Quantum Hamiltonian Complexity: Day 2

August 1, 2023
topics: the Circuit to Hamiltonian construction in detail

1. Show that the cat state $\left(|0\rangle^{\otimes n}+|1\rangle^{\otimes n}\right) / \sqrt{2}$ can not be the unique ground state of any local Hamiltonian.
2. Let A be the following 2-qubit operator:

$$
A=\frac{1}{2}(I \otimes|0\rangle\langle 0|+I \otimes|1\rangle\langle 1|-H \otimes|0\rangle\langle 1|-H \otimes|1\rangle\langle 0|)
$$

(a) Calculate the expected value of A for each of the following states:
i. $\left|\phi_{1}\right\rangle=|0\rangle|0\rangle$
ii. $\left|\phi_{2}\right\rangle=|+\rangle|1\rangle$
iii. $\left|\phi_{3}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|+\rangle|1\rangle)$
(Note: A is the $H_{\text {prop }}$ term for a one qubit circuit consisting of a Hadamard gate.
(b) Show that A is Hermitian and positive semi-definite. One of the previous states was an eigenvector with eigenvalue 0 . Can you find an orthogonal eigenstate also with eigenvalue 0 ?
3. Why do we need a forward propagation term and a backward propagation term? Why can't we have just one?
4. The clock construction shown in lecture has been improved to show that the 2-local Hamiltonian problem is QMA-hard. How hard is the 1-local Hamiltonian problem?
5. In class we proved the following Lemma:

Lemma: Let H_{1} and H_{2} be two Hermitian positive semi-defininte matrices whose second eigenvalue is at least λ. Let N_{1} and N_{2} be the null spaces of the two Hamiltonians and suppose that the angle between N_{1} and N_{2} is at least θ. Then the smallest eigenvalue of $H_{1}+H_{2}$ is at least $\lambda \sin ^{2}(\theta / 2)$.
(a) What lower bound does the lemma give when N_{1} and N_{2} are orthogonal subspaces?
(b) Can you prove a better lower bound for this case?
6. (Challenge) We proved that for Hermitian and positive semi-definite matrices H_{1} and H_{2} with null spaces N_{1} and N_{2}, if the second eigenvalue of each is at least λ and the angle between N_{1} and N_{2} is at least θ, then the smallest eigenvalue of $H_{1}+H_{2}$ is at least $\lambda \sin ^{2}(\theta / 2)$. What happens if there are three matrices? k matrices? (Suppose the dimension is d; i.e. $H \in \mathbb{C}^{d \times d}$.) (Note: I'm not sure of the answer)

