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Outline:

• First lecture: cryptography, quantum threat, hash function, SIG 

• Second lecture: expander graphs, Ramanujan property, key exchange, 
generic attacks

• Third lecture: quaternion algebras, KLPT, signatures



Cryptography:

• The science of keeping secrets!
• But more than that…

• Confidentiality
• Authenticity

• Tools:
• Encryption/Decryption
• Digital signatures
• Key exchange



Public Key Cryptography

• Key exchange: two parties agree on a common secret using only publicly 
exchanged information 

• Signature schemes: allows parties to authenticate themselves
• Encryption: preserve confidentiality of data

• Examples of public key cryptosystems:
RSA, Diffie-Hellman, ECDH, DSA, ECDSA
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Public Key Cryptography deployed today:

Security is based on hard math problems:
• Factoring large integers
• Discrete logarithm problem in (Z/pZ)*
• Discrete logarithm problem in elliptic curve groups
• Weil pairing on elliptic curves



Applications:

• Secure browser sessions (https: SSL/TLS)
• Signed, encrypted email (S/MIME)
• Virtual private networking (IPSec)
• Authentication (X.509 certificates)
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Elliptic Curve Cryptography

• p a large prime of cryptographic size
• Elliptic Curve defined by short Weierstrass equation:

E1 : y2 = x3 + ax + b 
• Labeled by j-invariants: isomorphism invariant over Fpbar

j(E1)= 1728*4a3/(4a3+27b2)
• Algebraic group with group law (chord and tangent method)
• Supersingular elliptic curves modulo p: no p-torsion points over Fpbar

Isomorphism class has a representative defined over GF(p2) (or GF(p))
Endomorphism ring isomorphic to maximal order in definite quaternion algebra



What do we mean by “hard” math problem?

Input represented by m bits: 
Then the best known attack on the system runs in exponential time in m.

exponential time in m O(2m)  
sub-exponential time in m O(ec*m^1/3 (log m)^2/3)
polynomial time in m O(polynomial in m)

Example: to factor n = p*q where m = log n, 
trial division takes exponential time 



The Quantum threat:

Polynomial time Quantum algorithms for attacking current systems!

m = # bits
• Shor’s algorithm for factoring 4m3 time and 2m qbits
• ECC attack requires 360m3 time and 6m qbits

[Proos-Zalka, 2004]

Conclusion:
• RSA: m = 2048 
• Discrete log m = 2048 
• Elliptic Curve Cryptography m = 256 or 384

are not resistant to quantum attacks once a quantum computer exists at scale!



Timeline for Elliptic Curve Cryptography

• (2006)  Suite B set requirements for the use of Elliptic Curve Cryptography

• (2016) CNSA requirements increase the minimum bit-length for ECC from 256 to 384.  Advises 
that adoption of  ECC not required. 

• (2017) NIST international competition to select post-quantum solutions: 5-year PQC Competition



Post-quantum cryptography
Submissions to the NIST PQC competition based on hard math problems:

• Code-based cryptography (McEliece 1978)
• Multivariate cryptographic systems (Matsumoto-Imai, 1988) 
• Lattice-based cryptography (Hoffstein-Pipher-Silverman, NTRU 1996)
• Supersingular Isogeny Graphs (Charles-Goren-Lauter 2005)

• Challenge!  Need to see if these new systems are resistant to *both* classical and 
quantum algorithms!



Supersingular Isogeny Graphs

New hard problem introduced in 2005: [Charles-Goren-Lauter]

• Finding paths between nodes in a Supersingular Isogeny Graph

Graphs: G = (V, E) = (vertices, edges)
• k-regular, undirected graphs, with optimal expansion
• No known efficient routing algorithm



Application: Cryptographic Hash functions
A hash function maps bit strings of some finite length to bit strings of 
some fixed finite length      

h : {0,1}n {0,1}m

• easy to compute 
• unkeyed (do not require a secret key to compute output)
• Collision resistant
• Uniformly distributed output



Collision-resistance

• A hash function h is collision resistant if it is computationally infeasible 
to find two distinct inputs, x, y, which hash to the same output 

h(x) = h(y)
• A hash function h is preimage resistant if, given any output of h, it is 

computationally infeasible to find an input, x, which hashes to that 
output. 



Application: cryptographic hash function [CGL’06]

• k-regular graph G 
• Each vertex in the graph has a label

Input: a bit string
• Bit string is divided into blocks 
• Each block used to determine which edge to follow for the next step in the 

graph 
• No backtracking allowed!

Output: label of the final vertex of the walk         
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Simple idea
• Random walks on expander graphs are a good source of pseudo-randomness

• Are there graphs such that finding collisions is hard? (i.e. finding distinct paths between 
vertices is hard)

• Bad idea: hypercube (routing is easy, can be read off from the labels)



What kind of graph to use?

• Random walks on expander graphs mix rapidly: ~log(p) steps to a 
random vertex, p ~ #vertices

• Ramanujan graphs are optimal expanders

• To find a collision: find two distinct walks of the same length which 
end at same vertex



Colliding walks:   1100 and 1011 
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Graph of supersingular elliptic curves modulo p with isogeny edges 
(Pizer/Mestre graphs)

• Vertices: supersingular elliptic curves mod p
• Curves are defined over GF(p2) (or GF(p))

• Labeled by j-invariants
• E1 : y2 = x3 + ax + b 
• j(E1)= 1728*4a3/(4a3+27b2)

• Edges: Isogenies between elliptic curves



Supersingular Isogeny Graphs: edges

• Edges: degree ℓ isogenies between elliptic curves

• k = ℓ+1 – regular

• Undirected if we assume p == 1 mod 12

• Graph is Ramanujan (Deligne, …)



Isogenies

• The degree of a separable isogeny is the size of its kernel

• To construct an ℓ -isogeny from an elliptic curve E to another, take a subgroup-
scheme C of size ℓ, and take the quotient E/C.

• Formula for the isogeny and equation for E/C were given by Velu.



One step of the walk: (ℓ=2)

E1 : y2 = x3 + ax + b
• j(E1)=1728*4a3/(a3+27b2)
• 2-torsion point Q = (r, 0) 

E2 = E1 /Q (quotient of groups)
• E2 : y2 = x3 − (4a + 15r2)x + (8b − 14r3).

E1   E2
(x, y)  (x +(3r2 + a)/(x-r), y − (3r2 + a)y/(x-r)2) 



Science magazine 
2008



History of Isogeny-based Cryptography
• Charles-Goren-Lauter presented at NIST 2005 competition,  

• IACR eprint 2006, published J Crypto 2009

• Later in 2006, two papers on eprint, never published:
• Couveignes, ordinary case (Hard Homogeneous Spaces) 
• Rostovtsev-Stolbunov, ordinary case (Encryption)

• Ordinary case is very different for many reasons:
• Volcano structure of graph
• Action of an abelian class group
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Expander graphs

G = (V,E) a graph with vertex set V and edge set E. 
A graph is k-regular if each vertex has k edges coming out of it. 

Def: An expander graph with N vertices has expansion constant or Cheeger
constant, c > 0, if for any subset U  of V of size 

|U| ≤ N/2,
the boundary of U, Г(U) := neighbors of U not in U, satisfies

|Г(U)| ≥ c|U|.



Expansion constant

The adjacency matrix A(l) = (aij) is defined by
aij := # edges from ith vertex to jth vertex in the l-isogeny graph

The adjacency matrix of an undirected graph is symmetric, and therefore all its 
eigenvalues are real. 
For a connected k-regular graph, the largest eigenvalue is k, and all others are 
strictly smaller

k > µ1 ≥ µ2 ≥ · · · ≥ µN-1

Then the expansion constant c can be expressed in terms of the eigenvalues as 
follows: 

c ≥ 2(k − µ1)/(3k − 2µ1)
Therefore, the smaller the eigenvalue µ1, the better the expansion constant. 



Ramanujan graphs

Theorem (Alon-Boppana) 

Xm an infinite family of connected, k-regular graphs, (with the 
number of vertices in the graphs tending to infinity), then

lim inf µ1(Xm) ≥ 2√(k−1) 

Definition: A Ramanujan graph is a k-regular connected graph 
satisfying 

µ1 ≤ 2√(k−1)

In our case k = l + 1



Ramanujan property for SIG

S2(p) = vector space of weight-2 cusp forms of level p

Action of Hecke operator Tl given by the Brandt matrix B(l)=A(l)
[Mestre, La Methode des graphes] English translation: https://wstein.org/papers/rank4/mestre-en.pdf

Eigenvalues of this matrix satisfy the Ramanujan condition 

For higher-dimensional analogue, see [CGL’07]:
https://www.math.mcgill.ca/goren/PAPERSpublic/FinalRamanujan.pdf



Approximating the uniform distribution

For non-back-tracking walks on a 3-regular graph, if there are no 
collisions, then you reach

2n vertices after n steps 
So for optimal expander graphs, we expect diameter to be roughly 

log(|G|)
Also note: most pairs of vertices are not connected by paths which are 
significantly shorter than log(|G|).



Applications of SIG

Proposed as basis for other cryptosystems:

Key exchange: Jao-De Feo 2011 
Encryption: Jao-De Feo-Plut, 2014
Signatures: Galbraith-Petit-Silva 2016, SQIsign 2020



Key Exchange [Jao-DeFeo-Plut’11]



E:  supersingular elliptic curve over GF(p^2)

p = ℓA
m ℓB

n + 1  

ℓA and ℓB distinct primes (e.g. ℓA =2 and ℓB=3)

A and B want to exchange a key.

Public parameters: 
A picks  PA, QA such that < PA, QA > = E[ℓA

m]
B picks  PB, QB such that < PB, QB > = E[ℓB

n]

Key Exchange set-up



Key Exchange (continued)

Secret parameters: 
A picks two random integers mA, nA

A uses Velu's formulas to compute the isogeny 
φA : E            EA := E/ < mAPA + nAQA >

B picks two random integers mB, nB

B uses Velu's formulas to compute the isogeny 
φB : E            EB := E/ < mBPB + nBQB >





To complete the diamond, A and B exchange information:

A computes the points φA(PB) and φA(QB) and sends {φA(PB), φA(QB), EA}  to B

B computes the points φB(PA) and φB(QA) and sends {φB(PA), φB(QA), EB}  to A

The j-invariant of the curve EAB is the shared secret.



Security of Key Exchange:
relies on CGL path-finding problem

If you can find the path between E and EA,

then you can break the Key Exchange. 
Note that the walks on each stage of the Key Exchange protocol are of 
length roughly ½ the diameter!
• Thus the probability that there exists a path between any 2 nodes is 

roughly p(-1/2) 

• So if you can find any path, it is overwhelming likely to be the path used 
in the Key Exchange.



Reduction result from WIN4 paper 2017
[Costache-Feigon-Lauter-Massierer-Puskas] 



Hard Problems in SIG?

• Problem 1 (collisions) Produce a pair of supersingular elliptic curves, E1 and E2, and two distinct 
isogenies of degree ℓn between them. 

• Problem 2 (cycles) Given E, a supersingular elliptic curve, find an endomorphism f : E  E of 
degree ℓ2n , not the multiplication by ℓn map.

• Problem 3 (paths) Given two supersingular elliptic curves, find an isogeny of degree ℓn between 
them.



Hardness: Generic attacks

The best known classical attacks are generic square root attacks:
heuristic running time is exponential: √(|G|)

Birthday attack: randomly walk from the two endpoints until you find a 
collision



Generic Square Root Attack
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Summary:

• First lecture: cryptography, quantum threat, hash function, SIG 

• Second lecture: expander graphs, Ramanujan property, key exchange, 
generic attacks

• Third lecture: quaternion algebras, KLPT, signatures



Quaternionic interpretation

An elliptic curve is supersingular modulo p if its endomorphism ring is a 
maximal order in the definite quaternion algebra, Bp,∞ 

Beautiful theorems in number theory:

• Deuring’s correspondence
E ↔ End(E) := {φ: EE endomorphism}

Vertices  ↔ maximal orders in a quaternion algebra   

• Eichler class number:
# vertices ~ p/12



Quaternion Algebras

Bp,∞ := definite quaternion algebra ramified at p & infinity

Basis  < 1, i, j, k=ij > for Bp,∞ 

i2 = a , j2 = b, k= ij =-ji

If p = 3 (mod 4) then (a,b) = (−p,−1) 



(reduced) norm map

Involution on Bp,∞ 

x = (1, i, j, k) →    x∗ = (1, −i, −j, −k) 
Trace(x) := x + x* Norm(x) := xx*

Norm map when p = 3 (mod 4) :
N(c + dj + fi + gij) = c2 + d2 + p(f2 + g2)

Norm map on quaternions corresponds to degree map on 
endomorphisms!



Quaternionic orders and ideals

Fractional ideal I : rank-4 Z-lattice, I = α1Z+α2Z+α3Z+α4Z 

Norm(I ) := Z-module generated by reduced norms of elements of I

OrderO : a fractional ideal which is also a subring of Bp,∞ 



Quaternion algebras …

Integral element: reduced norm and trace in Z 
Note: integral elements do not necessarily form a ring!

Right order of fractional ideal:OR(I ) = {α Bp,∞ | I α I } 

Connecting ideal: Given two maximal orders, O1 andO2,  connecting ideal I 
has OR(I ) = O1 and OL(I ) =O2

Can compute (see e.g. Kirschmer-Voigt`08) 

I := µO1 + NO2O1



Deuring’s correspondence
{supersingular elliptic curves over Fpbar (up to isomorphism)} 

{maximal orders of Bp,∞ (up to conjugation)} 

supersingular j-invariant j(E) maximal order O such that O = End(E)

Any left ideal I of O corresponds to an isogeny

φI : E → EI with kernel ker φI = {P E | α(P) = 0, α I }. 

1-1 correspondence if degree of φI is coprime to p. 

The right order of I , O R(I ) = endomorphism ring of EI



Example:

• If  p = 3 mod 4,  E0: y2 = x3 +x is supersingular

• j-invariant j = 1728. 

• End(E0) = maximal order O0 = Z {1, i, (1+k)/2, (i+j)/2}

θ : Bp,∞ → End(E0) Q sends (1,i,j,k) to (1,φ,π,πφ) 

• π : (x,y) → (xp,yp) is the Frobenius endomorphism 
• φ : (x,y) → (−x,ιy) with ι2 = −1.



KLPT algorithm: quaternionic path-finding [KLPT, ANTS 2014]

Given maximal orders O1 andO2, find connecting ideal of ℓ-power norm
1. Algorithm for O0-ideals. 

1. Find connecting ideal I between O0 and O1

2. Let N = norm(I ). Find an equivalent ideal of norm ℓn

3. If α is an element of I , then replace by I γ, where γ = α*/N
4. To find α of norm prime to N, search through box solving the norm equation 

using Cornacchia’s algorithm
5. Use Strong approximation to find equivalent ideal with ℓ-power norm

2. Repeat step 1 for O0 and O2

3. Concatenate the paths fromO1 to O0 with the one fromO0 to O2. 



Number theoretic algorithm to find paths

Given E1, E2, supersingular elliptic curves over Fp
2

• Compute endomorphism rings as maximal orders in Bp,\infty

• Use path-finding algorithm on maximal orders in the quaternion algebra 
[Kohel-Lauter-Petit-Tignol]

• Pull back to a path in the SIG graph



Computing endomorphism rings is hard
Exponential algorithms:

[Kohel 96]: find cycles in the graph via random walks  

[Cervino 03], [Lauter-McMurdy 03]: compute # of norm n elements in maximal order, compare with # of isogenies of 
degree n which are endomorphisms 

Recent work on equivalences:
Supersingular isogeny graphs and endomorphism rings: reductions and solutions

K Eisenträger, S Hallgren, K Lauter, T Morrison, C Petit
The supersingular isogeny path and endomorphism ring problems are equivalent

Benjamin Wesolowski
Cycles in the Supersingular ℓ-Isogeny Graph and Corresponding Endomorphisms

E Bank, C Camacho-Navarro, K Eisenträger, T Morrison, J Park 
Computing endomorphism rings of supersingular elliptic curves and connections to path-finding in isogeny graphs

K Eisenträger, S Hallgren, C Leonardi, T Morrison, J Park



Newer attack strategies:

Adventures in Supersingularland
Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, Jana Sotáková

• SIG has a “spine” and symmetry: an involution which fixes the Fp-points
• Volcanoes from the ordinary graph (fixed CM by an imaginary quadratic field) 

embed into SIG via “stacking, folding, and attaching”

Orienteering with one endomorphism
Sarah Arpin, Mingjie Chen, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange, Ha T. N. Tran

• Given one endomorphism, can use the volcanoes corresponding to that CM field to 
find cycles and paths in the SIG graph

See talk by Kate Stange next week



Supersingular Isogeny Signature Schemes
[GPS 2016], [SQIsign 2020]

Set-up: 
Fix a prime p, supersingular elliptic curve E0 defined over Fp with known 
endomorphism ring O0.  
Select an odd smooth number D of log(p) bits. 

Key generation: 
(pk = EA, sk = τ ) Prover takes a random isogeny walk τ : E0 → EA

The public key is EA, and the secret key is the isogeny τ . 



Identification protocol: SQIsign
Commitment The prover generates a random (secret) isogeny walk 

ψ : E0 → E1, and sends E1 to the verifier. 
Challenge The verifier sends the description of a cyclic isogeny 

ϕ : E1 → E2 of degree D to the prover. 
Response From the isogeny ϕ ◦ ψ ◦ τˆ : EA → E2, the prover constructs a 
new isogeny 

σ : EA → E2 of degree D 
such that ϕˆ ◦ σ is cyclic, and sends σ to the verifier.

Verification The verifier accepts if σ is an isogeny of degree D from EA to 
E2 and ˆϕ ◦ σ is cyclic. They reject otherwise.



SQIsign



Other graphs
• Vary the isogeny degree
• Lubotzky-Phillips-Sarnak graph

• Cycles found: Eurocrypt 2008, Zemor-Tillich
• Preimages found: SCN 2008, Petit-Quisquater-Lauter

• LPS “path-finding” now used for quantum arithmetic (aka Ross-Selinger)

• Morgenstern graph, [Petit-Quisquater-Lauter 08]

• Higher dimensional analogues 
• Superspecial abelian surfaces [Charles-Goren-L 07]

• Add level structure: [Arpin’22]

Adding Level Structure to Supersingular Elliptic Curve Isogeny Graphs



“Isogenies in Cryptography” ongoing work:

• Alternate graphs/protocols:
• CSIDH: Castryck-Lange-Martindale-Panny-Renes

• Dimension 2 analogues:
• Decru, Flynn, Wesolowski, Jetchev, Florit, Smith …

• Signatures:
• Vercauteren et al., Beullens,…

• Attacks:
• Petit, Biasse, Bernstein, Stange, …

• Graph structure:
• Kohel, Arpin et al.



References for quaternion algebras

• Bible: book by Marie-France Vigneras (in French)

• Short overviews and cryptographic applications (in English)
• P. Clark lectures: SC9-Orders.pdf (uga.edu)

• Sharif: sharif-04-05-19.pdf (uci.edu)

• Kirschmer-Voigt paper: quatideal-fixed-errata-021312.pdf (dartmouth.edu)

• SQIsign paper: 1240.pdf (iacr.org)

• Chenevier lectures: chenevier_lecture6.pdf (cnrs.fr)


