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Successes of AI
Kate Saenko -- Boston University

2015                                                    2020
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Automate tasks previously only done by humans
Kate Saenko -- Boston University

ZeroWaste Project at BU

Driving scene segmentation Project at BU



What is Machine Learning?

https://ai-art.tokyo/
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What is Machine Learning?

• Machine learning powers Artificial Intelligence
• Software algorithm that “learns” to make decisions from examples

7

Kate Saenko -- Boston University

Dataset of examples

training

Predictive 
algorithm “2”“3”

correction
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What is Machine Learning?

• Machine learning powers Artificial Intelligence
• Software algorithm that “learns” to make decisions from examples

8

Kate Saenko -- Boston University

Dataset of examples

training

Predictive 
algorithm

new inputs

Predictive 
algorithm

testing

“4”“2”
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“Deep” Learning == Neural Networks
• a popular algorithm is a deep Neural Network
• It learns features (patterns) from data – does not rely on hand-coded ones

9

Kate Saenko -- Boston University

Dataset of examples

training

Predictive 
algorithm “2”

Neural Network
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Neural Networks”

Deep Learning 2020, Brian Kulis & Kate Saenko
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Neurons in the brain…

Neurons are cells that process chemical and electrical signals and transmit 
these signals to neurons and other types of cells

Kate Saenko -- Boston University
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Machine Learning 2017, Kate Saenko
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Real vs Artificial Neural Network

 Artificial neural networks: consist of many inter-connected neurons 
organized in layers

 Neurons: each neuron receives inputs from neurons in previous layer, passes 
its output to next layer

 Activation: neuron’s output between 1 (excited) and 0 (not excited)

input dog

cat

Kate Saenko -- Boston University
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Deep Learning 2020, Brian Kulis & Kate Saenko
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Neural Networks learn features (patterns)

Image: http://www.amax.com/blog/wp-content/uploads/2015/12/blog_deeplearning3.jpg

…… average 
active patch

all neurons in layer 1

Kate Saenko -- Boston University
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Deep Learning 2020, Brian Kulis & Kate Saenko 13Image: http://www.amax.com/blog/wp-content/uploads/2015/12/blog_deeplearning3.jpg

Kate Saenko -- Boston University

Neural Networks learn hierarchical features
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Talk outline
 What are AI and machine learning?
 Dataset bias
 Solutions to dataset bias
 Trash
 Language to the rescue

Kate Saenko -- Boston University
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AI makes mistakes…
Kate Saenko -- Boston University



Dataset Bias
https://ai-art.tokyo/



Boston University Slideshow Title Goes Here

What your AI is trained on What it’s asked to label

Problem: dataset bias

“Dataset Bias”
“Domain Shift”

vs

missing detections

Kate Saenko -- Boston University

Adapting visual category models to new domains K Saenko, B Kulis, M Fritz, T Darrell, ECCV, 2010
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When does dataset bias happen?
From one city to another

From simulated to real control

Kate Saenko -- Boston University

From web to robot
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When does dataset bias happen?
Kate Saenko -- Boston University

From one demographic to another

From one culture to another
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html

From one city to another

From simulated to real control

From web to robot

https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
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Dataset bias reduces accuracy
Kate Saenko -- Boston University

90% 
accuracy

70% 
accuracy
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Dataset bias reduces accuracy
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Dataset bias reduces accuracy
Kate Saenko -- Boston University

Do ImageNet Classifiers Generalize to ImageNet? [Recht et al. 2019]

TRAIN: Original ImageNet

TEST: New ImageNet

11% – 14% 
accuracy 
drop!
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Why does dataset bias affect machine learning?

Kate Saenko -- Boston University

Training: biased dataset

e.g., adult faces

test

Poor 
accuracy



Boston University Slideshow Title Goes Here

Problem: dataset bias

Kate Saenko -- Boston University

Training: biased dataset

e.g., mostly white 
faces

test

Poor 
accuracy
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 Collect and label more 
representative data

 Cons: $$$, time

 Long-tailed distribution of labels

5/23/2022

25

Solutions to dataset bias



A learning solution 
to dataset bias

https://ai-art.tokyo/
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Problem: dataset bias

Kate Saenko -- Boston University

Source Domain
lots of labeled data unlabeled data

?

Goal: learn a classifier ℎ that achieves low expected loss under 
distribution 𝐷𝐷𝑇𝑇

Target Domain

𝐷𝐷𝑆𝑆(𝑥𝑥)
𝐷𝐷𝑇𝑇(𝑥𝑥)
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Kate Saenko 5/23/2022

28

Divergence between two distributions; B is the set of measurable subsets 
under D and D’

We expect the first and third terms to be small, the problem is the second

Theorem: target error is bounded by the source error, the difference 
between labeling functions 𝑓𝑓𝑆𝑆 and 𝑓𝑓𝑇𝑇, and the divergence between the 
distributions 𝐷𝐷𝑆𝑆 and 𝐷𝐷𝑇𝑇

A theory of learning from different domains, Shai Ben-David et al. 2009
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Source Data + Labels

backpack chair

Classifier
loss

What causes poor performance?

Classifier 
Layer

ADDA: Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." CVPR 2017.

Kate Saenko -- Boston University

Network 
Layers

Network 
Layers

Unlabeled Target Data

? ?

Problem: features are different
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What causes poor performance?

• Train and test data distributions are different
• Model lacks discriminative features

30
Figure from Ganin and Lempitsky. "Unsupervised domain adaptation by backpropagation." ICML 2015

Training 
points

Test 
points

Kate Saenko -- Boston University
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Source Data + Labels

backpack chair

Classifier
loss

IDEA 1: Adversarial domain alignment

Classifier

ADDA: Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." CVPR 2017.

Kate Saenko -- Boston University

NetworkNetwork

Unlabeled Target Data

? ?

Goal: align distributions
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Source Data + Labels

backpack chair

Classifier
loss

IDEA 1: Adversarial domain alignment

Classifier

ADDA: Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." CVPR 2017.

Kate Saenko -- Boston University

Network

Unlabeled Target Data

? ?

Goal: align distributions

Network

GAN 
loss

Domain
Discriminator
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Source Data + Labels

backpack chair

Classifier
loss

IDEA 1: Adversarial domain alignment

Classifier

ADDA: Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." CVPR 2017.

Kate Saenko -- Boston University

Network

Unlabeled Target Data

? ?

Goal: align distributions

Network

GAN 
loss

Domain
Discriminator
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Domain alignment: feature visualization on digits

Effect of adaptation on features in MNIST → MNIST-M shift 
(top feature extractor layer)

Figure from Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." ICML 2015

Kate Saenko -- Boston University
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Source Data + Labels

IDEA 2: Pixel-space domain alignment

Classifier

Kate Saenko -- Boston University

Network

Unlabeled Target Data

CyCADA, Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell, ICML 2018
From source to target and back: Symmetric Bi-Directional Adaptive GAN, Russo et al. CVPR 2018

Network
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Source Data + Labels

IDEA 2: Pixel-space domain alignment

Classifier

Kate Saenko -- Boston University

Network

Unlabeled Target Data

Translated Source Data + Labels

CyCADA, Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell, ICML 2018
From source to target and back: Symmetric Bi-Directional Adaptive GAN, Russo et al. CVPR 2018

Network

Network



Does domain alignment 
improve o.o.d accuracy?

https://ai-art.tokyo/



i.i.d testing overestimates generalization

• The vast majority of datasets have i.i.d test sets
• This over-estimates generalization of models
• Solution: evaluate on out-of-distribution (o.o.d) data

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)
𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)



O.O.D datasets

39

Kate Saenko

Office-31 4K, Saenko et al 2010

VisDA 280K, Peng et al 2017 DomainNet 0.6M, Peng et al 2019
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Wilds dataset (Koh et al., 2021) contains labeled data from the source domains (for training), validation domains (for 
hyperparameter selection), and target domains (for held-out evaluation). In Wilds 2.0, we extend these datasets with 
unlabeled data

Kate Saenko

WILDS Dataset (Koh et al., 2021) 
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Results on image classification
Kate Saenko  - 2022

MNIST USPSSVHN

MNIST MNIST MNIST

MNIST

USPS

99.0           67.1          68.1           77.0

76
90 89

Takeaway:
Domain adaptation can improve accuracy 
on target data without any labels; 
“unsupervised fine-tuning”

ADDA: Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." CVPR 2017.

[Ganin, ICML 2015]
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Results on image classification

Universal Domain Adaptation through Self Supervision, Saito, Kim, Sclaroff, Saenko, NeurIPS, 2020

 Example: syn2real object recognition

 6 categories missing in target (“partial” shift) 

 improves accuracy compared to SOTA

Kate Saenko -- Boston University

+14%

. . . . . .
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 Labeled data is very expensive
 Learn from simulation?

5/23/2022
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Application: Image segmentation for driving
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Alignment: make training data look like test data

CycleGAN. Zhu*, Park*, Isola, Efros. ICCV 2017.

Kate Saenko -- Boston University
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Segmentation Results: Train on GTA game, test on real city
Test Image Ground Truth

Before Adaptation After Adaptation

Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell, ICML18.

Kate Saenko -- Boston University
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Pixel-level alignment with CyCADA [Hoffman’18]

CyCADA, Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell, ICML 2018

Kate Saenko  - 2022

90.4%

(cf. 76% without pixel alignment)

Takeaway:
Unsupervised image-to-image translation can change the 
image style to match the target domain



A Real-world Small Data 
Problem

Classifying recyclableshttps://ai-art.tokyo/



Only 30% of waste 
is recycled

• The EPA estimates that 75% of 
the American waste stream is 
recyclable, but we only recycle 
about 30% of it.

• Dull, dirty, dangerous job



ZeroWaste Dataset: Towards 
Deformable Object Segmentation in 

Cluttered Scenes
Dina Bashkirova, Mohamed Abdelfattah, Ziliang Zhu,

James Akl, Fadi Alladkani, Ping Hu,
Vitaly Ablavsky, Berk Calli, Sarah Adel Bargal and Kate Saenko

https://github.com/dbash/zerowaste

CVPR 2022

https://github.com/dbash/zerowaste


TACO dataset

ReSortIT dataset

Labeled Waste in the Wild dataset

Real MRF facility (our setup)

our ZeroWaste dataset 



ZeroWaste: Overview
● Task: remove non-paper objects from 

the conveyor belt;
● Annotated objects of four classes: 

cardboard, soft plastic, rigid plastic 
and metal;

● 4503 fully annotated frames 
(ZeroWaste-f)

● 6212 unlabeled frames (ZeroWaste-s);
● 1410 frames before and after 

collection (ZeroWaste-w)



ZeroWaste: key 
differences

● A lot of background clutter and 
occlusions

● Objects out of context



ZeroWaste: key 
differences

● A lot of background clutter and 
occlusions

● Objects out of context
● Highly deformable objects



ZeroWaste: key 
difference

● A lot of background clutter and 
occlusions

● Objects out of context
● Highly deformable objects
● Translucent objects



Summary: Learning Generalizable Visual 
Representations

• O.o.d testing is more realistic than i.i.d
• Can learn domain invariance using self supervision, “bridge” domain
• Real-world small data problem: recycling dataset
• Learning from language helps
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