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On the permanent of a random symmetric matrix

Matthew Kwan∗ Lisa Sauermann†

Abstract

Let Mn denote a random symmetric n× n matrix, whose entries on and above the diagonal are i.i.d.
Rademacher random variables (taking values ±1 with probability 1/2 each). Resolving a conjecture
of Vu, we prove that the permanent of Mn has magnitude nn/2+o(n) with probability 1 − o(1). Our
result can also be extended to more general models of random matrices.

1 Introduction

Two of the most basic matrix parameters are the determinant and the permanent : for an n × n matrix
M = (xi,j)i,j , define

det(M) =
∑

π∈Sn

sign(π)

n
∏

i=1

xi,π(i) and per(M) =
∑

π∈Sn

n
∏

i=1

xi,π(i). (1.1)

A central direction of research in probabilistic combinatorics and random matrix theory is to understand
the determinant and permanent of different types of random matrices. For example, let An be an
n × n matrix whose entries are i.i.d. Rademacher-distributed random variables, taking values ±1 with
probability 1/2 each (this is often called a random Bernoulli matrix ). A classical theorem of Komlós [19]
(perhaps the foundational theorem in discrete random matrix theory) is that Pr(detAn = 0) = o(1)
as n → ∞. That is to say, An is asymptotically almost surely nonsingular. Since then, there has
been intensive effort to refine our understanding of the singularity probability (see [18, 31, 32, 28, 5]),
culminating in a recent breakthrough of Tikhomirov [36] proving that Pr(detAn = 0) = 2−n+o(n). The
problem of estimating the order of magnitude of detAn has also received significant attention: Tao and
Vu [31] proved that with probability 1− o(1) we have |detAn| = nn/2+o(n), and later Nguyen and Vu [26]
proved a central limit theorem for log | detAn| (see also [15, 16]).

Most of the above-mentioned results generalise readily to more general types of random matrices, where
the entries are independently sampled from any subgaussian distribution. There has also been intensive
interest in random matrices with dependence between the entries. Perhaps the most prominent examples
are symmetric random matrices. Let Mn be the random matrix whose entries on and above the diagonal
are independent Rademacher random variables, and the entries below the diagonal are chosen to make the
matrix symmetric (equivalently, we can choose a random matrix An as above and condition on the event
that An is symmetric). The study of random symmetric matrices has necessitated the development of new
tools, but by now there is a fairly complete understanding of the determinant of a random symmetric
matrix with Rademacher entries. The fact that Pr(detMn = 0) = o(1) was first proved by Costello,
Tao and Vu [10] (see also [12]), and stronger estimates on Pr(detMn = 0) were obtained by several
authors [24, 38, 13, 9]. It is also known that with probability 1− o(1) we have | detMn| = nn/2+o(n) (this
follows from work on the least singular value of Mn due to Nguyen [25] and Rudelson [38], together with
Wigner’s celebrated semicircle law [43, 44]), and a central limit theorem for log | detMn| was proved by
Bourgade and Mody [4] (see also [34]).

It is widely believed that for all the above-mentioned theorems concerning determinants of random ma-
trices (symmetric or not), there should be analogous theorems for permanents. However, the permanent
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appears to be a much more challenging parameter to study. For example, while the determinant en-
codes information about linear dependence and can be interpreted as the (signed) volume of a certain
parallelepiped, it only seems possible to attack the permanent from a “combinatorial” point of view,
directly considering the formal definition in (1.1). The fact that the permanent is harder to study is
maybe not surprising, since (in contrast to the determinant) the permanent of a matrix is #P-hard to
compute (as was famously proved by Valiant [37]). Even the analogue of the singularity problem, to
show that Pr(perAn = 0) = o(1), was open for a long time. In 2009, Tao and Vu [33] finally resolved
this problem and also estimated the typical magnitude of perAn: namely, they proved that asymptoti-
cally almost surely |perAn| = nn/2+o(n). Perhaps surprisingly, permanents of random matrices turn out
to be of interest in quantum computing: Aaronson and Arkhipov [2] proved that quantum computers
cannot be efficiently simulated by classical computers, conditional on a conjecture which strengthens the
aforementioned Tao–Vu permanent theorem (see also [1, 11, 22]).

In this paper we study the permanent of random symmetric matrices. More precisely, we estimate the
typical magnitude of the permanent of a random symmetric matrix with Rademacher entries.

Theorem 1.1. Asymptotically almost surely, | perMn| = nn/2+o(n).

The study of the permanent of a random symmetric matrix seems to have first been explicitly suggested
by Tao and Vu (see [33, Remark 1.6]). They observed that their arguments for the permanent of a (not
necessarily symmetric) random matrix “do not seem to easily yield any non-trivial result for the permanent
of a random symmetric Bernoulli matrix”. The statement of Theorem 1.1 has been conjectured by Vu in
2009 (see [39]). He also mentioned the conjecture in a recent survey [40, Conjecture 6.11], and described
it as “the still missing piece of the picture” regarding determinants and permanents of random discrete
matrices.

Theorem 1.1 is actually a combination of two different results. First, the following proposition gives an
upper bound on | perMn|.

Proposition 1.2. For any ε > 0, if n is sufficiently large with respect to ε, we have

Pr
(

| perMn| ≥ nn/2+εn
)

≤ n−εn.

Proposition 1.2 is easily proved using an estimate for E[(perMn)
2] and Markov’s inequality; see Section 2.

The main role of this paper is to prove the following lower bound on | perMn|.

Theorem 1.3. There is a positive constant c > 0 such that for any ε > 0 the following holds. If n is
sufficiently large with respect to ε, we have

Pr
(

| perMn| ≤ nn/2−εn
)

≤ n−c.

We remark that the constant c in Theorem 1.3 can be made explicit. For example, c = 1/150 cer-
tainly suffices, though this can be improved substantially simply by optimising constants throughout the
proof. However, without new ideas our methods do not seem to be capable of proving the statement of
Theorem 1.3 with any c ≥ 1/2. This state of affairs is essentially the same as for the non-symmetric case
previously considered by Tao and Vu [33].

Of course, Theorem 1.3 also shows that the probability of having perMn = 0 is polynomially small.
Before this paper no nontrivial bounds for this probability were known, except when n = 2m − 1 with
m ∈ N, where for elementary number-theoretic reasons it is actually impossible to have perMn = 0 (see
[30]1).

Finally, we remark that the methods used to prove Theorem 1.1 are quite robust, and analogous theo-
rems can be proved for much more general distributions. For example, consider any fixed real probability
distributions µ and ν, and let Mµ,ν

n be the random symmetric matrix whose diagonal entries have distri-
bution ν and whose off-diagonal entries have distribution µ (and whose entries on and above the diagonal
are mutually independent). With some fairly mild assumptions on µ and ν it is a routine matter to prove
an analogue of Proposition 1.2 for Mµ,ν

n , and in Section 8 we sketch how to make some minor adaptations

1Actually, this result is part of an extensive body of research concerning permanents of (non-random) matrices with ±1

entries; see for example [41, 6, 7, 8, 30, 42, 20, 29, 21].
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to the proof of Theorem 1.3 to obtain a version that holds for very general distributions (we only require
that µ has nontrivial support). In particular, one can prove an analogue of Theorem 1.1 for random
symmetric Gaussian matrices such as the Gaussian Orthogonal Ensemble (GOE).

Notation. In this paper, we use the notation N = {1, 2, . . .} for the positive integers. All logarithms are
to base e. For functions f : N → R and g : N → R>0, we write f = o(g) if f(n)/g(n) → 0 as n → ∞.

2 Proof of Proposition 1.2: the second moment of the permanent

In this section we provide the simple proof of Proposition 1.2. It will be an immediate consequence of
Markov’s inequality and the following lemma.

Lemma 2.1. E[(perMn)
2] ≤ nn+o(n).

Proof. Write xi,j for the (i, j) entry of Mn. For a permutation π ∈ Sn, let Xπ =
∏n

i=1 xi,π(i), so that
perMn =

∑

π Xπ. It will not be necessary for the proof, but we remark that

EXπ =

{

1 if π consists only of 2-cycles,

0 otherwise.

Furthermore, let Iπ ⊆ {1, . . . , n} be the set of indices which appear in 2-cycles of π, and let Fπ be the
family of sets {i, π(i)}, for i /∈ Iπ. Then for two permutations π, π′ ∈ Sn, we have

E[XπXπ′ ] =

{

1 if (Iπ , Fπ) = (Iπ′ , Fπ′),

0 otherwise.

For k = 0, . . . , n, let Qk be the set of all permutations π ∈ Sn satisfying |Iπ | = k, and note that
|Qk| ≤

(

n
k

)

kk/2(n − k)! ≤ 2nkk/2nn−k. Indeed, for any choice of a set I ⊆ {1, . . . , n} of size k, there are

at most kk/2 ways to partition I into 2-cycles, and at most (n − k)! ways to choose a permutation of
{1, . . . , n} \ I.
Now, for any 0 ≤ k ≤ n and any π ∈ Qk, there are at most 2n−kkk/2 choices of π′ satisfying (Iπ, Fπ) =
(Iπ′ , Fπ′). Indeed, for such π′, the restriction of π′ to Iπ must be a permutation of Iπ consisting only of
2-cycles (so there are at most kk/2 ways to choose this restriction), and for each i /∈ Iπ we must have
π′(i) ∈ {π(i), π−1(i)}. It follows that

E[(perMn)
2] =

∑

π,π′∈Sn

EXπXπ′ ≤
n
∑

k=0

|Qk| · 2n−kkk/2 ≤
n
∑

k=0

4nkknn−k ≤ nn+o(n),

as claimed.

Proof of Proposition 1.2. Let ε > 0, and suppose that n is sufficiently large such that the o(n)-term in
Lemma 2.1 is at most εn. Then we have E[(perMn)

2] ≤ nn+εn and consequently by Markov’s inequality

Pr
(

| perMn| ≥ nn/2+εn
)

= Pr
(

(perMn)
2 ≥ nn+2εn

)

≤ E[(perMn)
2]

nn+2εn
≤ n−εn,

as desired.

3 Structure of the proof of Theorem 1.3

The rest of this paper is devoted to the proof of Theorem 1.3. In this section we outline the high-level
strategy of the proof, stating two key lemmas and deducing Theorem 1.3 from them.

We couple the distributions of the matrices Mn for all n ∈ N by viewing each Mn as containing the first n
rows and columns of an infinite random symmetric matrix (with Rademacher entries). Say that subsets
of a given ground set are complement-disjoint if their complements are disjoint. For A,B ⊆ {1, . . . , n},
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let Mn[A,B] be the submatrix of Mn consisting of the rows in A and the columns in B. For λ ≥ 0, we
say that a matrix is λ-heavy if its permanent has absolute value at least λ.

The following lemma shows that with high probability there exists a heavy submatrix of Mn consisting of
almost all the rows and columns of Mn, and moreover we have some control over which rows and columns
are not included. Roughly speaking, it is proved by studying how permanents of submatrices evolve in
the sequence of random matrices M1, . . . ,Mn.

Lemma 3.1. There is a positive constant c > 0 such that for any ε > 0 the following holds. Let n ∈ N be
sufficiently large with respect to ε, and let L = ⌊(logn)/10⌋. Let X and Y be disjoint subsets of {1, . . . , n}
with sizes |X | = L and |Y | = 3L. Then with probability at least 1− (1/4) · n−c there is a set B satisfying
|B| = n− L and {1, . . . , n} \ Y ⊆ B ⊆ {1, . . . , n}, such that Mn[{1, . . . , n} \X,B] is n(1−ε)n/2-heavy.

By applying Lemma 3.1 with various different choices of X and Y , we can obtain many heavy submatrices
Mn[A1, B1], . . . ,Mn[Am, Bm] such that the sets A1, . . . , Am, B1, . . . , Bm are complement-disjoint. The
next lemma states that in such a situation, if we sample Mn+1 by adding a random row and column to
Mn, then a large proportion of our submatrices can be transformed into larger submatrices without losing
much of their heaviness. We will apply this lemma repeatedly, each step decreasing by 1 the number of
rows and columns that our submatrices are missing.

Lemma 3.2. Let m ∈ N be sufficiently large. Let λ > 0, let 1 ≤ L < n be integers, and let
A1, . . . , Am, B1, . . . , Bm be complement-disjoint subsets of {1, . . . , n} of size n − L. Let us condition
on an outcome of Mn such that all the submatrices Mn[Aℓ, Bℓ], for ℓ = 1, . . . ,m, are λ-heavy.

Then, with probability at least 1 − m−1/24, for m′ = ⌈m/36⌉ there are complement-disjoint subsets
A′

1, . . . , A
′
m′ , B′

1, . . . , B
′
m′ ⊆ {1, . . . , n + 1} of size n − L + 2, such that for all ℓ = 1, . . . ,m′ the sub-

matrices Mn+1[A
′
ℓ, B

′
ℓ] are λ/(4n4)-heavy.

We now show how to deduce Theorem 1.3 from Lemmas 3.1 and 3.2.

Proof of Theorem 1.3. Choose an absolute constant 0 < c < 1/50, such that the statement in Lemma 3.1
is satisfied. Fix ε > 0.

Let L = ⌊(log n)/10⌋ and m = ⌊(n − L)/(4L)⌋, and consider disjoint sets X1, . . . , Xm, Y1, . . . , Ym ⊆
{1, . . . , n− L} with |X1| = · · · = |Xm| = L and |Y1| = · · · = |Ym| = 3L.

For each ℓ = 1, . . . ,m, we apply Lemma 3.1 to the subsets Xℓ, Yℓ ⊆ {1, . . . , n−L}. Each application fails
with probability at most n−c/4, so it follows from Markov’s inequality (see for example Lemma 4.8) that
with probability at least 1−(1/2)·n−c, at least m/2 applications succeed. That is to say, with m′ = ⌈m/2⌉
and λ = (n−L)(1−ε)(n−L)/2, we obtain complement-disjoint sets A1, . . . , Am′ , B1, . . . , Bm′ ⊆ {1, . . . , n−L}
of size n − 2L such that for all ℓ = 1, . . . ,m′, the matrices Mn−L[Aℓ, Bℓ] are λ-heavy. Note that if n is
sufficiently large with respect to ε, then m′ ≥ n9/10 and λ ≥ nn/2−(3/4)εn.

Now, we wish to iteratively apply Lemma 3.2, L times in total. After each application, m′ decreases by
a factor of 36 < e4, so after L = ⌊(log n)/10⌋ steps the value of m′ will still be at least

√
n. Each of the L

applications of Lemma 3.2 succeeds with probability at least 1− n−1/48. Thus, with probability at least
1− L · n−1/48 ≥ 1− (1/2) · n−c (for sufficiently large n) we can indeed apply the lemma L times. In the
end we obtain subsets A′, B′ ⊆ {1, . . . , n} of size n such that the matrix Mn[A

′, B′] is λ′-heavy, where

λ′ =
λ

4(n− L)4 · 4(n− L+ 1)4 · · · 4(n− 1)4
≥ λ

(4n4)L
≥ λ

n5L
≥ nn/2−(3/4)εn−logn/2 ≥ nn/2−εn

(again assuming that n is sufficiently large with respect to ε). But note that we must have A′ = B′ =
{1, . . . , n}, so this means that Mn itself is λ′-heavy. In summary, with probability at least 1 − n−c we
have | perMn| ≥ λ′ ≥ nn/2−εn, as desired.

We remark that the overall structure of our proof is similar to the work of Tao and Vu [33] on permanents
of (not necessarily symmetric) random matrices. Indeed, Tao and Vu’s proof can also be broken up
into two parts analogous to Lemmas 3.1 and 3.2. However, in Tao and Vu’s setting, all entries of the
random matrix are independent, allowing them to expose the entries row by row. After exposing k rows,
they consider k × k submatrices that consist of all the k exposed rows (and of k of the n columns).
When exposing the k-th row, the permanent of any such k × k submatrix can be described as a linear
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polynomial in some of the entries of the new row, where the coefficients are given by the permanents of
certain (k − 1)× (k − 1) submatrices in the first k − 1 rows. In contrast, in our setting with the random
symmetric matrix Mn, we are forced to expose the entries of our matrix in a different way: at the k-th
step we reveal the entries in Mk that are not present in Mk−1 (that is, we add a new random row and
column, with equal entries, to the matrix considered so far2). Since there is only one k × k submatrix in
Mk (namely Mk itself), in our setting we also need to consider the permanents of (substantially) smaller
submatrices of Mk.

This more intricate strategy introduces significant challenges. Most notably, the permanents of the sub-
matrices of Mk are described by quadratic polynomials in the new matrix entries, where the coefficients
depend on the permanents of certain submatrices of Mk−1 (this is in contrast to Tao and Vu’s setting,
where the permanents are described by linear polynomials in the entries of the new row). This neces-
sitates the use of some more sophisticated probabilistic tools. Furthermore, there can be certain types
of cancellations within these quadratic polynomials, which are not possible for the linear polynomials
in the Tao–Vu setting. For example, even if all submatrices of Mk−1 have non-zero permanent, it can
happen that the polynomial describing the permanent of some submatrix of Mk has only very few nonzero
coefficients. Handling these types of cancellations requires key new ideas.

Organization of the rest of the paper. Lemma 3.1 will be proved in Section 6, and Lemma 3.2 will
be proved in Section 7. As preparation, in Section 4 we collect some probabilistic tools that we will use
in the proofs, and in Section 5 we collect some lemmas that can be obtained by studying permanent
expansion formulas.

4 Probabilistic tools

This section collects some theorems and simple facts that will be needed for proving Lemmas 3.1 and 3.2.
We start with some basic anti-concentration estimates for linear forms. The first of these is the famous
Erdős–Littlewood–Offord inequality (see for example [35, Corollary 7.8]).

Theorem 4.1. Let t ≥ 1 be a real number, and let f be a linear polynomial in n variables, in which at
least m degree-1 coefficients have absolute value at least r. Then for uniformly random ξ ∈ {−1, 1}n we
have

Pr(|f(ξ)| ≤ t · r) ≤ (⌈t⌉+ 1) ·
(

m

⌊m/2⌋

)

· 2−m ≤ 3t√
m
.

We will also need the following very easy fact.

Fact 4.2. Let f be a linear polynomial in n variables, which has at least one coefficient with absolute
value at least r. Then for uniformly random ξ ∈ {−1, 1}n we have

Pr(|f(ξ)| < r) ≤ 1

2
.

Proof. First, suppose that the constant coefficient of f has absolute value at least r, and suppose without
loss of generality that f(ξ) = a1ξ1 + · · · + anξn + c with c ≥ r. Then, by symmetry we have that
Pr(a1ξ1 + · · ·+ anξn < 0) ≤ 1/2 and therefore Pr(f(ξ) < r) ≤ 1/2.

Otherwise, for some i ∈ {1, . . . , n}, the coefficient of ξi in f(ξ) has absolute value at least r, and suppose
without loss of generality that i = 1. Condition on any outcomes of the variables ξ2, . . . , ξn, and observe
that then we can have |f(ξ)| < r for at most one of the two possible outcomes of ξ1.

We will also need counterparts of both the above statements for quadratic polynomials. The quadratic
counterpart of Fact 4.2 is again easy to prove.

Fact 4.3. Let f be a quadratic polynomial in n variables, which has at least one multilinear degree-2
coefficient with absolute value at least r. Then for uniformly random ξ ∈ {−1, 1}n we have

Pr(|f(ξ)| < r) ≤ 3

4
.

2This type of exposure is standard in the study of symmetric random matrices (see for example [10]).
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Proof. We may assume that f is multilinear (every term of the form ξ2i can be replaced by the constant
1 without changing the behaviour of f(ξ)). Suppose without loss of generality that the coefficient a12 of
ξ1ξ2 satisfies |a12| ≥ r, and write f(ξ1, . . . , ξn) = ξ1 · (a12ξ2 + g(ξ3, . . . , ξn)) + h(ξ2, . . . , ξn). Conditioning
on any outcomes of ξ3, . . . , ξn, with probability at least 1/2 we have |a12ξ2 + g(ξ3, . . . , ξn)| ≥ r. Then,
conditioning on such an outcome of ξ2, we have |f(ξ)| ≥ r with probability at least 1/2.

It is more delicate to generalise the Erdős–Littlewood–Offord inequality to quadratic polynomials. For a
multilinear quadratic polynomial f in the variables x1, . . . , xn and for a real number r > 0, let G(r)(f) be
the graph with vertex set {1, . . . , n} having an edge ij whenever the coefficient of xixj in f has absolute
value at least r. Let ν(G) be the matching number3 of a graph G. The following is a special case of a
theorem proved by Meka, Nguyen and Vu [23, Theorem 1.6].

Theorem 4.4. Let r > 0, let f be a multilinear quadratic polynomial in n variables, and let ν =
ν(G(r)(f)) ≥ 3. Then for uniformly random ξ ∈ {−1, 1}n we have

Pr(|f(ξ)| ≤ r) ≤ (log ν)C

ν1/2
,

where C is an absolute constant.

The following concentration inequality is a special case of the famous Azuma–Hoeffding martingale con-
centration inequality (see for example [35, Lemma 1.34]).

Lemma 4.5. Let c > 0 and let X be a random variable defined in terms of independent random variables
ξ1, . . . , ξn, having the property that varying any individual ξi affects the value of X by at most c. Then
for any t ≥ 0 we have

Pr(|X − EX | ≥ t) ≤ 2e−t2/(2nc2).

The next inequality is a one-sided version of the Azuma–Hoeffding inequality for supermartingales (see
[33, Lemma 2.3]).

Lemma 4.6. Let c > 0. In a probability space, let Z1, . . . , Zn be a sequence of random objects, and
let W1, . . . ,Wn be a sequence of random variables, such that for each k, all of Z1, . . . , Zk,W1, . . . ,Wk

are fully determined by Zk, and such that |Wk+1 − Wk| ≤ c for all k = 1, . . . , n − 1. Suppose that the
supermartingale property E[Wk+1|Zk] ≤ Wk is satisfied for k = 1, . . . , n− 1. Then for any t > 0 we have

Pr(Wn −W1 ≥ t) ≤ e−t2/(2nc2).

Recall that for 0 < p < 1, a Bernoulli random variable χ ∼ Ber(p) is a random variable taking values
0 and 1 with Pr(χ = 1) = p and Pr(χ = 0) = 1 − p. The following lemma is a version of the Chernoff
concentration bound for sums of Bernoulli random variables (see for example [3, Theorem A.1.4]).

Lemma 4.7. Let χ1, . . . , χm be independent Bernoulli random variables, where for each i = 1, . . . ,m we
have χi ∼ Ber(pi) for some 0 < pi < 1. Then for any t > 0 the sum X = χ1 + · · ·+ χm satisfies

Pr(X − EX > t) < e−2t2/n and Pr(X − EX < −t) < e−2t2/n.

Finally, the following lemma is an easy consequence of Markov’s inequality (see, for example, [33,
Lemma 2.1]).

Lemma 4.8. Let 1 > p > q > 0, and let E1, . . . , Em be events (not necessarily independent), each of
which occurs with probability at least p. Then the probability that at least qm of the events E1, . . . , Em

occur simultaneously is at least (p− q)/(1− q).

3The matching number of a graph G is the largest number ν such that one can find ν disjoint edges in G.
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5 Permanent expansion formulas

Just as for the determinant, it is possible to expand the permanent of a matrix in terms of permanents
of submatrices. Below we record two such expansions, which we will use in the proofs of Lemmas 3.1
and 3.2.

Fact 5.1. Let M be an n× n matrix. Add a new row (x1, . . . , xn) to obtain an (n+ 1)× n matrix M ′.
Then for any subsets A,B ⊆ {1, . . . , n} with |B| = |A|+ 1, we have

perM ′[A ∪ {n+ 1}, B] =
∑

i∈B

xi perM [A,B \ {i}].

For a matrix M , let M (i,j) be the submatrix of M obtained by removing row i and column j.

Fact 5.2. Let M be an n× n matrix. Add a new row (x1, . . . , xn, z) and a new column (y1, . . . , yn, z) to
obtain an (n+ 1)× (n+ 1) matrix M ′. Then for any subsets A,B ⊆ {1, . . . , n} with |A| = |B|, we have

perM ′[A ∪ {n+ 1}, B ∪ {n+ 1}] = z perM [A,B] +
∑

i∈A,j∈B

xjyi perM [A,B](i,j).

We will use Fact 5.1 in combination with the linear anti-concentration inequalities in Fact 4.2 and
Theorem 4.1, and we will use Fact 5.2 in combination with the quadratic anti-concentration inequali-
ties in Fact 4.3 and Theorem 4.4

Observe in particular that the formula in Fact 5.2 gives an expression for the permanent of a (k+1)×(k+1)
matrix in terms of permanents of (k − 1)× (k − 1) submatrices (and one k × k submatrix). This means
that, for example, when we add a new row and column to a matrix, the size of the largest submatrix with
nonzero permanent can increase by two. This observation will be crucial for the proof of Lemma 3.2.

In the proof of Lemma 3.2, we will apply Fact 5.2 with the symmetric matrices M = Mn and M ′ =
Mn+1. That is to say, (x1, . . . , xn, z) = (y1, . . . , yn, z), so the formula in Fact 5.2 can be interpreted as
a quadratic polynomial in x1, . . . , xn (after conditioning on the value of z). In order to apply Fact 4.3
to this polynomial, we need this polynomial to have a multilinear degree-2 coefficient with large absolute
value. For this, it suffices that perM [A,B](i,j) + perM [A,B](j,i) has large absolute value for some i 6= j
(with i, j ∈ A ∩B). The following lemma will be useful for ensuring this condition.

Lemma 5.3. Let M be an n × n matrix and let A,B ⊆ {1, . . . , n} be subsets with |A| = |B| such that
M [A,B] is λ-heavy. Suppose we are given an element a ∈ B \ A and distinct elements b1, b2 ∈ A \ B.
Then there are distinct i, j ∈ {a, b1, b2} such that

∣

∣

∣
perM [A′, B′](i,j) + perM [A′, B′](j,i)

∣

∣

∣
≥ λ/2,

where A′ = A ∪ {a} and B′ = (B \ {a}) ∪ {i, j}.

Proof. Suppose without loss of generality that perM [A,B] ≥ λ. If we have

perM [(A \ {bs}) ∪ {a}, (B \ {a}) ∪ {bs}] ≥ −λ/2

for some s ∈ {1, 2}, then we can take i = bs and j = a. Indeed, then we have A′ = A ∪ {a} and
B′ = B ∪ {bs}, and obtain perM [A′, B′](i,j) + perM [A′, B′](j,i) ≥ (−λ/2) + λ = λ/2.

Otherwise, if there is no such s ∈ {1, 2}, we can take i = b1 and j = b2. Then we have A′ = A ∪ {a} and
B′ = (B \ {a})∪ {b1, b2}, and obtain perM [A′, B′](i,j) +perM [A′, B′](j,i) < (−λ/2)+ (−λ/2) = −λ.

We end this section with two simple lemmas that illustrate how to apply Facts 5.1 and 5.2 and Lemma 5.3
to “grow” heavy minors in a random symmetric matrix. Recall that Mn is a random symmetric matrix,
and that Mn−1 contains the first n− 1 rows and columns of Mn.

Lemma 5.4. Consider A,B ⊆ {1, . . . , n−1} with |A| = |B|, and fix any nonempty I ⊆ {1, . . . , n−1}\B.
Consider any outcome M of Mn−1 such that M [A,B] is λ-heavy, for some λ > 0. Then

Pr
(

Mn[A ∪ {n}, B ∪ {i}] is λ-heavy for some i ∈ I
∣

∣Mn−1 = M
)

≥ 1− 2−|I|.
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Proof. We condition on Mn−1 = M . Let x1, . . . , xn be the entries in the last row of Mn. Let us also
condition on any outcome of the variables xb for b ∈ B. Now, by Fact 5.1, for each i ∈ I we have

perMn[A ∪ {n}, B ∪ {i}] = xi perMn−1[A,B] +
∑

b∈B

xb perMn−1[A, (B ∪ {i}) \ {b}].

Since | perMn−1[A,B]| ≥ λ, each i ∈ I satisfies the desired condition | perMn[A ∪ {n}, B ∪ {i}]| ≥ λ
with probability at least 1/2, and (by our conditioning on the variables xb for b ∈ B) this happens
independently for all i ∈ I.

Lemma 5.5. Consider A,B ⊆ {1, . . . , n− 1} with |A| = |B|, and consider an outcome M of Mn−1 such
that M [A,B] is λ-heavy, for some λ > 0. Then for any a ∈ B \A and any distinct b1, b2 ∈ A \B, we can
choose distinct i, j ∈ {a, b1, b2} such that

Pr
(

Mn[A ∪ {a, n}, (B \ {a}) ∪ {i, j, n}] is (λ/2)-heavy
∣

∣Mn−1 = M
)

≥ 1

4
.

Proof. Let us condition on Mn−1 = M . By Lemma 5.3, we can choose distinct i, j ∈ {a, b1, b2} such that
∣

∣

∣
perMn−1[A

′, B′](i,j) + perMn−1[A
′, B′](j,i)

∣

∣

∣
≥ λ/2, (5.1)

where A′ = A ∪ {a} and B′ = (B \ {a}) ∪ {i, j}. Note that {i, j} ⊆ {a, b1, b2} ⊆ A′ and that clearly
{i, j} ⊆ B′.

Now, perMn[A∪{a, n}, (B \ {a})∪{i, j, n}] = perMn[A
′ ∪{n}, B′ ∪{n}], so it suffices to show that with

probability at least 1/4 we have | perMn[A
′ ∪ {n}, B′ ∪ {n}]| ≥ λ/2.

Let (x1, . . . , xn−1, z) be the random entries of the last row (and the last column) of Mn. By Fact 5.2, we
have

perMn[A
′ ∪ {n}, B′ ∪ {n}] = z perMn−1[A

′, B′] +
∑

k∈A′,ℓ∈B′

xkxℓ perMn−1[A
′, B′](k,ℓ).

Note that this is a quadratic polynomial in the variables x1, . . . , xn−1, z, and the coefficient of xixj is
precisely perMn−1[A

′, B′](i,j)+perMn−1[A
′, B′](j,i). Recalling i 6= j and (5.1), Fact 4.3 now implies that

Pr(| perMn[A
′ ∪ {n}, B′ ∪ {n}]| < λ/2) ≤ 3/4. This finishes the proof of Lemma 5.5.

6 Proof of Lemma 3.1: growing a single heavy submatrix

In this section we prove Lemma 3.1. Recall that L = ⌊(log n)/10⌋ and that X,Y ⊆ {1, . . . , n} are disjoint
subsets with |X | = L and |Y | = 3L. By reordering the rows and columns, we can assume without loss of
generality that X = {1, . . . , L} and Y = {n− 3L+ 1, . . . , n}.
Lemma 3.1 will be a consequence of the following two lemmas. The first of these lemmas is itself a weaker
version of Lemma 3.1 (it also produces a heavy submatrix, but with less control over where it lies, and
not with dimensions as close to n× n).

Lemma 6.1. For any fixed 0 < δ < 1/16, the following holds for all integers n ∈ N that are sufficiently
large with respect to δ. Let λ = n(1/2−8δ)n and suppose that R ∈ N satisfies δn ≤ R ≤ 2δn. Then with
probability at least 1−e−δ2n there is a subset B ⊆ {1, . . . , n} of size n−R such that Mn[{R+1, . . . , n}, B]
is λ-heavy.

To prove Lemma 6.1 we adapt an argument in Tao and Vu’s work [33], simultaneously tracking the
propagation and growth of many heavy submatrices.

Our second lemma takes a heavy submatrix of with dimensions reasonably close to n× n, and produces
a slightly less heavy submatrix with dimensions much closer to n× n.

Lemma 6.2. There is an absolute constant c > 0 such that the following holds for all sufficiently
large integers n ∈ N. Consider λ > 0 and integers L and R satisfying (log n)/20 < L < L2 < R <
(n−5L2−3L)/9, and let n′ = n−8R−5L2−3L and λ′ = λ/2R−L. Condition on an outcome of Mn′ for
which there is a subset B ⊆ {1, . . . , n′} of size n′ −R such that Mn′ [{R+1, . . . , n′}, B] is λ-heavy. Then
with probability at least 1−(1/8)·n−c, there is a set B′ of size n−L with {1, . . . , n−3L} ⊆ B′ ⊆ {1, . . . , n},
such that Mn[{L+ 1, . . . , n}, B′] is λ′-heavy.
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It is now easy to deduce Lemma 3.1 from the two lemmas above.

Proof of Lemma 3.1. Let c > 0 be the constant in Lemma 6.2. Recall that we are considering some
ε > 0 and that we are assuming that n is sufficiently large with respect to ε. Then in particular
L = ⌊(logn)/10⌋ > (logn)/20. As mentioned at the beginning of this section, we may assume that
X = {1, . . . , L} and Y = {n− 3L+ 1, . . . , n}.
Let δ = ε/32, and R = ⌈δn⌉, and note that by our assumption that n is large with respect to ε
we have L < L2 < R < (n − 5L2 − 3L)/9. Now let n′ = n − 8R − 5L2 − 3L ≥ (1 − 9δ)n and
λ = (n′)(1/2−8δ)n′ ≥ n(1/2−15δ)n (again recalling that we assume n to be large with respect to ε). Note
that then δn′ ≤ R ≤ 2δn′.

By Lemma 6.1, with probability at least 1− e−δ2n′ ≥ 1− (1/8) ·n−c (for n sufficiently large with respect
to ε) there is a subset B ⊆ {1, . . . , n′} of size n′ − R such that Mn′ [{R + 1, . . . , n′}, B] is λ-heavy.
Then by Lemma 6.2 and our choice of c, with probability at least 1 − (1/8) · n−c there is a set B′ of
size n − L with {1, . . . , n − 3L} ⊆ B′ ⊆ {1, . . . , n} such that Mn[{L + 1, . . . , n}, B′] is λ′-heavy, where
λ′ = λ/2R−L ≥ n(1/2−15δ)n/2δn ≥ n(1/2−16δ)n = n(1−ε)n/2. Thus, the total probability that such a set B′

exists is at least 1− (1/4) · n−c, as desired.

Lemma 6.1 will be proved in Subsection 6.1 and Lemma 6.2 will be proved in Subsection 6.2.

6.1 Proof of Lemma 6.1: propagation of heavy submatrices

In this subsection we prove Lemma 6.1, adapting an argument from [33]. The main ingredient is the
following lemma.

Lemma 6.3. Fix R, n ∈ N. For k ∈ N and real numbers N > 0 and λ > 0, let E(k,N, λ) denote the
event that there are at least N different subsets B ⊆ {1, . . . , k + R} with |B| = k such that the matrix
Mk+R[{R+ 1, . . . , k +R}, B] is λ-heavy.

Then for any k ∈ N with k + R ≤ n, and any real numbers 0 < δ < 1/2 as well as K > 1, λ > 0 and
N > 0, there is a partition E(k,N, λ) = E′(k,N, λ) ∪ E′′(k,N, λ) of the event E(k,N, λ) such that the
following holds. Let N+ = RN/(8K), N− = RN/(8n) and λ+ = K1/2−δλ, and let M,M ′,M ′′ be any
possible outcomes of Mk+R satisfying E(k,N, λ), E(k,N, λ)′ and E(k,N, λ)′′ respectively. Then

Pr
(

E(k + 1, N−, λ)
∣

∣Mk+R = M
)

≥ 1− 2e−R/8. (6.1)

Pr
(

E(k + 1, N+, λ)
∣

∣Mk+R = M ′
)

≥ 1/3. (6.2)

Pr
(

E(k + 1, N−, λ+)
∣

∣Mk+R = M ′′
)

≥ 1− 4K−δ. (6.3)

Proof. We may assume without loss of generality that N > 0 is an integer (indeed, otherwise we can
replace N by ⌈N⌉, noting that the statement for ⌈N⌉ implies the statement for N).

Let x1, . . . , xk+R+1 be the entries in the last row of Mk+R+1. For subsets B ⊆ B′ ⊆ {1, . . . , k +R} with
sizes k and k + 1 respectively, we say that B is a parent of B′ and that B′ is a child of B. For a subset
B′ ⊆ {1, . . . , k +R} of size k + 1, note that by Fact 5.1 we have

perMk+R+1[{R+ 1, . . . , k +R+ 1}, B′] =
∑

B

perMk+R[{R+ 1, . . . , k +R}, B] · xB′\B, (6.4)

where the sum is over all parents B of B′ (here, with slight abuse of notation we write x{i} instead of xi

for i ∈ {1, . . . , k +R}).
For each outcome of Mk+R such that E(k,N, λ) holds, let us fix subsets B1, . . . , BN as in the definition
of E(k,N, λ). Note that we always have | perMk+R[{R+ 1, . . . , k +R}, Bi]| ≥ λ for i = 1, . . . , N .

Furthermore, for each outcome of Mk+R satisfying E(k,N, λ), let Sq denote the collection of subsets of
{1, . . . , k+R} of size k+1 which have exactly q parents among the sets B1, . . . , BN , and let S = S1∪· · ·∪Sn

be the collection of all such subsets which have at least one parent among B1, . . . , BN . Furthermore, let
S≥K = S⌈K⌉ ∪ · · · ∪ Sn be the collection of all such subsets which have at least K parents among
B1, . . . , BN . We say that B′ ∈ S is λ′-heavy for some λ′ > 0 if Mk+R+1[{R + 1, . . . , k + R + 1}, B′] is
λ′-heavy.
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Since each of the sets B1, . . . , BN is a parent of exactly R different sets B′ ∈ S, a double-counting
argument shows that we have

n
∑

q=1

q|Sq| = RN

for each outcome of Mk+R such that E(k,N, λ) holds.

Now, let E′(k,N, λ) ⊆ E(k,N, λ) be the event that
∑

q<K q|Sq| ≥ RN/2, and condition on any outcome
M ′ of Mk+R satisfying E′(k,N, λ). Note that we then have |S| ≥

∑

q<K |Sq| > RN/(2K). Furthermore
note that for each B′ ∈ S, at least one of the terms perMk+R[{R+1, . . . , k+R}, B] on the left-hand side
of (6.4) has absolute value at least λ (since B′ has at least one parent among B1, . . . , BN ). Hence, by
Fact 4.2, each B′ ∈ S is λ-heavy with probability at least 1/2, and (6.2) follows from Markov’s inequality
(to be precise, it follows from Lemma 4.8 applied with p = 1/2 and q = 1/4).

On the other hand, let E′′(k,N, λ) = E(k,N, λ) \E′(k,N, λ) be the complementary event to E′(k,N, λ)
within E(k,N, λ), i.e. the event that

∑

q≥K q|Sq| > RN/2. Condition on any outcome M ′′ of Mk+R

satisfying E′′(k,N, λ), and note that then |S≥K | ≥ RN/(2n). Also note that for each B′ ∈ S≥K , at least
K of the terms perMk+R[{R+1, . . . , k+R}, B] on the left-hand side of (6.4) have absolute value at least
λ. Hence, by the Erdős–Littlewood–Offord inequality (specifically, Theorem 4.1, applied with m = K,
r = λ and t = K1/2−δ), each B′ ∈ S≥K is λ+-heavy with probability at least 1 − 3K−δ. Then, (6.3)
follows from Markov’s inequality (specifically, we apply Lemma 4.8 with p = 1− 3K−δ and q = 1/4).

Finally, to prove (6.1), let us condition on any outcome M of Mk+R satisfying E(k,N, λ). Say that for
i = 1, . . . , N , the set Bi is good if at least R/4 of its R children B′ ∈ S are λ-heavy. We claim that
each Bi is good with probability at least 1 − e−R/8. Indeed, consider some fixed i ∈ {1, . . . , N}, and
condition on any outcome of the variables xb for b ∈ Bi. Now for each child B′ ∈ S of Bi, the sum in
(6.4) depends only on the outcome of xB′\Bi

(since for all other elements of b ∈ B′ the corresponding
variable xb has already been fixed). Since | perMk+R[{R+ 1, . . . , k + R}, Bi]| ≥ λ, each child B′ ∈ S of
Bi is λ-heavy with probability at least 1/2, independently for all children B′ ∈ S. So, by the Chernoff

bound (Lemma 4.7), the set Bi is indeed good with probability at least 1− e−2(R/4)2/R = 1− e−R/8, as
claimed.

Now, by Markov’s inequality (specifically, Lemma 4.8, applied with p = 1 − e−R/8 and q = 1/2), with
probability at least 1− 2e−R/8 at least N/2 of the sets B1, . . . , BN are good. Whenever this is the case,
there are at least (N/2) · (R/4)/n = RN/(8n) different λ-heavy sets B′ ∈ S (since each such set B′ ∈ S
is a child of at most k + 1 ≤ n different sets Bi). This proves (6.1).

Now we deduce Lemma 6.1.

Proof of Lemma 6.1. As in the lemma statement, let 0 < δ < 1/16 and assume that n ∈ N is sufficiently
large with respect to δ (sufficiently large to satisfy certain inequalities later in the proof). Let R ∈ N

be an integer satisfying δn ≤ R ≤ 2δn, and let K = n1−δ. Furthermore, recall the notation from the
statement of Lemma 6.3. We define random sequences N1, . . . , Nn−R and λ1, . . . , λn−R of positive real
numbers by an iterative process. Let N1 = λ1 = 1 and for each 1 ≤ k ≤ n−R− 1 define Nk+1 and λk+1

as follows:

(i) if E′(k,Nk, λk) and E(k + 1, N+
k , λk) both hold, then let Nk+1 = N+

k and λk+1 = λk;

(ii) if E′′(k,Nk, λk) and E(k + 1, N−
k , λ+

k ) both hold, then let Nk+1 = N−
k and λk+1 = λ+

k ;

(iii) if neither (i) nor (ii) holds, but E(k,Nk, λk) and E(k + 1, N−
k , λk) both hold, then let Nk+1 = N−

k

and λk+1 = λk;

(iv) otherwise, abort (and then our sequences are not well-defined).

Note that the event E(1, N1, λ1) always holds. If we do not abort at any point in the above process, then
E(k,Nk, λk) holds for each k, and in particular there is a subset B ⊆ {1, . . . , n} of size |B| = n−R such
that Mn[{R+ 1, . . . , n}, B] is λn−R-heavy. Thus, in order for the desired event in Lemma 6.1 to hold, it
is sufficient that the process does not abort and that λn−R ≥ n(1/2−8δ)n. We will show that this happens

with probability at least 1− e−δ2n.
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The main observation is that case (i) cannot occur too many times, simply because it is not possible
for Nk to ever be larger than 2n. Roughly speaking, it will follow from this observation and (6.2) that
E′(k,Nk, λk) is unlikely to occur too many times. This will then imply that case (ii) is likely to occur
many times, meaning that λn−R is large.

Claim 6.4. Case (i) in the above process occurs for fewer than δn different values of k.

Proof. Note that whenever (i) holds, we have Nk+1/Nk = N+
k /Nk = R/(8K) ≥ δn/8n1−δ = nδ/8. On

the other hand, whenever (ii) or (iii) holds, we have Nk+1/Nk = N−
k /Nk = R/(8n) ≥ δn/8n = δ/8.

Now suppose for the purpose of contradiction that (i) holds for at least δn different k, and let us define
m = k + 1 for the last such value k. Note that then we have

Nm ≥ (nδ/8)δn · (δ/8)m−δn ≥ nδ2n · (δ/8)m ≥ nδ2n · (δ/8)n > 2n

for sufficiently large n. On the other hand, by our choice of m, case (i) holds for k = m − 1, and so in
particular the event E(k+1, N+

k , λk) = E(m,Nm, λm) holds. This means that there are at least Nm > 2n

different subsets B ⊆ {1, . . . ,m+R} ⊆ {1, . . . , n} satisfying the conditions in the definition of the event
E(m,Nm, λm). But this is clearly a contradiction, since the total number of subsets of {1, . . . , n} is only
2n.

The next observation is that if case (ii) occurs many times, then we are done.

Claim 6.5. If we do not abort at any point, and case (ii) occurs for at least n− 12δn different values of
k, then λn−R ≥ n(1/2−8δ)n.

Proof. Whenever (ii) holds, we have λk+1/λk = λ+
k /λk = K1/2−δ. On the other hand, whenever (i) or

(iii) holds, we have λk+1 = λk. So, if case (ii) occurs for at least n− 12δn values of k, then

λn−R ≥ (K1/2−δ)n−12δn ≥ n(1−δ)·(1/2−δ)·(n−12δn) ≥ n(1/2−2δ)·(n−12δn) ≥ n(1/2−8δ)n.

It now suffices to show that with probability at least 1 − e−δ2n, we do not abort and case (ii) occurs at
least n− 12δn times. To this end, we define an auxiliary random process W1, . . . ,Wn−R that evolves in
parallel with N1, . . . , Nn−R and λ1, . . . , λn−R. Namely, let W1 = 0, and for 1 ≤ k ≤ n−R− 1 let

Wk+1 = Wk + (1− δ)−











3 in case (i),

1 in case (ii),

0 in case (iii) or (iv).

Furthermore, if case (iv) occurs then let Wk+2 = Wk+3 = · · · = Wn−R all be equal to the value of Wk+1

just defined (that is to say, we “freeze” the value of Wk after the process aborts).

Note that W1, . . . ,Wk are fully determined by the random matrix Mk+R (which also determines its sub-
matrices MR+1, . . . ,Mk+R). Moreover, this defines a supermartingale, in the sense that E[Wk+1|Mk+R] ≤
Wk for each k (provided n is sufficiently large). To see this, consider any outcome of Mk for which we
have not yet aborted (meaning in particular that the event E(k,Nk, λk) = E′(k,Nk, λk) ∪ E′′(k,Nk, λk)
holds). If E′(k,Nk, λk) holds, then E[Wk+1 −Wk|Mk] ≤ (1− δ)− (1/3) · 3 ≤ −δ by (6.2). On the other
hand, if E′′(k,Nk, λk) holds, then E[Wk+1 − Wk|Mk] ≤ (1 − δ) − (1 − 4K−δ) = −δ + 4K−δ ≤ 0 for
sufficiently large n, by (6.3). In addition, observe that |Wi −Wi−1| ≤ 3 for each 1 < i ≤ n−R.

By Lemma 4.6 (with Zk = Mk+R for k = 1, . . . , n−R, and c = 3) we have Wn−R ≤ 5δn with probability

at least 1 − e−(25/18)δ2n ≥ 1 − (1/2)e−δ2n. Also, by (6.1) and the union bound, the probability that we

ever abort is bounded by (n −R) · 2e−R/8 ≤ n · 2e−δn/8 ≤ (1/2)e−δ2n. But note that if we never abort,
then

Wn−R = (n−R− 1)(1 − δ)− 3X(i) −X(ii),

where X(i) is the number of times that case (i) occurs, and X(ii) is the number of times that case (ii)
occurs. Recall that X(i) ≤ δn by Claim 6.4. Hence, if Wn−R ≤ 5δn and the process does not abort, then
case (ii) occurs X(ii) ≥ (n−R− 1)(1− δ)− 3δn− 5δn ≥ n− 12δn times, which by Claim 6.4 implies that

λn−R ≥ n(1/2−8δ)n. Thus, we have indeed shown that with probability at least 1−e−δ2n the process does
not abort and we have λn−R ≥ n(1/2−8δ)n.
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6.2 Proof of Lemma 6.2: “filling out” a single heavy submatrix

In this subsection we prove Lemma 6.2. It will be a consequence of the following two lemmas, which (in
two slightly different ways) “grow” a heavy submatrix by exposing a few additional rows and columns.

Lemma 6.6. Let 1 ≤ S < n and λ > 0, and condition on an outcome of Mn for which there is a subset
B ⊆ {1, . . . , n} of size n − S such that Mn[{S + 1, . . . , n}, B] is λ-heavy. Then with probability at least
1 − 3S · 2−S − e−S/6, there is a set B′ of size n + 2S with {1, . . . , n} ⊆ B′ ⊆ {1, . . . , n + 3S} such that
the matrix Mn+3S [{S + 1, . . . , n+ 3S}, B′] is λ-heavy.

Lemma 6.7. Let 2 ≤ T < S < n and λ > 0, and condition on an outcome of Mn for which there is a
set B of size n − S with {1, . . . , S} ⊆ B ⊆ {1, . . . , n} such that Mn[{S + 1, . . . , n}, B] is λ-heavy. Then
with probability at least 1− 5S · 2−T − e−S/40, there is a set B′ of size n+5S− T with {1, . . . , T } ⊆ B ⊆
{1, . . . , n+ 5S} such that Mn+5S [{T + 1, . . . , n+ 5S}, B′] is λ/2S−T -heavy.

Before proving Lemmas 6.6 and 6.7, we deduce Lemma 6.2.

Proof of Lemma 6.2. Recall that n′ = n− 8R − 5L2 − 3L, and that we are conditioning on an outcome
of Mn′ for which there is a subset B ⊆ {1, . . . , n′} of size n′ − R such that Mn′ [{R + 1, . . . , n′}, B] is
λ-heavy.

First, by Lemma 6.6 (applied with S = R < n′), with probability at least 1− 3R · 2−R − e−R/6, there is
a set B1 of size n′ + 2R with {1, . . . , R} ⊆ {1, . . . , n′} ⊆ B′ ⊆ {1, . . . , n′ + 3R} such that Mn′+3R[{R +
1, . . . , n′ + 3R}, B1] is λ-heavy. Let us now condition on such an outcome for Mn′+3R.

Then, by Lemma 6.7 (applied with T = L2 and S = R < n′ + 3R), we obtain that with probability at

least 1−5R ·2−L2 −e−R/40 there is a set B2 of size n′+8R−L2 with {1, . . . , L2} ⊆ B2 ⊆ {1, . . . , n′+8R}
such that that the matrix Mn′+8R[{L2 + 1, . . . , n′ + 8R}, B2] is (λ/2R−L2

)-heavy. Let us condition on
such an outcome for Mn′+8R.

Applying Lemma 6.7 again (this time with T = L and S = L2 < n′ + 8R), we now get that with

probability at least 1− 5L2 · 2−L − e−L2/40, there is a set B3 of size n′ +8R+5L2 −L with {1, . . . , L} ⊆
B3 ⊆ {1, . . . , n′+8R+5L2} such that that Mn′+8R+5L2 [{L+1, . . . , n′+8R+5L2}, B3] is λ′-heavy, where

λ′ = (λ/2R−L2

)/2L
2−L = λ/2R−L. Let us condition on such an outcome for Mn′+8R+5L2

Finally, by Lemma 6.6 (applied with S = L < n′+8R+5L2), with probability at least 1−3L·2−L−e−L/6,
there is a set B′ of size n′ + 8R+ 5L2 + 2L = n− L with

{1, . . . , n− 3L} = {1, . . . , n′ + 8R+ 5L2} ⊆ B′ ⊆ {1, . . . , n′ + 8R+ 5L2 + 3L} = {1, . . . , n}

such that Mn[{L+ 1, . . . , n}, B′] is λ′-heavy.

The probability that all four steps succeed is at least

1− (3R ·2−R+e−R/6)− (5R ·2−L2

+e−R/40)− (5L2 ·2−L+e−L2/40)− (3L ·2−L+e−L/6) ≥ 1− (1/8) ·n−c

for some small constant c > 0 (recall that (log n)/20 < L < L2 < R < n and that n is sufficiently
large).

We now prove Lemma 6.6.

Proof of Lemma 6.6. For any m ∈ N with n ≤ m ≤ n + 3S, define the random variable Qm to be
the minimum value of |{1, . . . , n} \ B′| among all subsets B′ ⊆ {1, . . . ,m} of size m − S such that
Mm[{S + 1, . . . ,m}, B′] is λ-heavy. If no such subset B′ exists, let Qm = ∞.

Recall that in Lemma 6.6 we are conditioning on an outcome of Mn for which there is a subset B ⊆
{1, . . . , n} of size n−S such that Mn[{S+1, . . . , n}, B] is λ-heavy. This means that Qn ≤ |{1, . . . , n}\B| =
S.

For n < m ≤ n + 3S, we say that step m is a failure if Qm > Qm−1. We say that step m is progress if
Qm < Qm−1 or if Qm = Qm−1 = 0 or if Qm−1 = ∞.

For any n < m ≤ n + 3S, when conditioning on any outcome of Mm−1, we claim that step m is a
failure with probability at most 2−S . Indeed, if Qm−1 < ∞, let B′ ⊆ {1, . . . ,m− 1} be a subset of size
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m− 1−S with |{1, . . . , n} \B′| = Qm−1 such that Mm−1[{S+1, . . . ,m− 1}, B′] is λ-heavy. By applying
Lemma 5.4 with I = {1, . . . ,m− 1} \B′, we see that with probability at least 1− 2−S there exists some
i ∈ {1, . . . ,m − 1} \ B′ such that Mm[{S + 1, . . . ,m}, B′ ∪ {i}] is λ-heavy (which in particular implies
Qm ≤ |{1, . . . , n} \ (B′ ∪ {i})| ≤ Qm−1). On the other hand, if Qm−1 = ∞, then step m cannot be a
failure. So this indeed shows that in any case (when conditioning on any outcome of Mm−1), step m is
a failure with probability at most 2−S .

Furthermore, for any n < m ≤ n+ 3S, when conditioning on any outcome of Mm−1, we claim that step
m is progress with probability at least 1/2. Indeed, if Qm−1 /∈ {0,∞}, let B′ ⊆ {1, . . . ,m − 1} be a
subset of size m−1−S with |{1, . . . , n}\B′| = Qm−1 such that Mm−1[{S+1, . . . ,m−1}, B′] is λ-heavy.
We can then apply Lemma 5.4 with I = {1, . . . , n} \ B′, to see that with probability at least 1/2 there
exists some i ∈ {1, . . . , n} \ B′ such that Mm[{S + 1, . . . ,m}, B′ ∪ {i}] is λ-heavy (which in particular
implies Qm ≤ |{1, . . . , n}\ (B′∪{i})| < Qm−1). If Qm−1 = ∞, by definition step m is always progress. If
Qm−1 = 0, then step m is progress if and only if it is not failure, and we already showed that it is failure
with probability at most 2−S ≤ 1/2. This shows that in any case (when conditioning on any outcome of
Mm−1), step m is progress with probability at least 1/2.

Now, note that by the union bound, with probability at least 1 − 3S · 2−S none of the 3S steps m ∈
{n + 1, . . . , n + 3S} is a failure. Furthermore, by the Chernoff bound (Lemma 4.7) with probability at

least 1−e−2(S/2)2/(3S) = 1−e−S/6, there are at least S progress steps. If there are no failures and at least
S progress steps, then we must have Qn+3S = 0. Hence, with probability at least 1 − 3S · 2−S − e−S/6

there exists a subset B′ ⊆ {1, . . . , n + 3S} of size n + 2S such that Mn+3S[{S + 1, . . . , n + 3S}, B′] is
λ-heavy and |{1, . . . , n} \B′| = 0 (meaning that {1, . . . , n} ⊆ B′).

The proof of Lemma 6.7 follows a similar strategy as the proof of Lemma 6.6 above.

Proof of Lemma 6.7. For any m ∈ N with n ≤ m ≤ n + 5S, define the random variable Qm to be the
minimal number Q ∈ {T, T + 1, T + 2, . . . } such that there is a set B′ of size m− Q with {1, . . . , Q} ⊆
B′ ⊆ {1, . . . ,m} such that the matrix Mm[{Q + 1, . . . ,m}, B′] is (λ/2S−Q)-heavy. If there is no Q ∈
{T, T + 1, T + 2, . . . } for which such a set B′ exists, we define Qm = ∞.

Recall that in Lemma 6.7, we are conditioning on an outcome of Mn for which there is a set B of size
n − S with {1, . . . , S} ⊆ B ⊆ {1, . . . , n} such that that Mn[{S + 1, . . . , n}, B] is λ-heavy. This means
that Qn ≤ S (recall that S > T ).

For n < m ≤ n + 5S, we say that step m is a failure if Qm > Qm−1. We say that step m is progress if
Qm < Qm−1 or if Qm = Qm−1 = T or if Qm−1 = ∞.

For any n < m ≤ n + 5S, when conditioning on any outcome of Mm−1, we claim that step m is a
failure with probability at most 2−T . Indeed, if Qm−1 < ∞, let B′ be a set of size m − 1 − Qm−1

with {1, . . . , Qm−1} ⊆ B′ ⊆ {1, . . . ,m − 1} such that the matrix Mm−1[{Qm−1 + 1, . . . ,m − 1}, B′]
is (λ/2S−Qm−1)-heavy. By applying Lemma 5.4 with I = {1, . . . ,m − 1} \ B′, we obtain that with
probability at least 1− 2−Qm−1 ≥ 1− 2−T there exists some i ∈ {1, . . . ,m− 1} \B′ such that the matrix
Mm[{Qm−1 + 1, . . . ,m}, B′ ∪ {i}] is (λ/2S−Qm−1)-heavy (which in particular implies that Qm ≤ Qm−1).
On the other hand, if Qm−1 = ∞, then step m cannot be a failure.

We furthermore claim that for any n < m ≤ n+ 5S, when conditioning on any outcome of Mm−1, step
m is progress with probability at least 1/4. First assume that Qm−1 6∈ {T,∞}, and let B′ be a set of size
m− 1 −Qm−1 with {1, . . . , Qm−1} ⊆ B′ ⊆ {1, . . . ,m − 1} such that Mm−1[{Qm−1 + 1, . . . ,m− 1}, B′]
is (λ/2S−Qm−1)-heavy. We can then apply Lemma 5.5 to the sets {Qm−1 + 1, . . . ,m− 1} and B′. Since
{1, . . . , Qm−1} ⊆ B′ and |B′| = m−1−Qm−1, we have |{Qm−1+1, . . . ,m−1}\B′| = Qm−1 ≥ T ≥ 2. So
we can find two distinct elements b1, b2 ∈ {Qm−1+1, . . . ,m−1}\B′. Let us furthermore take a = Qm−1 ∈
B′\{Qm−1+1, . . . ,m−1}. By Lemma 5.5, there exist distinct elements i, j ∈ {a, b1, b2} such that the set
B∗ = (B′ \ {a})∪ {i, j,m} has the property that the matrix Mm[{Qm−1, . . . ,m}, B∗] is (λ/2S−Qm−1+1)-
heavy with probability at least 1/4. Also note that |B∗| = m− (Qm − 1) and {1, . . . , Qm−1 − 1} ⊆ B∗ ⊆
{1, . . . ,m}. So we can conclude that with probability at least 1/4 we have Qm ≤ Qm−1 − 1, meaning
that step m is progress.

In order to finish proving the claim that for any n < m ≤ n+ 5S (when conditioning on any outcome of
Mm−1), step m is progress with probability at least 1/4, it only remains to consider the cases Qm−1 = ∞
and Qm−1 = T . If Qm−1 = ∞, then step m is always progress. If Qm−1 = T , then step m is progress

13



if and only if it is not failure, and we already proved that step m is failure with probability at most
2−T ≤ 1/4 ≤ 3/4.

We can now finish the proof of Lemma 6.7. Note that by the union bound, with probability at least
1 − 5S · 2−T none of the 5S steps m ∈ {n + 1, . . . , n + 5S} is a failure. Furthermore, by the Chernoff

bound (Lemma 4.7) with probability at least 1−e−2(S/4)2/(5S) = 1−e−S/40, there are at least S progress
steps. If there are no failures and at least S ≥ S − T progress steps, then we must have Qn+5S = T .
Hence, with probability at least 1−5S ·2−T −e−S/40 there is a set B′ of size n+5S−T with {1, . . . , T } ⊆
B′ ⊆ {1, . . . , n+ 5S} such that the matrix Mn+5S [{T + 1, . . . , n+ 5S}, B′] is (λ/2S−T )-heavy.

7 Proof of Lemma 3.2: survival of heavy submatrices

In this section we prove Lemma 3.2. Recall that we call subsets S1, . . . , Sm of some ground set S
complement-disjoint, if their complements S \ S1, . . . , S \Sm are disjoint (and note that this condition is
in particular satisfied if S1 = · · · = Sm = S).

As in the lemma statement, let λ > 0 and let A1, . . . , Am, B1, . . . , Bm be complement-disjoint subsets of
{1, . . . , n} of size n− L. Recall that we are conditioning on an outcome of the matrix Mn such that we
have | perMn[Aℓ, Bℓ]| ≥ λ for ℓ = 1, . . . ,m. Also recall that we are assuming that m is large.

Let x1, . . . , xn, z be the entries of the new row and column in Mn+1, and let us condition on any fixed
outcome of z (which we no longer view as being random).

First, starting from the complement-disjoint subsets A1, . . . , Am, B1, . . . , Bm ⊆ {1, . . . , n} of size n−L, we
will construct certain complement-disjoint subsets A∗

1, . . . , A
∗
m, B∗

1 , . . . , B
∗
m ⊆ {1, . . . , n} of size n−L+1.

The plan is then to choose the desired subsets A′
1, . . . , A

′
m′ , B′

1, . . . , B
′
m′ in Lemma 3.2 to each be of the

form A∗
i ∪ {n+ 1} or B∗

i ∪ {n+ 1}, for suitably chosen i ∈ {1, . . . ,m}.

Claim 7.1. We can find quadruples (A∗
ℓ , B

∗
ℓ , iℓ, jℓ) for ℓ ∈ {1, . . . ,m}, satisfying the following conditions.

• For each ℓ ∈ {1, . . . ,m}, we have A∗
ℓ , B

∗
ℓ ⊆ {1, . . . , n} and |A∗

ℓ | = |B∗
ℓ | = n−L+1, and furthermore

iℓ, jℓ ∈ A∗
ℓ ∩B∗

ℓ .

• The elements i1, j1, . . . , im, jm ∈ {1, . . . , n} are distinct.

• The sets A∗
1, B

∗
1 , . . . , A

∗
m, B∗

m are complement-disjoint (over the ground set {1, . . . , n}).

• For each ℓ ∈ {1, . . . ,m}, if we view perMn+1[A
∗
ℓ ∪ {n + 1}, B∗

ℓ ∪ {n + 1}] as a polynomial in
x1, . . . , xn, then the coefficient of xiℓxjℓ has absolute value at least λ/2.

Proof. First consider the case L = 1. For every ℓ ∈ {1, . . . ,m}, let us take A∗
ℓ = B∗

ℓ = {1, . . . , n}, let iℓ
be the single element of {1, . . . , n} \ Aℓ, and let jℓ be the single element of {1, . . . , n} \ Bℓ. Note that
the second condition is satisfied by the complement-disjointness of the sets A1, B1, . . . , Am, Bm. For the
last condition, observe that by Fact 5.2 and the symmetry of our matrices, the coefficient of xiℓxjℓ in
perMn+1 equals perMn[Aℓ, Bℓ] + perMn[Bℓ, Aℓ] = 2 perMn[Aℓ, Bℓ], which has absolute value at least
2λ ≥ λ/2.

Now, we consider the case L ≥ 2. For each ℓ ∈ {1, . . . ,m}, choose aℓ ∈ Bℓ \ Aℓ and distinct bℓ, b
′
ℓ ∈

Aℓ \ Bℓ (this is possible since Aℓ and Bℓ are complement-disjoint and have size at most n− 2). Now let
iℓ, jℓ ∈ {aℓ, bℓ, b′ℓ} be as in Lemma 5.3, and let A∗

ℓ = Aℓ∪{aℓ} and B∗
ℓ = (Bℓ \{aℓ})∪{iℓ, jℓ}. For the last

condition, note that by Fact 5.2 the coefficient of xiℓxjℓ in perMn+1[A
∗
ℓ ∪ {n+ 1}, B∗

ℓ ∪ {n+ 1}] equals
perMn[A

∗
ℓ , B

∗
ℓ ]

(iℓ,jℓ) + perMn[B
∗
ℓ , A

∗
ℓ ]

(jℓ,iℓ), which has absolute value at least λ/2 by the conclusion of
Lemma 5.3.

Fix quadruples (A∗
ℓ , B

∗
ℓ , iℓ, jℓ) for ℓ ∈ {1, . . . ,m} as in Claim 7.1. Let I = {i1, j1, . . . , im, jm} ⊆ {1, . . . , n},

and let us condition on any outcome for all the variables xi with i /∈ I (which we will no longer view as
being random). For every ℓ = 1, . . . ,m, define Pℓ = perMn+1[A

∗
ℓ ∪ {n+ 1}, B∗

ℓ ∪ {n + 1}], viewed as a
polynomial in the variables xi for i ∈ I, but with all quadratic terms x2

i replaced by 1 (recall that our
variables xi are chosen in {−1, 1}). Then Pℓ is a multilinear quadratic polynomial and the coefficient of
xiℓxjℓ has absolute value at least λ/2.
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Now, after our conditioning, the only remaining randomness comes from the 2m variables xi for i ∈ I.
It suffices to show that for sufficiently large m we have

Pr
(

|Pℓ| ≥ λ/(4n4) for at least m/36 indices ℓ ∈ {1, . . . ,m}
)

≥ 1−m−1/24. (7.1)

Indeed, if the event in (7.1) holds, then we can take the sets A′
1, . . . , Am′ , B′

1, . . . , Bm′ in Lemma 3.2 to
be the sets A∗

ℓ ∪ {n+ 1} and B∗
ℓ ∪ {n+ 1} for m′ = ⌈m/36⌉ different indices ℓ ∈ {1, . . . , n} for which we

have |Pℓ| = | perMn+1[A
∗
ℓ ∪ {n+ 1}, B∗

ℓ ∪ {n+ 1}]| ≥ λ/(4n4).

Let σ = λ/(4n2) and τ = λ/(4n4). Using the notation introduced above Theorem 4.4, for each ℓ ∈
{1, . . . ,m} we consider the graph Gℓ = G(τ)(Pℓ) on the vertex set I whose edges correspond to the
coefficients of the polynomial Pℓ of absolute value at least τ . We say that the index ℓ ∈ {1, . . . ,m} is easy
if the graph Gℓ has matching number ν(Gℓ) ≥ m1/6. If there are many easy indices, then we can prove
(7.1) using the Meka–Nguyen–Vu polynomial anti-concentration inequality (Theorem 4.4), as follows.

Claim 7.2. If there are at least m/3 easy indices ℓ ∈ {1, . . . ,m}, then (7.1) holds.

Proof. Recall that for each easy index ℓ, we have ν(G(τ)(Pℓ)) = ν(Gℓ) ≥ m1/6. Hence by Theorem 4.4
we have that

Pr(|Pℓ| ≥ τ) ≥ 1− (log ν(Gℓ))
C

ν(Gℓ)1/2
≥ 1− ν(Gℓ)

−1/3 ≥ 1−m−1/18

for sufficiently large m (where C is the absolute constant appearing in the statement of Theorem 4.4).
Hence by Markov’s inequality (specifically Lemma 4.8 applied with p = 1 −m−1/18 and q = 1/2), with
probability at least 1−2m−1/18 ≥ 1−m−1/24 we have |Pℓ| ≥ τ = λ/(4n4) for at least (1/2) ·(m/3) = m/6
easy indices ℓ ∈ {1, . . . ,m} (again assuming that m is sufficiently large). This in particular proves
(7.1).

Let us from now on assume that there are at least 2m/3 indices ℓ ∈ {1, . . . ,m} which are not easy. For
each of these non-easy ℓ, since Gℓ has no large matching it must have a large vertex cover, as follows.

Claim 7.3. For every non-easy index ℓ ∈ {1, . . . ,m}, there is a subset Sℓ ⊆ I of size |Sℓ| ≤ 2m1/6 such
that each edge of the graph Gℓ contains at least one vertex in Sℓ (in other words, Sℓ is a vertex cover of
the graph Gℓ).

Proof. Let us take a maximal collection of disjoint edges in Gℓ (this collection consists of at most ν(Gℓ) <
m1/6 edges), and let Sℓ consist of all the vertices contained in one of these edges. Then by the maximality
of the chosen edge collection, each edge of Gℓ must contain at least one vertex in Sℓ.

For each non-easy ℓ, fix a subset Sℓ ⊆ I as in Claim 7.3. We now briefly describe the strategy of the
remainder of the proof. The idea is that all the degree-2 terms of Pℓ whose coefficient has large absolute
value must contain a variable whose index is in Sℓ. So if we condition on outcomes of xi for i ∈ Sℓ,
then Pℓ “essentially” becomes a linear polynomial (apart from some small terms that we can ignore). If
this linear polynomial has many coefficients with large absolute value, then we can apply the Erdős–
Littlewood–Offord inequality to show that |Pℓ| is typically quite large. However, it is possible that for
most of the non-easy ℓ, we end up with linear polynomials which have few coefficients of large absolute
value (in which case we will not be able to use such an argument). It turns out that this is unlikely to
happen unless for many ℓ the polynomial Pℓ each essentially depend on only a few of the variables xi

(we will call such indices ℓ short). We will be able to handle the case that there are many such indices ℓ
using the Azuma–Hoeffding inequality.

Let us say that a variable xi with i ∈ I is bad if we have i ∈ Sℓ for at least m1/3 non-easy indices
ℓ ∈ {1, . . . ,m}. Note that by a simple counting argument, there are at most m · 2m1/6/m1/3 = 2m5/6

bad variables. We say that a variable xi with i ∈ I is good if it is not bad. Let Igood ⊆ I be the set of all
i ∈ I such that xi is good (and note that |Igood| ≤ |I| = 2m).

In addition to all of our previous conditioning, let us now also condition on any fixed outcome of all bad
variables xi. This means that at this point the only remaining randomness comes from the variables xi

with i ∈ Igood. After fixing the outcomes for the bad variables, we can interpret each polynomial Pℓ (for
ℓ ∈ {1, . . . ,m}) as a polynomial in the variables xi with i ∈ Igood. It suffices to prove (7.1) with this
additional conditioning on the outcomes of the bad variables.
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Note that for each ℓ ∈ {1, . . . ,m} which is not easy, for any distinct i, j ∈ Igood \Sℓ the coefficient of xixj

in Pℓ has absolute value less than τ . Indeed, this follows from the definition of the graph Gℓ = G(τ)(Pℓ)
and the fact that every edge of Gℓ contains at least one vertex in Sℓ.

Recall that σ = λ/(4n2). We say that an index ℓ ∈ {1, . . . ,m} is short if there are at most 6m1/6 good
variables xi such that xi appears in a term of Pℓ whose coefficient has absolute value at least σ.

Claim 7.4. If there are at least m/3 short indices ℓ ∈ {1, . . . ,m}, then (7.1) holds.

Proof. Recall that we are viewing each Pℓ as a polynomial in the variables xi with i ∈ Igood. Now, let P ′
ℓ

be the polynomial obtained from Pℓ by deleting all terms whose coefficients have absolute value less than
σ. Note that for each short index ℓ ∈ {1, . . . ,m}, the polynomial P ′

ℓ contains at most 6m1/6 different
variables xi. Also note that we always have |Pℓ−P ′

ℓ | < σn2 = λ/4 for any outcomes of the good variables
xi ∈ {−1, 1} (this is because at most n2 terms get deleted in P ′

ℓ , each with absolute value less than σ).

We say that a good variable is short-popular if it appears in the polynomial P ′
ℓ for at least m1/3 different

short indices ℓ ∈ {1, . . . ,m}. Note that there are at most m · 6m1/6/m1/3 = 6m5/6 short-popular
variables. For the remainder of the proof of this claim, let us now also condition on any fixed outcomes
for all short-popular variables xi, which we no longer view as being random.

Since there are at most 2m5/6 bad variables, and at most 6m5/6 short-popular variables, there are at
least m/3 − 8m5/6 ≥ m/4 short indices ℓ ∈ {1, . . . ,m} for which both of the variables xiℓ and xjℓ are
good and not short-popular (for the inequality here, we are assuming that m is sufficiently large). For
any such index ℓ, the coefficient of xiℓxjℓ in the polynomial P ′

ℓ has absolute value at least λ/2 (since this
is also the case for Pℓ, and λ/2 > σ). Hence we can apply Fact 4.3 to find that Pr(|P ′

ℓ | ≥ λ/2) ≥ 1/4.

So, if Y is the number of short indices ℓ with |P ′
ℓ | ≥ λ/2, then EY ≥ (m/4) · (1/4) = m/16. Recall that

we already conditioned on outcomes of all the short-popular variables. So each of the remaining random
variables occur in P ′

ℓ for at most m1/3 short indices ℓ, and hence varying each individual variable affects
the value of Y by at most m1/3. Therefore, by Lemma 4.5 we have Y ≥ m/32 with probability at least

1− 2 exp

(

− (m/32)2

2 · 2m ·m2/3

)

= 1− 2 exp

(

−m1/3

212

)

≥ 1−m−1/24,

assuming that m is sufficiently large. Hence with probability at least 1−m−1/24 there are at least m/32
short indices ℓ with |P ′

ℓ | ≥ λ/2, which implies that |Pℓ| ≥ λ/2−λ/4 ≥ λ/(4n4). This in particular proves
(7.1).

We may from now on assume that there are at least m/3 indices ℓ ∈ {1, . . . ,m} which are not easy and
not short. Let us call such indices interesting.

For every interesting index ℓ ∈ {1, . . . ,m}, recall that Pℓ is a multilinear polynomial in the variables xi

with i ∈ Igood. Furthermore, recall that for any distinct i, j ∈ Igood \ Sℓ the coefficient of xixj in Pℓ has
absolute value less than τ . Let P ∗

ℓ be the polynomial obtained from Pℓ by deleting all terms of the form
xixj for i, j ∈ Igood \ Sℓ. Note that we always have |Pℓ − P ∗

ℓ | ≤ τn(n− 1)/2 ≤ τ(n2 − 1) = σ − τ (for all
outcomes of the xi).

For every interesting ℓ ∈ {1, . . . ,m}, there are at least 6m1/6 good variables which appear in a term of
Pℓ whose coefficient has absolute value at least σ. Since only terms with coefficient less than τ < σ get
deleted in P ∗

ℓ , this means that there are also at least 6m1/6 good variables which appear in a term of P ∗
ℓ

whose coefficient has absolute value at least σ.

Now, for every interesting ℓ ∈ {1, . . . ,m}, let us interpret P ∗
ℓ ∈ R[xi, i ∈ Igood] as a polynomial Qℓ ∈

R[xi, i ∈ Sℓ][xi, i ∈ Igood \ Sℓ], i.e. as a polynomial in the variables xi for i ∈ Igood \ Sℓ whose coefficients
are polynomials in the variables xi for i ∈ Sℓ. Then Qℓ is a linear polynomial (in the variables xi for
i ∈ Igood \ Sℓ). Its constant coefficient is a quadratic polynomial, and its other coefficients are linear
polynomials (in the variables xi for i ∈ Sℓ).

Let Tℓ be the number of degree-1 coefficients of the linear polynomial Qℓ (in the variables xi for i ∈
Igood \Sℓ) which have absolute value at least σ. This is a random variable depending on the outcomes of
the xi with i ∈ Sℓ.

Claim 7.5. For each interesting index ℓ ∈ {1, . . . ,m}, we have Pr
(

Tℓ ≥ m1/6
)

≥ 1/3.
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Proof. Fix an interesting ℓ ∈ {1, . . . ,m}. Recall that there are at least 6m1/6 good variables xi which
appear in a term of P ∗

ℓ whose coefficient has absolute value at least σ. Since |Sℓ| ≤ 2m1/6, at least
4m1/6 of these variables satisfy i ∈ Igood \ Sℓ. For each such i, the coefficient of xi in Qℓ is a linear
polynomial in the variables xj for j ∈ Sℓ, with at least one coefficient of absolute value at least σ. Thus,
by Fact 4.2, with probability at least 1/2 the coefficient of xi in Qℓ has absolute value at least σ. By
Markov’s inequality (specifically Lemma 4.8 applied with p = 1/2 and q = 1/4), with probability at least
1/3 there are at least (1/4) · 4m1/6 = m1/6 different i ∈ Igood \ Sℓ such that the coefficient of xi in Qℓ

has absolute value at least σ. In other words, with probability at least 1/3, we have Tℓ ≥ m1/6.

Claim 7.6. For each interesting index ℓ ∈ {1, . . . ,m}, we have Pr
(

Tℓ ≥ m1/6 and |P ∗
ℓ | < σ

)

≤ 3m−1/12.

Proof. Fix an interesting ℓ ∈ {1, . . . ,m}. Recall that Tℓ depends only on the variables xi with i ∈ Sℓ.
So, for the proof of this claim, let us condition on some outcome for the variables xi with i ∈ Sℓ such
that we have Tℓ ≥ m1/6. Under this conditioning the polynomial P ∗

ℓ becomes precisely the polynomial
Qℓ, which is a linear polynomial in the remaining variables xi for i ∈ Igood \ Sℓ, having Tℓ ≥ m1/6

degree-1 coefficients with absolute value at least σ. Now, by the Erdős–Littlewood–Offord inequality

(Theorem 4.1, applied with t = 1) we indeed have Pr(|P ∗
ℓ | < σ) ≤ 3/T

1/2
ℓ ≤ 3m−1/12.

Next, define the random variable X as the number of interesting ℓ ∈ {1, . . . ,m} such that Tℓ ≥ m1/6.
Furthermore, define the random variable Y as the number of interesting ℓ ∈ {1, . . . ,m} such that Tℓ ≥
m1/6 and |P ∗

ℓ | < σ.

Claim 7.7. With probability at least 1−m−1/12 we have X ≥ m/18.

Proof. First, note that by Claim 7.5 we have EX ≥ (m/3) · (1/3) = m/9. Also recall that for each
interesting ℓ, the event Tℓ ≥ m1/6 only depends on the outcomes of xi for i ∈ Sℓ. This means that
changing the outcome of any of the good random variables xi can affect X by at most m1/3 (recall that
for each good xi, we have i ∈ Sℓ for at most m1/3 different ℓ). Hence by Lemma 4.5, we have X ≥ m/18
with probability at least

1− 2 exp

(

− (m/18)2

2 · 2m ·m2/3

)

= 1− 2 exp

(

−m1/3

362

)

≥ 1−m−1/12

(for sufficiently large m), as desired.

Claim 7.8. With probability at least 1− 108m−1/12 we have Y ≤ m/36.

Proof. By Claim 7.6 we have EY ≤ m · 3m−1/12 = 3m11/12. Hence, by Markov’s inequality we have
Y ≥ m/36 with probability at most 108m−1/12.

From the previous two claims, we conclude that if m is sufficiently large, then with probability at least
1−109m−1/12 ≥ 1−m−1/24 we have X−Y ≥ m/36. But note that whenever X−Y ≥ m/36, there are at
least m/36 interesting ℓ ∈ {1, . . . ,m} such that |P ∗

ℓ | ≥ σ, which implies |Pℓ| ≥ σ− (σ−τ) = τ = λ/(4n4).
This proves (7.1), and finishes the proof of Lemma 3.2.

8 Concluding remarks

We have proved that the permanent of a random symmetric ±1 matrix typically has magnitude nn/2+o(n).
This encapsulates the upper bound in Proposition 1.2 and the lower bound in Theorem 1.3.

The upper bound and lower bound both permit some fairly immediate generalisations. For example, in
the setting of Theorem 1.3 we actually have Pr(perMn = a) ≤ Pr(| perMn − a| ≤ nn/2−εn) ≤ n−c for all
a (not just a = 0). To see this, recall that the proof of Theorem 1.3 concludes by repeatedly applying
Lemma 3.2, where the final application shows that, conditional on a typical outcome of perMn−1, it is
very likely that | perMn| ≤ nn/2−εn. In this final application we can instead apply a slight generalisation
of Lemma 3.2 (proved in the same way), showing that for any a in fact it is very likely that | perMn−a| ≤
nn/2−εn.
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We can also permit the entries of our random matrix to take more general distributions. As defined in the
introduction, consider any real probability distributions µ and ν, and let Mµ,ν

n be the random symmetric
matrix whose diagonal entries have distribution ν and whose off-diagonal entries have distribution µ (and
whose entries on and above the diagonal are mutually independent). If µ and ν are fixed (not depending
on n), ν has finite second moment and µ has vanishing first moment and finite fourth moment, then
essentially the same proof as for Proposition 1.2 shows that Pr

(

| perMµ,ν
n | ≥ nn/2+εn

)

≤ n−εn for n
sufficiently large with respect to ε, µ and ν.

The conclusion of Theorem 1.3 can be even more freely generalised to any fixed distributions µ and ν
such that µ is supported on at least two points (not requiring any moment assumptions at all). In the
case where µ is supported on two points, any quadratic polynomial in independent µ-distributed random
variables can be rewritten as a multilinear polynomial. One can then use essentially the same proof as
for Theorem 1.3 (only changing the various constants in the lemma statements) to prove that there is a
constant c (depending on µ but not ν) such that for all ε > 0 and all n sufficiently large with respect to ε,
we have Pr(| perMµ,ν

n | ≤ nn/2−εn) ≤ n−c. Note that changing ν has no effect on our arguments, because
we never actually use the randomness of the diagonal entries. One needs some slight generalisations
of the anti-concentration lemmas in Section 4 for µ-distributed random variables, but these are indeed
available; see [5, Theorem A.1] and [23, Theorem 1.8].

In the case where µ is supported on more than two points, then it is necessary to make slightly more
involved changes to the proof of Theorem 1.3, but the same result does hold. To give a brief sketch: in this
case, the main issue is that in the proof of Lemma 3.2 we are no longer able to assume that the relevant
quadratic polynomials are multilinear, so we must treat the square terms x2

i in basically the same way we
treat the linear terms xi. To be specific, in the proof of Lemma 3.2, we must allow the polynomials Qℓ

to contain square terms x2
i in addition to linear terms. There are several aspects to this. First, we need

to generalise Fact 4.3 and Theorem 4.4 to quadratic polynomials of independent µ-distributed random
variables. In particular, we need a generalisation of Theorem 4.4 for quadratic polynomials that are not
necessarily multilinear, still giving a bound in terms of the graph matching number ν(G(r)(f)) (where we
ignore the square terms in f for the purpose of constructing the graph G(r)(f)). Suitable generalisations
of Fact 4.3 and Theorem 4.4 can be proved with the methods in [23, Section 4] (in fact, in this section
the authors prove [23, Theorem 1.8], which is essentially the required generalisation of Theorem 4.4 but
with slightly different assumptions).

Second, we need a generalisation of Fact 4.2 for µ-distributed random variables (for which we can make
fairly trivial changes to the proof of Fact 4.2). And lastly, we need a generalisation of the Erdős–
Littlewood–Offord theorem (Theorem 4.1) for polynomials of independent µ-distributed random variables
(when µ is supported on at least three values) which applies not just to linear polynomials, but also to
quadratic polynomials consisting of both linear and square terms (having no multilinear degree-2 terms).
Such polynomials can be interpreted as linear polynomials in independent (but not identically distributed)
random variables, and therefore the appropriate generalisation of Theorem 4.1 follows from the Doeblin–
Lévy–Kolmogorov–Rogozin inequality [27] (or alternatively the method in [23, Section 4]), together with
a basic single-variable quadratic anti-concentration bound. Namely, we need the fact that for any real
random variable x supported on at least 3 values, and any r > 0, there are s > 0 and p > 0 such that
we have Pr(|f(x)| < s) < 1 − p for any one-variable quadratic polynomial f whose linear or quadratic
coefficient has absolute value at least r.

So, for example, both Proposition 1.2 and Theorem 1.3, and therefore Theorem 1.1, can be generalised
to the case where µ is a centred Gaussian distribution (as long as µ and ν do not depend on n, and ν has
finite second moment). The Gaussian Orthogonal Ensemble (GOE) is an important special case. Another
case that may be of particular interest is the case where the support of µ is {0, 1}, and ν is the trivial
distribution always taking the value zero (Proposition 1.2 does not hold in this case, but Theorem 1.3
does). In this case Mµ,ν

n can be interpreted as the adjacency matrix of a random graph. However, we
note that in this case the statement in Theorem 1.3 can be proved in a much simpler way: we can take
advantage of the fact that changing any off-diagonal entry in Mµ,ν

n from 0 to 1 typically causes a large
increase in the value of perMµ,ν

n , and apply a more general anti-concentration inequality for functions
with this property [14, Theorem 1.2]. Actually, in this setting we suspect that it is possible to prove a
limit law for perMµ,ν

n , using the ideas in [17].

Regarding further directions for research, it would be very interesting to prove stronger upper bounds for
the concentration probabilities of the permanent, in both the i.i.d. and the symmetric case. It is currently
only known that Pr(perMn = a) and Pr(perAn = a) are bounded by n−c for some constant c. It would

18



be very interesting to prove bounds of the form n−ω(1), where ω(1) is any function going to infinity with n.
Actually, Vu conjectured (see [40, Conjecture 6.12]) that Pr(perAn = 0) is of the form ω(1)−n (in contrast
to the situation for the determinant, where we have Pr(detAn = 0) = 2−n+o(n)). It seems reasonable to
conjecture that in fact all probabilities of the form Pr(perMn = a) or Pr(perAn = a) are upper-bounded
by n−cn, for some constant c. However, essentially all known tools for studying permanents of random
matrices also apply to determinants, so significant new ideas would be required to prove such strong
results.

Acknowledgements. We would like to thank Asaf Ferber for insightful discussions.
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