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Abstract. We prove the following sharp estimate for the number of spanning trees of a graph in terms of

its vertex-degrees: a simple graph G on n vertices has at most (1/n2)
∏

v∈V (G)(deg(v) + 1) spanning trees.

This result is tight (for complete graphs), and improves earlier estimates of Alon from 1990 and Kostochka

from 1995 by a factor of about 1/n (for dense graphs). We additionally show that an analogous bound holds

for the weighted spanning tree enumerator of a (nonnegatively) weighted graph as well.

1. Introduction

In this paper, we shall be concerned with enumerating spanning trees; this is a fairly old problem in

enumerative combinatorics with its origins in Kirchoff’s matrix-tree theorem [9]. This problem is closely

connected to linear algebra and has applications in geometry, number theory and algebra; see [15] for a survey

of many of the classical results, and [8, 13, 2, 3, 6] for more on applications.

Here, we shall aim to answer the following problem: writing τ(G) for the number of spanning trees of a

simple graph G, what is the best-possible upper bound for τ(G) in terms of the vertex-degrees of G? Our

main result, stated below, answers this question with a sharp bound.

Theorem 1.1. For every simple graph G, we have

τ(G) ≤ 1

|V (G)|2
∏

v∈V (G)

(deg(v) + 1). (1)

The most attractive feature of Theorem 1.1 is that the bound (1) cannot be improved in general; indeed,

Cayley’s formula (see [1]) states that the number of spanning trees of the (unweighted) complete graph Kn is

nn−2, and this is precisely what the right-hand side of (1) yields in this case.

Our theorem is by no means the first result in this direction; Kostochka [12], generalising an argument of

Alon [2], showed that every simple graph G satisfies

τ(G) ≤ 1

|V (G)| − 1

∏
v∈V (G)

deg(v). (2)

By way of comparison, our bound (1) improves on (2) by a factor of about 1/n for dense n-vertex graphs.

On the other hand, for very sparse graphs, our estimate (1) is weaker than (2), and in this regime, very

strong bounds (sharper than both of these estimates) are known for bounded-degree graphs; see [14, 2, 12],

for example.

We shall give two proofs of Theorem 1.1, a combinatorial proof by induction on a more involved proposition,

as well as a linear-algebraic proof based on Hadamard’s inequality.
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Our linear-algebraic approach allows us to generalise Theorem 1.1 to weighted graphs. To state this

generalisation, we need some definitions: given a nonnegative weight function α : E(G)→ R≥0 on a simple

graph G, we write τα(G) for the weighted spanning tree enumerator of G and degα(v) for the weighted degree

of a vertex v ∈ V (G). In other words, τα(G) =
∑
T

∏
e∈E(T ) α(e), where the sum is taken over all spanning

trees T of G, and degα(v) is the sum of the weights of the edges incident to the vertex v. In this language,

we have the following analogue of the bound (1) for nonnegatively weighted graphs.

Theorem 1.2. For every simple graph G equipped with a nonnegative weight function α : E(G)→ R≥0, we

have

τα(G) ≤ 1

|V (G)|2
∏

v∈V (G)

(degα(v) + 1). (3)

Of course, when the weight function is identically one, we recover the usual spanning tree count and

vertex-degrees of a graph, so Theorem 1.2 readily implies Theorem 1.1.

As mentioned earlier, our proof of Theorem 1.2 proceeds via Hadamard’s inequality. Here, it is also worth

mentioning that an alternate linear-algebraic proof of Theorem 1.1, that gives a different (and incomparable)

estimate for multigraphs as compared to the one in Theorem 1.2, using Schur’s inequality and some

majorization theory was independently found by Chelpanov [5].

Our work here was motivated in part by a beautiful conjecture of Ehrenborg (see [6, 10]) asserting that for

any simple bipartite graph G with partition classes A and B, we have

τ(G) ≤ 1

|A||B|
∏

v∈V (G)

deg(v). (4)

We are unfortunately unable to sharpen either Theorem 1.1 or 1.2 in any meaningful way for bipartite graphs.

However, we remain optimistic — indeed, this is our rationale for supplying two proofs of Theorem 1.1 —

that the techniques we introduce may be of some use in resolving Ehrenborg’s conjecture.

This short paper is organised as follows. The proofs of Theorems 1.1 and 1.2 are given in Section 2. We then

conclude with a discussion of some open problems in Section 3.

2. Proofs of the main result

In what follows, all graphs under consideration will be loopless. We shall deal with various types of graphs: a

simple graph is one with at most one edge between any pair of vertices, a weighted graph is a simple graph

along with a nonnegative real-valued weight function on its edges, and a multigraph is a weighted graph with

nonnegative integer weights, which we alternately think of as an unweighted graph that allows multiple edges

between pairs of vertices.

For a graph G, we write V (G) and E(G) for its vertex set and edge set respectively. For a subset U ⊂ V (G),

we denote the subgraph induced by G on U by G[U ]. For a vertex v ∈ V (G), we write deg(v) for the degree

of v in G when G is a simple graph or multigraph, and if G is a weighted graph equipped with a weight

function α, we write degα(v) for the weighted degree v in V (G), i.e., the sum of the weights of the edges

incident to v. Finally, we write τ(G) for the number of spanning trees of G when G is a simple graph or

multigraph, counting with multiplicity in the latter case, and if G is a weighted graph equipped with a weight

function α, we write τα(G) for the weighted spanning tree enumerator of G, i.e., the sum
∑
T

∏
e∈E(T ) α(e)

over all spanning trees T of G.

2



For a weighted graph G with a weight function α on its edges, we write Lα(G) for the weighted Laplacian of

G, which is the matrix whose rows and columns are indexed by the vertices of G whose entries are given by

(Lα(G))u,v =

degα(u) if u = v, and

−α({u, v}) if u 6= v

for all u, v ∈ V (G). We identify missing edges in a weighted graph with edges whose weight is 0.

Kirchoff’s theorem [9] famously asserts that every cofactor of Lα(G) equals τα(G). We shall make use of the

following result of Klee and Stamps [10, 11], generalising an older result of Temperley [16], for enumerating

spanning trees via rank-one perturbations.

Proposition 2.1. Let G be a weighted graph on n vertices equipped with a weight function α : E(G)→ R≥0.

For any vectors u = (ui)
n
i=1 and v = (vi)

n
i=1, we have(∑

i

ui

)(∑
i

vi

)
τα(G) = det

(
Lα(G) + uvT

)
.

In particular, by taking u = v = 1n to be the all-ones vectors, we have

τα(G) =
det(Lα(G) + 1n×n)

n2
,

where 1n×n denotes the n× n matrix of ones. �

We shall also need Hadamard’s inequality in the following formulation; see [7] for a proof.

Proposition 2.2. The determinant of a positive semidefinite matrix is no larger than the product of its

diagonal entries. �

We are now ready to give the first proof of Theorem 1.1 via the more general Theorem 1.2.

Proof of Theorem 1.2. Let n = |V (G)| be the number of vertices of the graph G. We start by verifying that

the matrix Lα(G) + 1n×n is positive semidefinite; indeed, this follows from observing that

xT (Lα(G) + 1n×n)x = xTLα(G)x+ xT1n×nx =
∑

u,v∈V (G)

(
α({u, v})

2

)
(xu − xv)2 +

 ∑
v∈V (G)

xv

2

≥ 0

for all x ∈ RV (G).

We are now done since

τα(G) =
det(Lα(G) + 1n×n)

|V (G)|2
≤ 1

|V (G)|2
∏

v∈V (G)

(degα(v) + 1),

the first equality following from Proposition 2.1, and the second inequality from Proposition 2.2; this

establishes the required bound. �

Our second proof of Theorem 1.1 is combinatorial and proceeds by induction. We may deduce Theorem 1.1

from the following stronger — albeit somewhat technical — result about a special class of multigraphs.
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Theorem 2.3. Let G be a multigraph on n vertices and suppose that there is a vertex u ∈ V (G) such that

G[V (G)\{u}] is simple; furthermore, let V (G)\{u} = {v1, v2, . . . , vn−1}, and for 1 ≤ i ≤ n−1, let di denote

the degree of vi in G[V (G) \ {u}] and let mi denote the number of edges between u and vi. Then, we have

τ(G) ≤

(
1−

n−1∑
i=1

1

n− 1 +mi

)
n−1∏
i=1

(di +mi + 1). (5)

Theorem 2.3 yields the following result — itself slightly stronger than Theorem 1.1 — when specialised to

simple graphs.

Corollary 2.4. For every simple graph G on n vertices and any vertex u ∈ V (G), we have

τ(G) ≤ deg(u)

n(n− 1)

∏
v∈V (G)\{u}

(deg(v) + 1) ≤ 1

n2

∏
v∈V (G)

(deg(v) + 1). (6)

Proof. The second inequality in the result follows from the fact that deg(u)/(n− 1) ≤ (deg(u) + 1)/n since

deg(u) ≤ n− 1 (as G is simple); it therefore suffices to prove the first inequality.

As in the statement of Theorem 2.3, let V (G) \ {u} = {v1, v2, . . . , vn−1}, let di denote the degree of vi

in G[V (G) \ {u}], and let mi ∈ {0, 1} denote the number of edges between u and vi. Then deg(u) =

m1 +m2 + · · ·+mn−1, and for each vi, we have deg(vi) = di +mi, so in this language, the first inequality

in (6) may be rewritten as

τ(G) ≤ m1 +m2 + · · ·+mn−1

n(n− 1)

n−1∏
i=1

(di +mi + 1). (7)

Since mi ∈ {0, 1} (as G is simple), it is easy to see that

1

n− 1 +mi
=

1

n− 1
− mi

n(n− 1)
,

whence we have

1−
n−1∑
i=1

1

n− 1 +mi
= 1−

n−1∑
i=1

(
1

n− 1
− mi

n(n− 1)

)
=
m1 +m2 + · · ·+mn−1

n(n− 1)
.

With this identity in hand, it is now clear that Theorem 2.3 implies the bound (7), and the corollary

follows. �

We now proceed to give the proof of Theorem 2.3.

Proof of Theorem 2.3. We proceed by induction on the number of edges of G. Let us treat our base case,

namely where m1 = m2 = · · · = mn−1 = 0. If n = 1, then both sides of the inequality are equal to one. If

n ≥ 2, having m1 = m2 = · · · = mn−1 = 0 means that u is an isolated vertex, so τ(G) = 0; the right-hand

side of the inequality is also seen to be zero in this case when n ≥ 2.

We may now assume that mi ≥ 1 for some i ∈ {1, . . . , n− 1}. Relabelling the vertices if necessary, we suppose

that mn−1 ≥ 1 is the maximum of m1,m2, . . . ,mn−1, and we then colour one of the mn−1 edges between u

and vn−1 red.

Now, let G′ be the multigraph obtained from G by deleting the red edge between u and vn−1, and let G∗ be

the multigraph obtained from G by contracting u and vn−1 into one vertex (which we again call u in G∗). For

each 1 ≤ j ≤ n− 2, the number of edges in G∗ between u and vj is the sum of the number of edges between
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u and vj in G and the number of edges between vn−1 and vj in G; consequently, for each 1 ≤ j ≤ n− 2, the

degree of vj in G∗ is the same as its degree in G (namely, dj +mj).

Clearly, τ(G) = τ(G′) + τ(G∗); indeed, τ(G′) is the number of spanning trees of G that do not use the red

edge, whereas τ(G∗) is the number of spanning trees of G that use the red edge. Note that both G′ and G∗

have fewer edges than G.

By applying the induction hypothesis to G′, we get

τ(G′) ≤

1−
n−2∑
j=1

1

n− 1 +mj
− 1

n− 2 +mn−1

(dn−1 +mn−1) ·
n−2∏
j=1

(dj +mj + 1)

. (8)

For 1 ≤ j ≤ n− 2, let δj ∈ {0, 1} denote the number of edges in G between vj and vn−1, so that the number

of edges in G∗ between u and vj equals mj + δj . By applying the induction hypothesis to G∗, we get

τ(G∗) ≤

1−
n−2∑
j=1

1

n− 2 +mj + δj

 n−2∏
j=1

(dj +mj + 1). (9)

Given that τ(G) = τ(G′) + τ(G∗), it suffices to prove that the sum of the right-hand sides of (8) and (9) is at

most the right-hand side of (5). After dividing by (d1 +m1 + 1)(d2 +m2 + 1) · · · (dn−2 +mn−2 + 1), this is

equivalent to showing that1−
n−2∑
j=1

1

n− 1 +mj
− 1

n− 2 +mn−1

(dn−1 +mn−1) +

1−
n−2∑
j=1

1

n− 2 +mj + δj


≤

1−
n−2∑
j=1

1

n− 1 +mj
− 1

n− 1 +mn−1

(dn−1 +mn−1 + 1),

which may be rewritten after further rearrangement as

n−2∑
j=1

(
1

n− 1 +mj
− 1

n− 2 +mj + δj

)
≤ dn−1 +mn−1

(n− 2 +mn−1)(n− 1 +mn−1)
− 1

n− 1 +mn−1
. (10)

Recall that mn−1 is the maximum of m1,m2, . . . ,mn−1, so we have

1

(n− 2 +mj)(n− 1 +mj)
≥ 1

(n− 2 +mn−1)(n− 1 +mn−1)
(11)

for each 1 ≤ j ≤ n − 2. Note that there are exactly dn−1 different j ∈ {1, 2, . . . , n − 2} with δj = 1, and

n− 2− dn−1 different j ∈ {1, 2, . . . , n− 2} with δj = 0. Summing (11) over all j ∈ {1, 2, . . . , n− 2} for which

δj = 0, we obtain ∑
{j : δj=0}

1

(n− 2 +mj)(n− 1 +mj)
≥ n− 2− dn−1

(n− 2 +mn−1)(n− 1 +mn−1)
. (12)

Recalling that δj ∈ {0, 1} for each j ∈ {1, 2, . . . , n− 2}, we now conclude that

n−2∑
j=1

1

n− 2 +mj + δj
− 1

n− 1 +mj
=

∑
{j : δj=0}

1

n− 2 +mj + δj
− 1

n− 1 +mj

=
∑

{j : δj=0}

1

(n− 2 +mj)(n− 1 +mj)

≥ n− 2− dn−1
(n− 2 +mn−1)(n− 1 +mn−1)
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=
1

n− 1 +mn−1
− dn−1 +mn−1

(n− 2 +mn−1)(n− 1 +mn−1)
, (13)

which is precisely the inequality (10) we needed to establish; this completes the proof. �

3. Concluding remarks

We remain cautiously optimistic that some of the ideas introduced here may be relevant in resolving

Ehrenborg’s conjecture (see (4)) which, to us, appears to be the main outstanding problem in this area.

For example, it is plausible that Ehrenborg’s conjecture admits a proof by induction via some analogue

of Theorem 2.3 for bipartite graphs. The main difficulty here lies in the identification of such a bipartite

analogue, and all our attempts to find such a statement have so far been unsuccessful. More generally, any

proof of Ehrenborg’s conjecture must grapple with the fact that the most natural generalisations of this

conjecture to weighted bipartite graphs are false.

We close by mentioning that it was shown by Bozkurt [4] via a linear-algebraic argument that every simple

bipartite graph G satisfies

τ(G) ≤ 1

|E(G)|
∏

v∈V (G)

deg(v),

and this remains the state of the art.
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4. Ş. B. Bozkurt, Upper bounds for the number of spanning trees of graphs, J. Inequal. Appl. (2012), 2012:269,

7. 6

5. K. Chelpanov, Alternative proof of upper bound of spanning trees in a graph, Preprint, arXiv:2103.00310.

2

6. R. Ehrenborg and S. van Willigenburg, Enumerative properties of Ferrers graphs, Discrete Comput.

Geom. 32 (2004), 481–492. 1, 2

7. D. J. H. Garling, Inequalities : a journey into linear analysis, Cambridge University Press, Cambridge,

2007. 3

8. Y. Ihara, Discrete subgroups of PL(2, kp), Proc. Sympos. Pure Math. IX (1966), 272–278. 1
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