Rational points on varieties and the Brauer-Manin obstruction

My work appearing in this talk was predominantly completed on the lands of the Coast Salish, Duwamish, Stillaguamish, and Suquamish nations, & I am reporting on it from the lands of the East Shoshone and Ute nations.

Bianca Viray University of Washington

Rational points on varieties and the Brauer-Manin obstruction

PCM2022Number theory informed by computation

Rational points on varieties and the Brauer-Manin obstruction

Rational points on varieties and the Brauer-Manin obstruction

What are the computational questions?

Rational points on varieties and the Brauer-Manin obstruction What are the computational questions? How does computation inform/aid theory?

Rational points on varieties and the Brauer-Manin obstruction What are the computational questions? How does computation inform/aid theory? How does theory inform/aid computation?

Given a variety X/\mathbb{Q} , how do we determine $X(\mathbb{Q})$?

Given a variety X/Q, how do we determine $X(\mathbb{Q})$?

Naïve approach: Search in a box of bounded height

Given a variety X/\mathbb{Q} , how do we determine $X(\mathbb{Q})$?

Naïve approach: Search in a box of bounded height

How do we know if the bound was large enough?

Given a variety X/\mathbb{Q} , how do we determine if $X(\mathbb{Q}) = \emptyset$?

Naïve approach: Search in a box of bounded height

How do we know if the bound was large enough?

Given a variety X/\mathbb{Q} , how do we prove that $X(\mathbb{Q}) = \emptyset$?

Given a variety X/\mathbb{Q} , how do we prove that $X(\mathbb{Q}) = \emptyset$?

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

Given a variety X/\mathbb{Q} , how do we prove that $X(\mathbb{Q}) = \emptyset$?

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

Examples: $S = X(\mathbb{Q}_p), X(\mathbb{R}), X(\mathbb{A}_Q)$

Examples: $S = X(\mathbb{Q}_p), X(\mathbb{R}), X(\mathbb{A}_Q)$

If $X(\mathbb{Q}) \hookrightarrow S$ and $S = \emptyset$, then $X(\mathbb{Q}) = \emptyset$.

Examples: $S = X(\mathbb{Q}_p), X(\mathbb{R}), X(\mathbb{A}_Q)$

Examples: $S = X(\mathbb{Q}_p), X(\mathbb{R}), X(\mathbb{A}_Q)$

A class of varieties satisfies the local-to-global principle if, for every such variety, $X(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset \Rightarrow X(\mathbb{Q}) \neq \emptyset$.

Examples: quadrics, Severi-Brauer varieties

Examples: $S = X(\mathbb{Q}_p), X(\mathbb{R}), X(\mathbb{A}_Q)$

A class of varieties satisfies the local-to-global principle if, for every such variety, $X(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset \Rightarrow X(\mathbb{Q}) \neq \emptyset$. For "most" classes of varieties, LGP fails.

The Brauer-Manin obstruction to the existence of rational points

Goal: Define an intermediate obstruction set $X(\mathbb{Q}) \subset X(\mathbb{A}_{\mathbb{Q}})^{\operatorname{Br}} \subset X(\mathbb{A}_{\mathbb{Q}})$

Goal: Define an intermediate obstruction set $X(\mathbb{Q}) \subset X(\mathbb{A}_{\mathbb{Q}})^{\mathrm{Br}} \subset X(\mathbb{A}_{\mathbb{Q}})$ **Brauer-Manin set**

Goal: Define an intermediate obstruction set *k*: number field $X(k) \subset X(\mathbb{A}_k)^{\operatorname{Br}} \subset X(\mathbb{A}_k)$

Brauer-Manin set

Goal: Define an intermediate obstruction set k: number field $X(k) \subset X(\mathbb{A}_k)^{\mathrm{Br}} \subset X(\mathbb{A}_k)$ Brauer-Manin set

If $X(\mathbb{A}_k)^{\mathrm{Br}} = \emptyset$ (and $X(\mathbb{A}_k) \neq \emptyset$), then Xhas a Brauer-Manin obstruction to the existence of rational points.

Leveraging Quadratic Reciprocity

Assume that for every F/k, we have $X(F) \rightsquigarrow \{\text{conics}\}, x \mapsto C_x$

Leveraging Quadratic Reciprocity

Assume that for every F/k, we have $X(F) \rightsquigarrow \{\text{conics}\}, x \mapsto C_x$

$\#\{v: C_x(k_v) = \emptyset\} \equiv 0 \pmod{2}$

Leveraging Quadratic Reciprocity

 $X(k) \qquad \qquad X(A_k)$ $\begin{cases} \langle C_x \rangle \subset \left\{ (C_{x_v}) : {}^{\#\{v : C_{x_v}(k_v) = \emptyset\}} \right\} \subset \left\{ (C_{x_v}) \right\} \\ \text{ is even } \end{cases}$

Leveraging Quadratic Reciprocity Assume that for every F/k, we have $X(F) \rightsquigarrow \operatorname{Br} F$, $x \mapsto |C_x|$ X(k) $\begin{cases} X(\mathbb{A}_k) \\ \{C_x\} \subset \left\{ (C_{x_v}) : \overset{\#\{v : C_{x_v}(k_v) = \emptyset\}}{\text{is even}} \right\} \subset \{ (C_{x_v}) \}$

$\#\{v: C_x(k_v) = \emptyset\} \equiv 0 \pmod{2}$

Leveraging Quadratic Reciprocity

Assume that for every F/k, we have $X(F) \twoheadrightarrow \operatorname{Br} F$, $x \mapsto |C_x|$ X(k) $\begin{cases} X(A_k) \\ X$ $0 \to \operatorname{Br} k \to \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\Sigma \operatorname{Inv}_{v}} \mathbb{Q}/\mathbb{Z} \to 0$

Leveraging Quadratic Reciprocity X(k) $X(\mathbb{A}_k)$

Assume that for every F/k, we have $X(F) \rightsquigarrow \operatorname{Br} F$, $x \mapsto |C_x|$ $\left\{ C_{x} \right\} \subset \left\{ ([C_{x_{v}}]) : \sum \operatorname{inv}_{v} [C_{x_{v}}] = 0 \right\} \subset \left\{ (C_{x_{v}}) \right\}$ $0 \to \operatorname{Br} k \to \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\Sigma \operatorname{Inv}_{v}} \mathbb{Q}/\mathbb{Z} \to 0$

Assume that for every F/k, we have $X(F) \rightsquigarrow \operatorname{Br} F$, $x \mapsto |C_x|$

X(k) $0 \to \operatorname{Br} k \to \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\Sigma \operatorname{Inv}_{v}} \mathbb{Q}/\mathbb{Z} \to 0$

The Brauer-Manin set

 $X(\mathbb{A}_k)$ $\{C_x\} \subset \left\{ ([C_{x_v}]) : \sum \operatorname{inv}_v [C_{x_v}] = 0 \right\} \subset \left\{ (C_{x_v}) \right\}$

X(k) $X(\mathbb{A}_k)$ $\{C_x\} \subset \left\{ ([C_{x_v}]) : \sum \operatorname{inv}_v [C_{x_v}] = 0 \right\} \subset \left\{ (C_{x_v}) \right\}$ $0 \to \operatorname{Br} k \to \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\Sigma \operatorname{Inv}_{v}} \mathbb{Q}/\mathbb{Z} \to 0$

The Brauer-Manin set

The Brauer-Manin set

X(k) $0 \to \operatorname{Br} k \to \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\Sigma \operatorname{Inv}_{v}} \mathbb{Q}/\mathbb{Z} \to 0$

The Brauer-Manin set

 $X(\mathbb{A}_k)$ $\underset{v}{\overset{\downarrow}{\operatorname{Br}} k} \left\{ ([C_{x_{v}}]) : \sum \operatorname{inv}_{v} [C_{x_{v}}] = 0 \right\} \left\{ (C_{x_{v}}) \right\}$

X(k) $0 \to \operatorname{Br} k \to \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\Sigma \operatorname{Inv}_{v}} \mathbb{Q}/\mathbb{Z} \to 0$

The Brauer-Manin set

 $X(\mathbb{A}_k)$ $\overset{\downarrow}{\operatorname{Br}} k \quad \left\{ ([C_{x_{v}}]) : \sum \operatorname{inv}_{v} [C_{x_{v}}] = 0 \right\} \bigoplus_{v} \overset{\downarrow}{\operatorname{Br}} k_{v}$

The Brauer-Manin set

 $\{ [C_{x_v}] : \sum_{v \in V_v} inv_v [C_{x_v}] = 0 \}$

Given $\alpha \in \operatorname{Br} X$ and Spec $F \xrightarrow{x} X$, $x^* \alpha \in \operatorname{Br} F$. $\rightarrow \operatorname{Br} k \longrightarrow \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum \operatorname{inv}_{v}} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$

 $X(\mathbb{A}_k)^{\alpha} := \varphi_{\alpha}^{-1}(0) \operatorname{subscript{0.5}{\operatorname{subscrip{0.5}{\operatorname{subscrip{0.5}$

The Brauer-Manin set

 $X(\mathbb{A}_k)^{\alpha} := \varphi_{\alpha}^{-1}(0)$

The Brauer-Manin set

 $X(\mathbb{A}_k)^{\mathrm{Br}} := (X(\mathbb{A}_k)^{\alpha})^{\alpha}$ α

$\alpha \in \operatorname{Br} X$

 $X(\mathbb{A}_k)^{\alpha} := \varphi_{\alpha}^{-1}(0)$ $X(\mathbb{A}_k)^{\mathrm{Br}} := \bigcap X(\mathbb{A}_k)^{\alpha}$ $\alpha \in \operatorname{Br} X$

$\alpha \in \operatorname{Br} X$

 $X(k) \xrightarrow{X(A_k)} \varphi_{\alpha}$ $\downarrow^{x \mapsto x^* \alpha} \qquad \downarrow^{(x_v) \mapsto (x_v^* \alpha)} \xrightarrow{\varphi_{\alpha}}$ $0 \rightarrow \operatorname{Br} k \longrightarrow \bigoplus_{v} \operatorname{Br} k_v \xrightarrow{\Sigma \operatorname{inv}_{v}} \mathbb{Q}/\mathbb{Z} \rightarrow 0$

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

 $X(\mathbb{A}_k)^{\alpha} := \varphi_{\alpha}^{-1}(0)$ $X(\mathbb{A}_k)^{\mathrm{Br}} := \bigcap X(\mathbb{A}_k)^{\alpha}$ $\alpha \in \operatorname{Br} X$

$\alpha \in \operatorname{Br} X$

 $X(k) \xrightarrow{X(A_k)} \varphi_{\alpha}$ $\downarrow^{x \mapsto x^* \alpha} \qquad \downarrow^{(x_v) \mapsto (x_v^* \alpha)} \xrightarrow{\varphi_{\alpha}}$ $0 \rightarrow \operatorname{Br} k \longrightarrow \bigoplus_{v} \operatorname{Br} k_v \xrightarrow{\Sigma \operatorname{inv}_{v}} \mathbb{Q}/\mathbb{Z} \rightarrow 0$

Approach: Embed $X(\mathbb{Q})$ into another set S that is more understandable/computable

 $X(\mathbb{A}_k)^{\alpha} := \varphi_{\alpha}^{-1}(0)$ $X(\mathbb{A}_k)^{\mathrm{Br}} := \bigcap X(\mathbb{A}_k)^{\alpha}$ $\alpha \in \operatorname{Br} X$

Can we understand/compute $X(\mathbb{A}_k)^{\mathrm{Br}}$?

