Lecture 1: Quantum Singleton bound and consequences

- Classical Singleton bound

Linear code on n bits of minimal distance d
Puncture d-1 coordinates. There shouldn't be any collision; if there were, a pair would differ only in $\mathrm{d}-1$ coordinates, and minimal distance becomes $<=\mathrm{d}-1$.
So we have an injection from the code into a space of dimension n -(d-1).
$\mathrm{k}<=\mathrm{n}$ - (d-1).
Saturated by repetition code.

- Cleaning lemma:

If a region does not support any nontrivial logical operator, the complementary region supports a complete set of logical operators.

An information theoretic argument exists [1610.06169] which gives a much general result, but we treat Pauli stabilizer codes only.

In analogy with the classical code, consider a truncation map acting on the linear space of logical operators in regards to a region that is correctable. The dimension of the logical operators modulo stabilizers in a region A is $\left(\mathrm{Pi} _\mathrm{A}\right)^{\wedge} \backslash$ perp / $\mathrm{S} _\mathrm{A}$ where Pi is the restriction map and $\mathrm{S} _\mathrm{A}$ is the group of all stabilizers supported on A. We want this number to be $2 k$ whenever the complement of A supports no nontrivial logical operator.

When A and B are disjoint, it is obvious that S_A is disjoint from $S _B$. Since we are dealing with vector space, there is a direct summand S^{\prime} such that $S=S _A$ \oplus $S _B \backslash o p l u s S^{\prime}$. Consider Pi_A on S'. If this map had some kernel, then that element is supported on B, in which case it would not be in S^{\prime}. So, Pi_A on S^{\prime} is injective, and $\operatorname{dim}\left(\mathrm{Pi} _\mathrm{A} S\right)=\operatorname{dim}\left(\mathrm{S} _A\right)+\operatorname{dim}\left(S^{\prime}\right)$. Solving a linear equation gives dimension counting, $\operatorname{do} \operatorname{dim}\left(\right.$ Pi_A S)^\perp $/ \mathrm{S} _A=2\left(\right.$ number of qubits in A) $-2 \operatorname{dim} \mathrm{~S} _\mathrm{A}-\operatorname{dim} \mathrm{S}^{\prime}$. On the other hand, the absence of nontrivial logical operator on B means that 2 (number of qubits in B) - 2 dim S_B - dim S' $=$ 0 . Adding the two, we have the quantity we want is $2 n_{-} A+2 n _B-2 \operatorname{dim} S=2 k$, as promised.

Exercise: (CSS cleaning lemma) Prove that, for any CSS code on finitely many qubits, if a set of qubits does not support any nontrivial X-logical operator, then the complementary region supports a complete set of representatives of Z-logical operators.

- Quantum Singleton bound [Cerf--Cleve :quant-ph/9702032]:

Statement

Let k be the log_2 of the dimension of a nontrivial code space which is assumed >0. Suppose the subspace has distance d, meaning that any operator supported on $d-1$ or fewer qubits, if sandwiched by the projector, it is a scalar multiple of the projector. Then,
$\mathrm{k}<=\mathrm{n}-2(\mathrm{~d}-1)$.

Proof
First, we need to show that $n>=2(d-1)$. Use Cleaning lemma.

If not, we can partition the system $A B C$ such that $|A B|<d$ and $|B C|<d$, but then by the cleaning lemma we have two sets of complete representatives of logical operators on C and A. This violates the no-cloning theorem.

Second, we prove the bound.
Start with a reference system that is maximally entangled with the code space. Take two correctable regions. The mutual information must be zero with correctable regions.

Take two regions A and B, each of which consists of $d-1$ qubits. Apply the subadditivity.

Exercise: If there is no correlation between two parties, then the mutual information is zero.

Exercise: Show that the subadditivity is nothing but the nonnegativity of the mutual information, which follows from the nonnegativity of the relative entropy.

- Union lemma :for local codes, if two regions are r-apart and each correctable, then the union is correctable.
Proof: any logical operator on the union gives two logical operators on each region by the locality. Both are by assumption trivial.
- Application to codes with no "local" logical operator.

Suppose that any region whose r-neighborhood is a topologically a ball does not support any logical operator.

Sphere: north and south hemisphere, $\mathrm{k}=0$.

2-Torus: $\mathrm{k}=$ bounded by local qubit density, not on system size.
High genus torus: k is bounded by a linear function in genus.
Higher dimensional torus : $\mathrm{k}=$ volume of codimension 2.

Exercise: What is the maximum number of logical qubits on nonorientable surfaces?

- Bravyi-Terhal bound:

It is an argumente in 1d. Divide the line into $O(r)$ segments. Let A be the union of every other segment, and B be the complement. If every segment is correctable, then the union is correctable, and by quantum Singleton bound argument, the whole system is correctable, encoding no logical qubit.

Higher dimensional implication: $\mathrm{d}=\mathrm{O}\left(\mathrm{L}^{\wedge}\{\mathrm{D}-1\}\right)$

- One dimensional codes are repetition code.

Assumptions: 1d system. Each site holds some finite number of qubits. Stabilizers act on neighboring two sites.

Claim: there is a Clifford unitary for each site by which the stabilizer group is mapped to that of the repetition codes and some completely disentangled qubits and Bell pairs.

Proof:

1. Remove any single site stabilizers.
2. Analyze two-site stabilizer group S :
a. Let L be the group of left tensor factors. And R be the group of right tensor factors.
b. If for some elelement A in L, there were two elements B, B in R such that $A B$ and $A B^{\prime}$ were both in S, then $(A B)\left(A B^{\prime}\right)=B B^{\prime}$ is a single-site stabilizer, which must be trivial. So, we have a map from L to R. By definition this map is surjective. By the same argument it has to be injective.
c. If L is nonabelian, then there is a Bell pair.
d. Remove all Bell pairs. Then, L and R are both abelian.
3. Now that all left and right groups (L, R) are abelian, some onsite Clifford will diagonalize them all. The code is reduced to a classical code.
4. If a X-logical operator was identity on a site, then the left factor and the right factor are both logical operators. (Test the commutation with stabilizers)
5. Lemma: For any interval L, if no proper subset of L supports any X-logical operator, then the space \calX of all X-logical operators is a direct sum \calX = \calX(L) \oplus \calY such that \backslash Pi_k $(\backslash c a l Y)$ \backslash cap \backslash Pi_k \backslash cal $X(L)=0$ for all $k \backslash i n L$. Here, \backslash calX(L) is the set of all X-logical operators supported on L and \backslash Pi_k is the restriction map on site k.
a. The assumption means that $\backslash c a l X(L) \backslash c a p ~ \ s u m _\{k \backslash i n ~ L\} \backslash c a l X($ except $k)=0$.
i. By 4 , the sum of space is a sum of logical operator spaces supported on semi-infinite half lines. So, if the intersection in the claim had an element x, then this element must be a sum of elements x_left and x_right that are supported on a half line to the left and another to the right. The boundaries of these two lines do not have to coincide. But x being supported on L, each of x_{-}left and x_right must be supported on L. By assumption, each must vanish.
b. Find a subspace \calY of X-logical operators that complements \calX(L) and includes \sum_\{k \in L\} \calX(except k).
c. Then, \calY is a desired subspace.
 then x - y is in \calX(except k), and hence in \calY, so x is in \calY. By construction, \calX and \calY have zero intersection.
6. Recursively use the lemma to extract repetition codes, starting from smallest intervals.
