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ON THE TENSOR RANK OF THE 3 × 3 PERMANENT AND DETERMINANT∗

SIDDHARTH KRISHNA† AND VISU MAKAM‡

Abstract. The tensor rank and border rank of the 3 × 3 determinant tensor are known to be 5 if the characteristic is not

two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor

rank remains 5 for fields of characteristic two as well.
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1. Introduction. An alternate way of looking at the rank of a matrix A is as the smallest integer r

such that you can write A as a sum of r rank 1 matrices. The definition of tensor rank is a generalization of

this idea. We consider the tensor space V1 ⊗ V2 ⊗ · · · ⊗ Vn, where Vi denote finite dimensional vector spaces

over a field K. Tensors of the form v1 ⊗ · · · ⊗ vn with vi ∈ Vi are called simple (or rank 1) tensors.

Definition 1.1. The tensor rank trk(T ) of a tensor T ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn is defined as the smallest

integer r such that T = T1 + · · ·+ Tr for simple tensors Ti.

Let Zr ⊂ V1 ⊗ V2 ⊗ · · · ⊗ Vn denote the subspace of tensors of rank ≤ r. Unfortunately, Zr is not

Zariski-closed, giving rise to the notion of border rank. Let Zr denote the Zariski-closure of Zr.

Definition 1.2. The border rank brk(T ) of a tensor T ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn is the smallest integer r

such that T ∈ Zr

The tensor and border rank of various tensors have been well studied. For example, the tensor and

border rank of the matrix multiplication tensor is intimately related to the speed of an algorithm for matrix

multiplication. Using this approach, Strassen gave an algorithm for matrix multiplication with a running

time of O(nlog2 7) (as opposed to the running time of O(n3) for the naive algorithm). Various improvements

have since been made, see for e.g., [17, 5, 3, 18]. We refer the interested reader to [2, 15] for an introduction

to the subject.

In this paper, we are interested in the determinant and permanent tensors. Let {ei | 1 ≤ i ≤ n} denote

the standard basis for Kn, and let Σn denote the symmetric group on n letters. The determinant tensor is

detn =
∑
σ∈Σn

sgn(σ)eσ(1) ⊗ eσ(2) ⊗ · · · ⊗ eσ(n) ∈ (Kn)⊗n,

where sgn(σ) is the sign of the permutation σ.
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Similarly, the permanent tensor is defined as

pern =
∑
σ∈Σn

eσ(1) ⊗ eσ(2) ⊗ · · · ⊗ eσ(n) ∈ (Kn)⊗n.

The determinant and permanent tensors have been studied before, see [6] for known upper and lower

bounds for the tensor rank. For K = C, the tensor rank of det3 and per3 were precisely determined by Ilten

and Teitler in [13] to be 5 and 4, respectively. Using linear algebraic techniques, Derksen and the second

author showed in [9] that the border rank (and tensor rank) of det3 and per3 are 5 and 4, respectively, for

all algebraically closed fields of characteristic not equal to two.

Observe that in characteristic 2, the determinant and permanent tensors are equal. In this paper, we

remove the dependence on the characteristic of the field for the tensor rank of the determinant. The main

result of this paper is the following:

Theorem 1.3. For any field K, the tensor rank of det3 is 5.

This allows us to extend a result of Derksen in [6] to arbitrary characteristic.

Corollary 1.4. For any field K, we have brk(detn) ≤ trk(detn) ≤
(

5
6

)bn/3c
n!.

For a matrix whose entries are either 0 or 1, it can be viewed as a matrix over any field. It is easy to see

that the rank of such a matrix in positive characteristic is at most its rank in characteristic zero (it is easy to

construct examples where it is indeed smaller). However, this phenomenon does not extend to higher order

tensors, and the tensor per3 witnesses this phenomenon explicitly. Indeed by the above theorem, we have

trk(per3) = 5 in characteristic two, whereas we know that trk(per3) = 4 in characteristic zero. Finally, we

remark that the tensor det3 is the structure tensor for the skew-symmetric matrix-vector product (up to a

relabeling of coordinates) whose tensor rank was studied but not determined precisely [19, Proposition 12].

Theorem 1.3 fully resolves its tensor rank in all characteristics.

1.1. Organization. In Section 2, we present characteristic free decompositions of per3 and det3 as a

sum of 5 simple tensors. In Section 3, we prove tensor rank lower bounds for det3, and this completes the

proof of Theorem 1.3. Finally, in Section 4, we discuss some lower and upper bounds for the tensor rank of

the 5× 5 and 7× 7 determinant and permanent tensors in characteristic zero.

2. Upper bounds. An explicit expression for a tensor T in terms of simple tensors naturally gives us

an upper bound for tensor rank and border rank of T . Glynn’s formula (see [12]) for the permanent tensor

is

pern =
1

2n−1

∑
v∈{±1}n−1

(e1 + v1e2 + · · ·+ vn−1en)⊗n.

In particular, this shows that

brk(pern) ≤ trk(pern) ≤ 2n−1,

as long as characteristic is not two. For the determinant tensor, known upper bounds are much weaker. The

best known upper bound comes from Derksen’s formula (see [6]) for det3.
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det3 =
1

2

(
(e3 + e2)⊗ (e1 − e2)⊗ (e1 + e2)

+ (e1 + e2)⊗ (e2 − e3)⊗ (e2 + e3)

+ 2e2 ⊗ (e3 − e1)⊗ (e3 + e1)

+ (e3 − e2)⊗ (e2 + e1)⊗ (e2 − e1)

+ (e1 − e2)⊗ (e3 + e2)⊗ (e3 − e2)
)
.

Unfortunately, both Glynn’s and Derksen’s expressions fail in characteristic two because they have

denominators that are multiples of two. Hence, the best known upper bound for the tensor rank of det3 and

per3 was 6, given by the defining expression.

We give expressions for both det3 and per3 as a sum of 5 simple tensors that are valid over any field K.

We have:

det3 = (e2 + e3)⊗ e1 ⊗ e2

− (e1 + e3)⊗ e2 ⊗ e1

− e2 ⊗ (e1 + e3)⊗ (e2 + e3)

+ (e2 − e1)⊗ e3 ⊗ (e1 + e2 + e3)

+ e1 ⊗ (e2 + e3)⊗ (e1 + e3),

and

per3 = (e2 + e3)⊗ e1 ⊗ e2

+ (e1 + e3)⊗ e2 ⊗ e1

+ e2 ⊗ (e1 + e3)⊗ (e3 − e2)

+ (e1 + e2)⊗ e3 ⊗ (e1 + e2 − e3)

+ e1 ⊗ (e2 + e3)⊗ (e3 − e1).

Corollary 2.1. brk(det3) ≤ trk(det3) ≤ 5.

Remark 2.2. Tensor rank over Z is in general an undecidable problem, see [16]. However, the expres-

sions above show that the tensor rank over Z of both det3 and per3 is ≤ 5. On the other hand, Theorem 1.3

shows that the tensor rank over Z cannot be less than 5, and so trkZ(det3) = trkZ(per3) = 5.

3. Lower bounds. Rank methods are a popular technique to prove lower bounds on tensor rank.1

Young flattenings are rank methods that come from representation theory and are useful in giving the best

lower bounds we know. We refer the interested reader to [14, 8, 9]. The following result is straightforward

and well known, see for example [14, 8, 9].

Proposition 3.1 (Rank method). Let φ : V1⊗V2⊗ · · · ⊗Vn → Matm,m be a linear map. Suppose that

for all S ∈ Z1 we have rk(φ(S)) ≤ r, then for any tensor T ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn, we have

brk(T ) ≥ rk(φ(T ))

r
.

1An interesting line of research is to understand the power of rank methods (also known as lifting techniques) in proving

lower bounds. In this context, barrier results have been shown in [10, 11]. Further, new techniques that work around these

barriers have been developed in [4].
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We will only use a special case of a rank method that we will recall. The case we need is a generalization

of Strassen’s equations for 3-slice tensors (see, e.g., [2, Chapter 19]). Note that Km ⊗Km can be naturally

identified with Matm,m.

Theorem 3.2 (Strassen). Let T = (e1 ⊗ A + e2 ⊗ B + e3 ⊗ C) ∈ K3 ⊗ Km ⊗ Km for A,B,C ∈
Km ⊗Km = Matm,m. If A is invertible, then

brk(T ) ≥ m+
1

2
rk(BA−1C − CA−1B).

In essence, Strassen’s Theorem says for any tensor T as above, if k is the rank of BA−1C−CA−1B, then

the k × k minors of BA−1C −CA−1B vanish on tensors of border rank less than m+ dk/2e. The following

proposition is a modern interpretation of a (slight generalization) of Strassen’s theorem (see Remark 3.4

below).

Proposition 3.3. Let T,A,B,C be as in Theorem 3.2, then

brk(T ) ≥ 1

2
rk

 0 A B

−A 0 C

−B −C 0

 .

Proof. Consider φ : K3 ⊗Km ⊗Km → Mat3m,3m where

φ(e1 ⊗A+ e2 ⊗B + e3 ⊗ C) =

 0 A B

−A 0 C

−B −C 0

 .

We claim that rk(φ(S)) = 2 for any rank 1 tensor S ∈ K3 ⊗Km ⊗Km. There are many ways to see

this. For example, it follows from [8, Corollary 4.4]. Let us present a concrete approach. Any rank 1 tensor

S is of the form S = (α, β, γ) ⊗X where (α, β, γ) ∈ K3 \ {0} and X ∈ Matm,m = Km ⊗Km is of rank 1.

Thus,

φ(S) =

 0 αX βX

−αX 0 γX

−βX −γX 0

 .

Let us assume without loss of generality that α 6= 0 (the cases β 6= 0 and γ 6= 0 are similar). Perform the

following block row and column transformations:

• C3 7→ C3 − β
αC2 + γ

αC1;

• R3 7→ R3 − β
αR2 + γ

αR1.

This transforms  0 αX βX

−αX 0 γX

−βX −γX 0

 −→
 0 αX 0

−αX 0 0

0 0 0

 .

The latter matrix clearly has rank 2 since X is of rank 1, and block column and row transformations

preserve rank. Thus rank(φ(S)) = 2.

Applying Proposition 3.1, we get the required conclusion.
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Remark 3.4. When A is invertible, the following (block) Gaussian elimination procedure shows that

we can recover Strassen’s result from Proposition 3.3: 0 A B

−A 0 C

−B −C 0

 R2 7→A−1R2−−−−−−−−→
R1 7→A−1R1

 0 I A−1B

−I 0 A−1C

−B −C 0


C3 7→C3−C2(A−1B)+C1(A−1C)−−−−−−−−−−−−−−−−−−−−→

R3 7→R3+CR1−BR2

 0 I 0

−I 0 0

0 0 CA−1B −BA−1C

 .

3.1. Lower bounds for det3. In every characteristic other than two, a direct application of Proposi-

tion 3.3 gives us that rk(det3) ≥ 5, see [9]. Let us recall the determinant tensor

det3 =
∑
σ∈Σ3

sgn(σ)eσ(1) ⊗ eσ(2) ⊗ eσ(3) ∈ K3 ⊗K3 ⊗K3.

Identifying K3 ⊗ K3 with Mat3,3 via ei ⊗ ej 7→ Ei,j , we identify K3 ⊗ (K3 ⊗ K3) with K3 ⊗Mat3,3.

Under this identification, we have

det3 = e1 ⊗

0 0 0

0 0 1

0 −1 0

+ e2 ⊗

0 0 −1

0 0 0

1 0 0

+ e3 ⊗

 0 1 0

−1 0 0

0 0 0

 .

We briefly recall the proof of the following proposition from [9], as we will modify the proof to remove

the dependence on characteristic.

Proposition 3.5 ([9]). If charK 6= 2, then trk(det3) = brk(det3) = 5.

Proof. Applying Proposition 3.3, we get that

brk(det3) ≥ 1

2
rk



0 0 0 0 0 0 0 0 −1

0 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 −1 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0



.

This matrix contains only 12 nonzero entries. Six of these entries (with gray background) are in a

column or a row with no other nonzero entry, reducing our computation to a 3× 3 minor

 0 −1 1

−1 0 −1

1 −1 0

.
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This minor has rank 3 as long as characteristic is not two, and hence we have brk(det3) ≥ 9
2 = 4.5. But

since border rank is an integer, we have brk(det3) ≥ 5. On the other hand, we have brk(det3) ≤ 5 by the

expression in Section 2, giving us the required conclusion.

The problem with this argument in characteristic two is that the aforementioned 3× 3 minor has rank

2 instead of 3. This only gives that trk(det3) ≥ brk(det3) ≥ 4. Nevertheless, we are able to modify the

argument to show that the tensor rank of the 3× 3 determinant is 5. First, we need a simple lemma.

Lemma 3.6. Let T ∈ V = V1 ⊗ V2 ⊗ · · · ⊗ Vn. Suppose trk(T − S) ≥ r for every rank 1 tensor S ∈ V ,

then we have trk(T ) ≥ r + 1.

Proof. Suppose trk(T ) ≤ r, then we have T = T1 + · · · + Tk with k ≤ r, where Ti are rank 1 tensors.

Now, take S = T1 to see that trk(T − S) ≤ k − 1 ≤ r − 1 contradicting the hypothesis.

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We want to prove that trk(det3) ≥ 5. By Lemma 3.6, it suffices to prove that

trk(det3−S) ≥ 4 for every rank 1 tensor S. Observe that SL3 acts on K3 ⊗K3 ⊗K3 by g · (v1 ⊗ v2 ⊗ v3) =

gv1⊗ gv2⊗ gv3 for g ∈ SL3 and vi ∈ K3. The action of g ∈ SL3 preserves tensor rank and border rank since

it is a linear map preserving the set of rank 1 tensors. There is also an action of C3, the cyclic group on three

letters that cyclically rotates the tensor factors. This action too preserves tensor rank and border rank, and

further it commutes with the action of SL3. Thus, we have an action of SL3 × C3 on K3 ⊗K3 ⊗K3 that

preserves tensor rank and border rank. Further, the tensor det3 is invariant under this action.

Now, let S = v1 ⊗ v2 ⊗ v3 be a rank 1 tensor. We want to show trk(det3−S) ≥ 4. There are 3 cases.

• Case 1: v1, v2, v3 are linearly independent. Then without loss of generality, we can assume S =

λe1 ⊗ e2 ⊗ e3, by applying the action of an appropriate g ∈ SL3. Now, apply Proposition 3.3 to

T = (det3−λe1 ⊗ e2 ⊗ e3) to get

brk(T ) ≥ 1

2
rk



0 0 0 0 0 0 0 0 −1

0 0 0 0 0 1− λ 0 0 0

0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 −1 + λ 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0


.

Once again observe that the 5 gray entries are in a column or row with no other nonzero entries,

reducing our computation to a 4 × 4 minor. This 4 × 4 minor clearly has rank ≥ 2. So, this gives

brk(T ) ≥ d7/2e = 4 in all characteristic.

• Case 2: The span 〈v1, v2, v3〉 is 2-dimensional. In this case, without loss of generality, we can

assume S = e1 ⊗ e2 ⊗ (ae1 + be2), by using the action of SL3 × C3. Now, apply Proposition 3.3 to

T = (det3−e1 ⊗ e2 ⊗ (ae1 + be2)) to get
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brk(T ) ≥ 1

2
rk



0 0 0 0 0 0 0 0 −1

0 0 0 −a −b 1 0 0 0

0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 1 0

a b −1 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0


.

Applying the row transformation R5 7→ R5 + aR9 − bR6 and the column transformations C5 7→
C5 + bC6 and C4 7→ C4 + aC6, we see that we are back to computing the rank of the matrix in

Proposition 3.5, which as we have seen is at least 8 in all characteristics. Hence, brk(T ) ≥ 8/2 = 4

as required.

• Case 3: The span 〈v1, v2, v3〉 is 1-dimensional. Once again, without loss of generality, we can assume

S = λe1 ⊗ e1 ⊗ e1. We are reduced to computing the rank of the matrix

0 0 0 −λ 0 0 0 0 −1

0 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 1 0 0

λ 0 0 0 0 0 0 1 0

0 0 −1 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0


.

But again, the row transformations R4 7→ R4 + λR9 and R1 7→ R1 − λR8 put us back to computing

the rank of the matrix in Proposition 3.5. The rest of the analysis is as in the previous case.

While we have successfully computed the tensor rank, the border rank still remains undetermined.

Problem 3.7. What is the border rank of det3 over an algebraically closed field of characteristic two?

4. 5 × 5 and 7 × 7 determinant and permanent tensors. In this section, we study the ranks of

the 5 × 5 and 7 × 7 determinant and permanent tensors. For this section, we assume that K is a field of

characteristic 0. From the results in [9], we know that det3 has strictly larger tensor rank and border rank

than per3, i.e.,

brk(per3) = trk(per3) = 4 < 5 = trk(det3) = brk(det3).

We would like to separate pern and detn for larger n. The upper bounds we know for the tensor rank

and border rank for pern are stronger than the ones we know for detn. On the other hand, the best known

lower bounds for both are the same, see [6]. Koszul flattenings are powerful enough to separate det5 and

per5.
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4.1. Koszul flattenings. We will only recall the Koszul flattening we need and very briefly. Let
∧i

Kn

denote the ith exterior power of Kn. For any integer p, consider the map

ψp : K2p+1 → Hom(
∧p

K2p+1,
∧p+1

K2p+1) = Mat(2p+1
p ),(2p+1

p ).

where ψp(v) is the map that sends w ∈
∧p

K2p+1 to v ∧ w. Using ψ2, we define the following composite

map.

L : K5 ⊗ (K5 ⊗K5)⊗ (K5 ⊗K5) = K5 ⊗Mat25,25
ψ2⊗id−−−−→ Mat10,10 ⊗Mat25,25 = Mat250,250.

Observe that dim
∧2

K5 = dim
∧3

K5 = 10, so Hom(
∧2

K5,
∧3

K5) = Mat10,10. The last equality is in

the above is just the equality Mat10,10 ⊗Mat25,25 = Mat250,250 given by Kronecker product of matrices. It

follows from [8, Corollary 4.4] that trk(L(S)) = 6 for all rank 1 tensors in K5 ⊗K5 ⊗K5 ⊗K5 ⊗K5. This

along with Proposition 3.1 gives the following:

Lemma 4.1. For any tensor T ∈ K5 ⊗K5 ⊗K5 ⊗K5 ⊗K5, we have brk(T ) ≥ rk(L(T ))/6.

Note that both det5 and per5 are in K5 ⊗K5 ⊗K5 ⊗K5 ⊗K5. So, we get the following:

Proposition 4.2. Assume char(K) = 0. Then, we have

13 ≤ brk(per5) ≤ trk(per5) ≤ 16 < 17 ≤ brk(det5) ≤ trk(det5) ≤ 20.

Proof. The upper bounds are due to Glynn and Derksen as mentioned in Section 2. The lower bounds

come from Lemma 4.1. This requires finding the rank of a large matrix, which we do with the help of a

computer. We omit the details, referring the interested reader to the Python code available at [1].

Using a similar argument, we get the following bounds for the tensor rank and border rank of per7 and

det7.

Proposition 4.3. Assume char(K) = 0. Then, we have

42 ≤ brk(per7) ≤ trk(per7) ≤ 64,

and

62 ≤ brk(det7) ≤ trk(det7) ≤ 100.

Koszul flattenings do not seem powerful enough to separate per7 and det7. Moreover, we point out that

Koszul flattenings are helpful only for finding lower bounds for border rank of detn and pern when n is odd.
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