{x}\left(k_{v}\right)=\varnothing\right\} \equiv 0(\bmod 2)
$$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \leadsto \operatorname{Br} F, \quad x \mapsto\left[C_{x}\right]$

$$
\begin{gathered}
X(k) \\
\vdots \\
\left.\left\{C_{x}\right\} \subset\left\{\left(C_{x_{v}}\right): \begin{array}{c}
\#\left(\mathbb{A}_{k}\right) \\
\vdots
\end{array}\right\} \begin{array}{c}
\left.\# v: C_{x_{k}}\left(k_{v}\right)=\varnothing\right\} \\
\text { iseven }
\end{array}\right\} \subset\left\{\left(C_{x_{v}}\right)\right\}
\end{gathered}
$$

$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \mathrm{Br}_{\mathrm{k}} \xrightarrow{\sum_{\mathrm{in} v_{v}}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

Leveraging Quadratic Reciprocity

Assume that for every F / k, we have $X(F) \leadsto \operatorname{Br} F, \quad x \mapsto\left[C_{x}\right]$

$$
\begin{gathered}
X(k) \\
\vdots \\
\left\{C_{x}\right\} \subset\left\{\left(\left[C_{x_{v}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{v}}\right]=0\right\} \subset\left\{\left(\mathbb{A}_{k}\right)\right. \\
\vdots
\end{gathered}
$$

$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum \operatorname{inv}_{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

The Brauer-Manin set

Assume that for every F / k, we have $X(F) \rightsquigarrow \operatorname{Br} F, \quad x \mapsto\left[C_{x}\right]$

$$
\begin{aligned}
& X(k) \\
& \vdots \\
& \left\{\stackrel{C}{x}_{x}\right\} \subset\left\{\left(\left[C_{x_{v}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{v}}\right]=0\right\} \subset\left\{\left(\mathbb{A}_{k}\right)\right. \\
& \vdots
\end{aligned}
$$

$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum \operatorname{inn}_{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$$
\begin{aligned}
& X(k) \\
& \vdots \\
& \left\{C_{x}\right\} \subset\left\{\left(\left[C_{x_{v}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{v}}\right]=0\right\} \subset\left\{\left(\mathbb{A}_{k}\right)\right. \\
& \vdots \\
& \left.\left.C_{x_{v}}\right)\right\}
\end{aligned}
$$

$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum \operatorname{inn}_{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$$
\left(\begin{array}{c}
X(k) \\
\vdots \\
\vdots \\
\left\{C_{x}\right\}
\end{array}\right) \subset\left\{\left(\left[C_{x_{v}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{v}}\right]=0\right\} \subset\left\{\left(\mathbb{A}_{k}\right)\right.
$$

$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum_{\mathrm{inv}}^{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$\left\{\left(\left[C_{x_{v}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{v}}\right]=0\right\}$ $X\left(\mathbb{A}_{k}\right)$
\vdots
$\left\{\left(C_{x_{v}}\right)\right\}$
$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum_{\mathrm{inv}}^{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$0 \rightarrow \mathrm{Br} k \rightarrow \oplus_{v} \mathrm{Br}_{k_{v}} \xrightarrow{\sum_{\mathrm{inv}}^{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$$
\left\{\left[\left[C_{x_{1}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{1}, ~}\right]=0\right\}
$$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$$
X\left(\mathbb{A}_{k}\right)^{\alpha}:=\varphi_{\alpha}^{-1}(0) \sim \sim \sim\left\{\left[\left[C_{x_{k}}\right]\right): \sum_{v} \operatorname{inv}_{v}\left[C_{x_{l}}\right]=0\right\}
$$

The Brauer-Manin set

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X, x^{*} \alpha \in \operatorname{Br} F$.

$$
X\left(\mathbb{A}_{k}\right)^{\alpha}:=\varphi_{\alpha}^{-1}(0) \quad X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}:=\bigcap_{\alpha} X\left(\mathbb{A}_{k}\right)^{\alpha}
$$

$\alpha \in \operatorname{Br} X$
$\alpha \in \operatorname{Br} X$

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

$\alpha \in \operatorname{Br} X$

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

Can we understand/compute $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}$?

