Machines take me by surprise with great frequency.— Alan Turing

Problem Set 5] PCMI USS, Summer 2023

1. (Unambiguous State Discrimination) Last week, your were gifted a qubit |¢)) and
told that there is a 50% chance that [i) = |0) and a 50% chance that |¢)) = |4). At that
time, you investigated the probability with which these states can be distinguished. In
the intervening days, however, you’ve had an epiphany, and you've decided never to
be wrong again. As a result of your new way of living, you wish to come up with a
protocol that satisfies these properties

o If the state |[¢)) = |0), then with some positive probability, you answer “Zero

state.” Otherwise, you answer “Don’t know.”

e If the state |[¢)) = |+), then with some positive probability, you answer “Plus

(a)
(b)

state.” Otherwise, you answer “Don’t know.”

Show that if your strategy is to measure |¢)) and an orthogonal basis of C?, you
cannot achieve both objectives.

Consider instead this strategy: You flip a coin. If you see heads, you measure in
the computational basis. If you see tails, you measure in the Hadamard basis.
Show that you may now achieve both of your objectives. With what probability
does your strategy correctly identify the state [¢)?

Now investigate whether there is a better strategy that deploys a more general
POVM. If you want to think about this on your own first, do so now. Otherwise,
read on for some suggestions.

Let Ey = [1)(1| and E; = |—)(—| be the projections onto the 1 state and the
minus state. Let B = Ey + E;. Write the matrix form (yellow) for B. Compute
the eigenvalues of B.

Let ¢ denoter a real number. Consider the operator Ey = [ —cFEy—cE;. Since you
found the eigenvalues of Ey + Ej, it should be easy to find the eigenvalues of Ej.
What is the largest value of ¢ for which Fj is a positive operator (or equivalently,
E5 has nonnegative eigenvalues.)

Let ¢ be the value you found in (e). Explain why & = {cEy, cE;, Ey} fits the
definition of a POVM.

Suppose this POVM is used to measure |0). What are the possible results of this
measurement and their probabilities?

Repeat for |+).

Use the measurment &£ to come up with a strategy identifying our unknown state
|1)) that satisfies both objectives. With what probability does your strategy suc-
ceed? How does this compare with your answer to (b)?



()

Generalize in any way you want or can.

2. (Quantum Swap)

(a)

(b)

()

Your friend Jeft is very excited about a cool 2-qubit circuit U that has the following
effect on the computational basis:

100) +— [00), [01) —> [10), [10) — [01), [11) — |11).

Write the matrix form (yellow) of U. Is U unitary?

Jeff claims that for any 2-qubit product state, U swaps the two qubits. That is,
for any qubits |¢) and |¢), we have

Ulih)|¢) = |)|4)-

Is Jeff correct?

Create a quantum circuit to perform this operation using only familiar single
qubit operations and CNOT (the controlled-NOT). (You may be able to get away
with only CNOT’s).

3. In class, we considered the question of distinguishing the three quantum states [1;) =
10), |12) = —3]0) + */7§|1>, and |i3) = —3]0) — ‘/7§|1> We gave a reasonable strategy
involving a measurement in the computational basis that succeeded with probability
7/12. Then we gave a better strategy involving a non-orthogonal POVM, achieving
a success probability of 2/3. We then proved that this strategy is optimal. We left
open the question of whether a POVM was necessary or whether you can get away
with a measurement in an orthogonal basis. For this question, I would like you to
investigate how well you can do starting by measuring in an orthogonal basis other
than the computational basis.

(a)

(b)

Is there a strategy which starts with an orthogonal measurement and has success
probability more than 7/127 (You might try the |+), |—) basis, for example, or a
different basis, for starters.). Can you achieve 2/3 in this way?

Now suppose that the states live in three dimensions; that is suppose that the
[4;) are vectors in C* with basis |0),[1),]2). Using an orthogonal measurement
on C?, with what probability can the states be distinguished?

How about if the [¢;) live in C*, i.e, are two qubit states with the second qubit
equal to |0) in each case? (That is, [¢)1) = [00), [1s) = —3]|00) + \/73\10% and
¢s) = —3/00) — 3*[10).)

Two random unit vectors in R™ are chosen. How big do you expect their inner
product to be? What does this mean geometrically? [Implicit here is the question
of what “random unit vectors” means and how you might generate them.]

How does your answer to compare to the inner products we found for the impor-
tant vectors involved in Grover’s Algorithm?



