Quantum Hamiltonian Complexity Part III

Sandy Irani
Computer Science Department UC Irvine

Recap: The Local Hamiltonian Problem

Input:

H_{1}, \ldots, H_{r} :
Hermitian positive semi-definite matrices
operating on k qudits of dimension d with bounded norm $\left\|H_{i}\right\| \leq 1$.
n qudits in the system.

Recap: The Local Hamiltonian Problem

Input:

H_{1}, \ldots, H_{r} :
Hermitian positive semi-definite matrices
operating on k qudits of dimension d with bounded norm $\left\|H_{i}\right\| \leq 1$.
n qudits in the system.

Two real numbers E and $\Delta \geq 1 / \operatorname{poly}(n)$

Output:

Is the smallest eigenvalue of $H=H_{1}+\cdots+H_{r} \leq E$ or are all eigenvalues $\geq E+\Delta$?

Recap: The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a polynomial time Turing Machine M such that on input x, where $|x|=n:$

If $x \in L$, then there is a witness y such that $M(x, y)$ accepts.

If $x \notin L$, then for every y, $M(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$
Boolean Satisfiability is NP-complete

Recap: The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a polynomial time Turing Machine M such that on input x, where $|x|=n:$

If $x \in L$, then there is a witness y such that $M(x, y)$ accepts.

If $x \notin L$, then for every y, $M(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$
Boolean Satisfiability is NP-complete

QMA

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in \mathrm{YES}$, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.

If $x \in \mathrm{NO}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3$.
$|\phi\rangle$ has poly(n) qubits.
Local Hamiltonian is QMA-complete

Recap: The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a polynomial time Turing Machine M such that on input x, where $|x|=n:$

If $x \in L$, then there is a witness y such that $M(x, y)$ accepts.

If $x \notin L$, then for every y, $M(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$
Boolean Satisfiability is NP-complete

QMA

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in \mathrm{YES}$, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 3 \nless 3.1-\frac{1}{2^{n}}$
If $x \in$ NO, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1\left\langle 3 . \quad \frac{1}{2^{n}}\right.$
$|\phi\rangle$ has poly (n) qubits.
Local Hamiltonian is QMA-complete

Recap: Local Hamiltonian is in QMA

Boolean
 Satisfiability
 $\in N P$

Is $\Phi(y)$ satisfiable?
Witness:
Satisfying
assignment y

Recap: Local Hamiltonian is in QMA

Boolean Satisfiability

Local

Hamiltonian

$$
\begin{gathered}
\text { Is } \Phi(y) \\
\text { satisfiable? } \\
\text { Witness: } \\
\text { Satisfying } \\
\text { assignment } y
\end{gathered}
$$

Is there a state whose energy (according to H)
is less than E ?
$\langle\Phi| H|\Phi\rangle \leq E$?
Witness: |Ф〉

Recap: Local Hamiltonian is in QMA

Boolean
 Satisfiability

Is $\Phi(y)$ satisfiable?
 Witness:
 Satisfying assignment y

Is there a state whose
Local
Hamiltonian
\in QM energy (according to H)
is less than E ?
$\langle\Phi| H|\Phi\rangle \leq E$?
Witness: $|\Phi\rangle$

Guarantee:

There exists $|\Phi\rangle$ such that $\langle\Phi| H|\Phi\rangle \leq E$ OR
For all $|\Phi\rangle, \quad\langle\Phi| H|\Phi\rangle \geq E+\Delta$

Recap: Local Hamiltonian is QMA-hard

Start with a generic language L in QMA
Is $x \in L$?

Is there a quantum state $\phi\rangle$ that causes this quantum circuit to output 1 with high probability?

Recap: Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA
Is $x \in L$?

$$
\begin{array}{cc}
& \text { k-Local } \\
\Rightarrow & \text { Hamiltonian: } \\
& \left(H_{x}, E, \Delta\right)
\end{array}
$$

Is there a quantum state $\phi\rangle$ that causes this quantum circuit to output 1 with high probability?

Is the ground energy of H_{x}
$\leq E$ or $\geq E+\Delta ?$

Recap: Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA
Is $x \in L$?

$$
\begin{array}{cc}
& 5 \\
& \text { K-Local } \\
\Rightarrow & \text { Hamiltonian: } \\
& \left(H_{x}, E, \Delta\right)
\end{array}
$$

Is there a quantum state $\phi\rangle$ that causes this quantum circuit to output 1 with high probability?

Is the ground energy of H_{x}
$\leq E$ or $\geq E+\Delta$?

The Hamiltonian H_{x}

$$
\begin{gathered}
\left.\left.H_{t}=\frac{1}{2}[|\otimes| t\rangle\langle t|+|\otimes| t-1\right\rangle\langle t-1|+U_{t} \otimes|t\rangle\langle t-1|-U_{t}^{\dagger} \otimes|t-1\rangle\langle t|\right] \\
H_{\text {prop }}=\sum_{t=1}^{\tau} H_{t}
\end{gathered}
$$

Ground State:

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} U_{t-1} \cdots U_{2} U_{1}|x\rangle|\xi\rangle \otimes|t\rangle
$$

Spectral Gap:

$$
\geq \frac{1}{2(T+1)^{2}}
$$

The Hamiltonian H_{x}

$$
\begin{gathered}
\left.\left.H_{t}=\frac{1}{2}[|\otimes| t\rangle\langle t|+|\otimes| t-1\right\rangle\langle t-1|+U_{t} \otimes|t\rangle\langle t-1|-U_{t}^{\dagger} \otimes|t-1\rangle\langle t|\right] \\
H_{\text {prop }}=\sum_{t=1}^{T} H_{t}
\end{gathered}
$$

Ground State:

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} U_{t-1} \cdots U_{2} U_{1}|x\rangle|\xi\rangle \otimes|t\rangle
$$

Spectral Gap:
$\geq \frac{1}{2(T+1)^{2}}$

Input $x=x_{1} x_{2} \cdots x_{n}$

$$
H_{\text {init }}=\sum_{j=1}^{n}\left|\overline{x_{j}}\right\rangle\left\langle\left.\overline{x_{j}}\right|_{j} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{\text {clock }}\right.
$$

The Hamiltonian H_{x}

$$
\begin{gathered}
\left.\left.H_{t}=\frac{1}{2}[|\otimes| t\rangle\langle t|+|\otimes| t-1\right\rangle\langle t-1|+U_{t} \otimes|t\rangle\langle t-1|-U_{t}^{\dagger} \otimes|t-1\rangle\langle t|\right] \\
H_{\text {prop }}=\sum_{t=1}^{T} H_{t}
\end{gathered}
$$

Ground State:

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} U_{t-1} \cdots U_{2} U_{1}|x\rangle|\xi\rangle \otimes|t\rangle
$$

Spectral Gap:
$\geq \frac{1}{2(T+1)^{2}}$

Input $x=x_{1} x_{2} \cdots x_{n}$

$$
H_{\text {init }}=\sum_{j=1}^{n}\left|\overline{x_{j}}\right\rangle\left\langle\left.\overline{x_{j}}\right|_{j} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{\text {clock }}\right.
$$

Computation accepts:

$$
H_{\text {out }}=|0\rangle\left\langle\left. 0\right|_{1} \otimes \mid T\right\rangle\left\langle\left. T\right|_{\text {clock }}\right.
$$

The Hamiltonian H_{x}

$$
\begin{gathered}
\left.\left.H_{t}=\frac{1}{2}[|\otimes| t\rangle\langle t|+|\otimes| t-1\right\rangle\langle t-1|+U_{t} \otimes|t\rangle\langle t-1|-U_{t}^{\dagger} \otimes|t-1\rangle\langle t|\right] \\
H_{\text {prop }}=\sum_{t=1}^{T} H_{t}
\end{gathered}
$$

Ground State:

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} U_{t-1} \cdots U_{2} U_{1}|x\rangle|\xi\rangle \otimes|t\rangle
$$

Spectral Gap:
$\geq \frac{1}{2(T+1)^{2}}$

Input $x=x_{1} x_{2} \cdots x_{n}$

$$
H_{\text {init }}=\sum_{j=1}^{n}\left|\bar{x}_{j}\right\rangle\left\langle\left.\bar{x}_{j}\right|_{j} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{\text {clock }}\right.
$$

Computation accepts:

$$
\begin{aligned}
& H_{\text {out }}=|0\rangle\left\langle\left. 0\right|_{1} \otimes \mid T\right\rangle\left\langle\left. T\right|_{\text {clock }}\right. \\
& H=H_{\text {prop }}+H_{\text {init }}+H_{\text {out }}
\end{aligned}
$$

Local Hamiltonian Variations

Locality

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

Local Hamiltonian Variations

Locality

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

Local Hamiltonian Variations

Locality

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

$\{|0\rangle,|1\rangle, \ldots,|d-1\rangle\}$

Particle Dimension

Geometry

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
 [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
 [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
 [Kitaev 1995]

2-dimensional 2-local 6 -state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
[Kitaev 1995]
2-dimensional 2 -local 6 -state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]

1-dimensional 13-state Hamiltonian is QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
[Kitaev 1995]
2-dimensional 2 -local 6 -state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]

1-dimensional 13-state Hamiltonian is QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]
Improved to 8-state [Hallgren, Nagaj,
Narayanaswami 2013]

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
[Kitaev 1995]
2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]

1-dimensional 13-state Hamiltonian is QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]
Improved to 8-state
[Hallgren, Nagaj,
Narayanaswami 2013]

Adiabatic Quantum Computation

$H_{\text {start }}$
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. $|00 \cdots 00\rangle$)

Adiabatic Quantum Computation

$H_{\text {start }}$
Start system in the ground state of a Hamiltonian which is easy to prepare. (e.x. $|00 \cdots 00\rangle$)

Adiabatic Quantum Computation

Evolve Hamiltonian from
$H_{\text {start }}$ to $H_{\text {final }}$ over time T
$H_{s t a r t}$
Start system in the ground state of a Hamiltonian which is easy to prepare.
(e.x. $|00 \cdots 00\rangle$)

Final ground state encodes the answer to a computation.

Adiabatic Quantum Computation

Adiabatic Quantum Computation

Adiabatic Theorem

Final state will be close to the ground state of $H_{\text {final }}$ if speed of
transition is

$$
\Omega\left(\left\|H_{\text {final }}-H_{\text {start }}\right\| / \frac{\left.\Delta(H(t))^{2+\delta}\right)}{\Delta(H): \text { Spectral gap of } H}\right.
$$

Adiabatic Quantum Computation

Evolve Hamiltonian from

Start system in the ground state of a Hamiltonian which is easy to prepare.
(e.x. $|00 \cdots 00\rangle$)

$$
H(t)=\frac{(T-t)}{T} \cdot H_{\text {start }}+\frac{t}{T} \cdot H_{\text {final }}
$$

Adiabatic Theorem

Final state will be close to the ground state of $H_{\text {final }}$ if speed of
transition is
$\Omega\left(\left\|H_{\text {final }}-H_{\text {start }}\right\| / \Delta(H(t))^{2+\delta}\right)$
$\Delta(H)$: Spectral gap of H

The Adiabatic Model

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science 2001]
Adiabatic computation may be more robust against certain kinds of errors.
[Childs, Farhi, Preskill]

The Adiabatic Model

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science 2001]
Adiabatic computation may be more robust against certain kinds of errors.
[Childs, Farhi, Preskill]

> | Evolve Hamiltonian from |
| :--- |
| $H_{\text {start }}$ to $H_{\text {final }}$ over time T |

$H_{\text {start }}$

Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. $|00 \cdots 00\rangle$)
$H_{\text {final }}$
Final ground state encodes the answer to an instance of Boolean Satisfiability

The Adiabatic Model

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science 2001]
Adiabatic computation may be more robust against certain kinds of errors.
[Childs, Farhi, Preskill]

> | Evolve Hamiltonian from |
| :--- |
| $H_{\text {start }}$ to $H_{\text {final }}$ over time T |

$H_{\text {start }}$

Start system in the ground state of a Hamiltonian which is easy to prepare. (e.x. $|00 \cdots 00\rangle$)

What is the spectral gap of the intermediate Hamiltonians?
$H_{\text {final }}$
Final ground state encodes the answer to an instance of Boolean Satisfiability

The Adiabatic Model

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science 2001]
Adiabatic computation may be more robust against certain kinds of errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?

- Can a quantum circuit simulate an adiabatic computation?
- Can an adiabatic computation perform any computation performed by a quantum circuit?

The Adiabatic Model

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science 2001]
Adiabatic computation may be more robust against certain kinds of errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?

- Can a quantum circuit simulate an adiabatic computation? Yes - [van Dam, Mosca, Vazirani]
- Can an adiabatic computation perform any computation performed by a quantum circuit?

Yes...

Adiabatic Quantum Computation

Adiabatic Theorem

Final state will be close to the ground state of $H_{\text {final }}$ if speed of
transition is

$$
\Omega\left(\left\|H_{\text {final }}-H_{\text {start }}\right\| / \Delta(H(t))^{2+\delta}\right.
$$

Adiabatic Quantum Computation

Evolve Hamiltonian from
$H_{\text {start }}$
Start system in the ground state of a Hamiltonian which is easy to prepare. (e.x. $|00 \cdots 00\rangle$)

$$
H(t)=\frac{(T-t)}{T} \cdot H_{\text {start }}+\frac{t}{T} \cdot H_{\text {final }}
$$

Adiabatic Theorem

Final state will be close to the ground state of $H_{\text {final }}$ if speed of
transition is
$\Omega\left(\left\|H_{\text {final }}-H_{\text {start }}\right\| / \Delta(H(t))^{2+\delta}\right.$

$$
H_{\text {final }}=H_{\text {prop }}
$$

Hamiltonian whose ground state is the computation state for Quantum Circuit C with input x.
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

Circuit to Adiabatic Computation

$H_{\text {start }}$ has unique ground state:

Circuit to Adiabatic Computation

$H_{\text {start }}$ has unique ground state:

Initial X gates set the input bits according to input x
$H_{\text {final }}$ is $H_{\text {prop }}$ for this circuit:

Circuit to Adiabatic Computation

$H_{\text {start }}$ has unique ground state:

Initial X gates set the input bits according to input x

Adiabatic computation should end up in a state close to:
$H_{\text {final }}$ is $H_{\text {prop }}$ for this circuit:

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} \cdots U_{1}|00 \cdots 00\rangle|t\rangle
$$

Circuit to Adiabatic Computation

$H_{\text {start }}$ has unique ground state:

Initial X gates set the input bits according to input x

Adiabatic computation should end up in a state close to:

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} \cdots U_{1}|00 \cdots 00\rangle|t\rangle
$$

Measure:
$|T\rangle\left\langle\left. T\right|_{\text {clock }}\right.$ then $\left.\mid 1\right\rangle\left\langle\left. 1\right|_{\text {out }}\right.$
$H_{\text {final }}$ is $H_{\text {prop }}$ for this circuit:

Lower Bound Spectral Gap

$H_{\text {start }}=$
$H_{\text {final }}=$

Spectral gap of:
$(1-s) H_{\text {start }}+s H_{\text {final }}$ for $s \in[0,1]$ is $\geq \frac{1}{2(T+1)^{2}}$

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
[Kitaev 1995]
2-dimensional 2-local 6-state Hamiltonian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltonian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]

1-dimensional 12-state Hamiltonian is QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

2D Local Hamiltonian Reduction

Kitaev Construction:

2D Local Hamiltonian Reduction

Kitaev Construction:

$$
\underset{\substack{\text { outation Qubits }}}{\left.\left.\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T}\right|_{t}\right\rangle \psi_{\text {Clock Qubits }}^{\left|1^{t+1} 0^{T-t}\right\rangle}}
$$

The "Clock" is distributed throughout the entire quantum system:
State space for a particle:

$$
\{|0\rangle,|1\rangle\} \otimes\{|\bigcirc\rangle,|\bigcirc\rangle,|\bigcirc\rangle\}
$$

$$
\cup\{|\bigcirc\rangle,|O\rangle,|\bigcirc\rangle\}:
$$

2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:

2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
Some particles have a computation bit embedded in their state.

2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
Some particles have a computation bit embedded in their state.

Enforce valid clock state with "forbidden" local configurations:

2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

Applied to two particles in \square

2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

Applied to two particles in \square

Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid clock state.

Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid clock state.

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y

Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid clock state.

Vertices: Standard basis of clock states Edge (x, y) if a propogation term converts x to y

Valid Clock States

2D Local Hamiltonian Reduction

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete
[Kitaev 1995]
2-dimensional 2 -local 6 -state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]

1-dimensional 13-state Hamiltonian is QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

Improved to 8-state
[Hallgren, Nagaj,
Narayanaswami 2013]

1-Dimensional Local Hamiltonian

Classical Methods:
DMRG (Density Matrix Renormalization Group) [White 1992]

1-Dimensional Local Hamiltonian

Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P :

1-Dimensional Local Hamiltonian

Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P :

$T(n)=2 d^{2} T(n / 2)+O(1)$

$$
T(n)=O\left(n^{\log \left(2 d^{2}\right)}\right)
$$

1-Dimensional Local Hamiltonian

Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P :

$$
\begin{gathered}
T(n)=2 d^{2} T(n / 2)+O(1) \\
\Rightarrow \\
T(n)=O\left(n^{\log \left(2 d^{2}\right)}\right)
\end{gathered}
$$

Why the difference?

$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T}\left|\psi_{t}\right\rangle\left|1^{t+1} 0^{T-t}\right\rangle
$$

1D Local Hamiltonian

1D Local Hamiltonian

1D Local Hamiltonian

Active site triggers

1D Local Hamiltonian

$T(n+2)$ qubits

Clairvoyance Lemma

1D clock: can't eliminate all invalid clock states with a local term
Configuration Graph:
Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y

Clairvoyance Lemma

1D clock: can't eliminate all invalid clock states with a local term
Configuration Graph:
Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y
Clock configuration with cost 0 : \bigcirc
Clock configuration with cost $\geq 1: \bigcirc \quad|a b\rangle\langle a b|$

Clairvoyance Lemma

1D clock: can't eliminate all invalid clock states with a local term
Configuration Graph:
Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y
Clock configuration with cost 0: O
Clock configuration with cost $\geq 1: \bigcirc \quad|a b\rangle\langle a b|$

Clairvoyance Lemma

1D clock: can't eliminate all invalid clock states with a local term
Configuration Graph:
Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y
Clock configuration with cost 0: \bigcirc
Clock configuration with cost $\geq 1: \bigcirc \quad|a b\rangle\langle a b|$

Clairvoyance Lemma

Need to lower bound lowest eigenvalue of:

Clairvoyance Lemma

Need to lower bound lowest eigenvalue of:

$$
\left.\left[\begin{array}{llllll}
0 & & & & & \\
& 0 & & & & \\
& 1 & & & \\
& & & \ddots & & \\
& & & & 0 & \\
& & & & & 0
\end{array}\right]+\left[\begin{array}{cccccccc}
\frac{1}{2} & -\frac{1}{2} & & & & & & \\
-\frac{1}{2} & 1 & -\frac{1}{2} & & & & & \\
0 & -\frac{1}{2} & 1 & -\frac{1}{2} & & & & \\
& & & & \cdot & & & \\
& & & & & . & & \\
& & & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
& & & & & -\frac{1}{2} & 1 & -\frac{1}{2} \\
& & & & & & & -\frac{1}{2}
\end{array}\right) \frac{1}{2}\right]
$$

$\Omega\left(1 / K^{3}\right)$, where K is the length of the chain
Need to upper bound the length of the "invalid" chains

1D Local Hamiltonian

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

1D Local Hamiltonian

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.
Terms are position-dependent. (Very non-physical!)

1D Local Hamiltonian

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.
Terms are position-dependent. (Very non-physical!)

In most systems of physical interest:

The Hamlitonian describing the energy of the system is the same for each pair of neighboring particles.

Translational Invariance

1) Input: (d, n, h_{1}, h_{2})

Translational Invariance

Translational Invariance

Quantum Hamiltonian Complexity - Sandy Irani

Translational Invariance

2) Fixed Problem Parameters: (d, h_{1}, h_{2})

Input: n

Translational Invariance

Translational Invariance

How hard is it to find ground states of translationally invariant quantum systems?

Problem parameters:
Hamiltonian term H on two d-dimensional particles
Fixed $2^{d} \times 2^{d}$ matrix.

Translational Invariance

How hard is it to find ground states of translationally invariant quantum systems?

Problem parameters:
Hamiltonian term H on two d-dimensional particles
Fixed $2^{d} \times 2^{d}$ matrix.

Problem input: N (the number of particles in the system)

Translational Invariance

How hard is it to find ground states of translationally invariant quantum systems?

Problem parameters:
Hamiltonian term H on two d-dimensional particles
Fixed $2^{d} \times 2^{d}$ matrix.

Two polynomials $p(N)$ or $q(N)$.
Problem input: N (the number of particles in the system)
Output:
When H is applied to every pair of neighboring particles in a line of n particles, is the ground energy

$$
\leq p(N) \quad \text { OR } \quad \geq p(N)+\frac{1}{q(N)} ?
$$

Translational Invariance

How hard is it to find ground states of translationally invariant quantum systems?

Problem parameters:
Hamiltonian term H on two d-dimensional particles
Fixed $2^{d} \times 2^{d}$ matrix.

Two polynomials $p(N)$ or $q(N)$.
Problem input: N (the number of particles in the system)
Output: (Note the size of the input is now logarithmic in the size of the system)

When H is applied to every pair of neighboring particles in a line of n particles, is the ground energy

$$
\leq p(N) \quad \text { OR } \quad \geq p(N)+\frac{1}{q(N)} ?
$$

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA $A_{\text {EXP-complete. }}$ [Gottesman, Irani, 2010]

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA ${ }_{\text {EXP }}$-complete. [Gottesman, Irani, 2010]

QMA

$L \in$ QMA if there is a poly-sized uniform
quantum circuit family $\left\{C_{n}\right\}$:
If $x \in L \Rightarrow \exists|\phi\rangle$
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.
If $x \notin L \Rightarrow \forall|\phi\rangle$
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3$.
$|\phi\rangle$ has poly(n) qubits.

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA $A_{E X P}$-complete. [Gottesman, Irani, 2010]

QMA $_{\text {EXP }}$

$L \in$ QMA if there is a
EXP D, 置多-sized uniform quantum circuit family $\left\{C_{n}\right\}$:

If $x \in L \Rightarrow \exists|\phi\rangle$
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.
If $x \notin L \Rightarrow \forall|\phi\rangle$
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3$.
$|\phi\rangle$ has poty (n) qubits.

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA $A_{E X P}$-complete. [Gottesman, Irani, 2010]

QMA $_{\text {EXP }}$

$L \in$ QMA if there is a
EXP Dg ${ }^{\text {fly }}$-sized uniform EXP-time quantum quantum circuit family $\left\{C_{n}\right\}$: Turing Machine V

$$
\begin{aligned}
& \text { If } x \in L \Rightarrow \exists|\phi\rangle \\
& \operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3 . \longleftarrow \operatorname{Prob}[V(x,|\phi\rangle) \text { accepts }] \geq 2 / 3
\end{aligned}
$$

If $x \notin L \Rightarrow \forall|\phi\rangle$
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3 . \longleftarrow \operatorname{Prob}[V(x,|\phi\rangle)$ accepts $] \leq 1 / 3$

$|\phi\rangle$ has poty (n) qubits.

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA $A_{\text {EXP-complete. }}$ [Gottesman, Irani, 2010]

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA ${ }_{\text {EXP }}$-complete. [Gottesman, Irani, 2010]

To reduce a language L in $Q M A_{E X P}$ to T.I. Local Hamiltonian:
$L \Rightarrow$ finite term H.

Instance $x \Rightarrow N$ size of the system

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA ${ }_{\text {EXP }}$-complete. [Gottesman, Irani, 2010]

To reduce a language L in $Q M A_{E X P}$ to T.I. Local Hamiltonian: Description of L
$L \Rightarrow$ finite term H. (i.e. the verifier)
(depend on running time of V)
Instance $x \Rightarrow N$ size of the system constant-sized H.

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA ${ }_{\text {EXP }}$-complete. [Gottesman, Irani, 2010]

To reduce a language L in $Q M A_{E X P}$ to T.I. Local Hamiltonian:
$L \rightarrow$ Description of L
$L \Rightarrow \quad$ finite term $H . \quad$ (i.e. the verifier)
(depend on running time of V)
Instance $x \Rightarrow N$ size of the system needs to be encoded in a constant-sized H .
$\exists|\psi\rangle$ such that prob $V(x,|\psi\rangle)$ accepts $\geq 2 / 3$
\Longrightarrow
H on N-particle chain has ground energy $\leq p(N)$

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is QMA $A_{E X P}$-complete. [Gottesman, Irani, 2010]

To reduce a language L in $Q M A_{E X P}$ to T.I. Local Hamiltonian: Description of L
$L \Rightarrow$ finite term H.
Polynomials p and q (depend on running time of V)
Instance $x \Rightarrow N$ size of the system (i.e. the verifier) needs to be encoded in a constant-sized H.
$\exists|\psi\rangle$ such that prob $V(x,|\psi\rangle)$ accepts $\geq 2 / 3$
H on N-particle chain has ground energy $\leq p(N)$
$\forall|\psi\rangle$:
$V(x,|\psi\rangle)$ accepts $\leq 1 / 3$
H on N-particle chain has ground energy $\geq p(N)+1 / q(N)$

Translationally Invariant Local Hamiltonian

Ground State of H is "computation state" encoding a process:

1) "Count" the number of particles and write the number in binary on the tape.
2) Use the result of Step 1 as the input to Verifier V

Translationally Invariant Local Hamiltonian

Ground State of H is "computation state" encoding a process:

1) "Count" the number of particles and write the number in binary on the tape.
2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine $M_{B C}$:
Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.

Translationally Invariant Local Hamiltonian

Ground State of H is "computation state" encoding a process:

1) "Count" the number of particles and write the number in binary on the tape.
2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine $M_{B C}$:
Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.

Function $f: \mathbb{Z} \rightarrow\{0,1\}^{*}$:

After N steps, $f(N)$ appears on the tape.
Reduction: given string x, find N such that $f(N)=x$.
$|x| \approx \log N$

Translationally Invariant Local Hamiltonian

Ground State of H is "computation state" encoding a process:

1) "Count" the number of particles and write the number in binary on the tape.
2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine $M_{B C}$:
Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.

Function $f: \mathbb{Z} \rightarrow\{0,1\}^{*}$:

After N steps, $f(N)$ appears on the tape.
Reduction: given string x, find N such that $f(N)=x$.
$|x| \approx \log N$
$M_{B C}$ can be made quantum. [Bernstein-Vazirani]

Translationally Invariant Local Hamiltonian

Ground State of H is "computation state" encoding a process:

1) Simulate $M_{B C}$ for N steps.
2) Simulate V for N steps using output of $M_{B C}$ as input to V. where N is the length of the chain.

Translationally Invariant Local Hamiltonian

Ground State of H is "computation state" encoding a process:

1) Simulate $M_{B C}$ for N steps.
2) Simulate V for N steps using output of $M_{B C}$ as input to V. where N is the length of the chain.

Need a clock that counts the number of particles in the chain twice. Each "tick" of the clock triggers a step of a QTM.

Translationally Invariant Local Hamiltonian

Particle states:
6-tuple denoting the state for each track.
OR 《 OR \rangle

Translationally Invariant Local Hamiltonian

Particle states:
6-tuple denoting the state for each track.
OR \llbracket OR \searrow

Translationally Invariant Local Hamiltonian

Particle states:
6-tuple denoting the state for each track.
OR \lfloor OR \searrow

Translationally Invariant Local Hamiltonian

Particle states:
6-tuple denoting the state for each track.
OR \llbracket OR \searrow

The Thermodynamic Limit

What are the properties of the ground state as $N \rightarrow \infty$?

The Thermodynamic Limit

What are the properties of the ground state as $N \rightarrow \infty$?

Translationally-Invariant:
Each grid dimension has its own term

The Thermodynamic Limit

What are the properties of the ground state as $N \rightarrow \infty$?

Translationally-Invariant:
Each grid dimension has its own term
Ground Energy Density: $\quad H(N)$ Hamiltonian on an $N \times N$ finite grid.

$$
\alpha_{0}=\lim _{N \rightarrow \infty} \frac{\lambda_{0}(H(N))}{N^{2}}
$$

(energy per particle)

The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)

$$
\text { In 2D: } H=\left(H_{\text {horiz }}, H_{\text {vert }}\right)
$$

The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)

$$
\text { In 2D: } H=\left(H_{\text {horiz }}, H_{\text {vert }}\right)
$$

Determining the Spectral Gap of H is undecidable.
Is $\Delta \geq 1$ or is H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015] «—2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] «—1D

The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)

$$
\text { In 2D: } H=\left(H_{\text {horiz }}, H_{\text {vert }}\right)
$$

Determining the Spectral Gap of H is undecidable. Is $\Delta \geq 1$ or is H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015] «_2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] \longleftarrow 1D

Determining the Energy Density to within the $n^{\text {th }}$ bit of precision is $Q M A_{E X P}$-complete.
[Gottesman, Irani, 2010]

The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)

$$
\text { In 2D: } H=\left(H_{\text {horiz }}, H_{\text {vert }}\right)
$$

Determining the Spectral Gap of H is undecidable. Is $\Delta \geq 1$ or is H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015] «_2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] «—1D

Determining the Energy Density to within the $n^{\text {th }}$ bit of precision is $Q M A_{E X P}$-complete.
[Gottesman, Irani, 2010]

Translational Invariance

Finite

Systems

Variable Constraint
1)
) Input: (d, n, h_{1}, h_{2})
Number of Particles/Variables

Fixed Constraint 2) Fixed Problem Parameters: (d, h_{1}, h_{2}) Input: n

Translational Invariance

In Finite
Systems

Infinite family of Hamiltonians

1) Input: (d, h, h_{1}, h_{2})

One
Hamiltonian 2) Fixed Problem Parameters: (d, $\left.h_{1}, h_{2}\right)$ Input: n

Ground Energy Density $=\alpha_{0}$

Function Ground Energy Density (Function-GED)

Function-GED ($h_{\text {row }}, h_{\text {col }}$)
Input: n (binary number)
Output: α, where $\left|\alpha-\alpha_{0}\right| \leq \frac{1}{2^{n}}$

$\alpha_{0}=.101110010100010011101101 \ldots$
 n

Function Ground Energy Density (Function-GED)

Function-GED ($h_{\text {row }}, h_{\text {col }}$) Input: n (binary number)
Output: α, where $\left|\alpha-\alpha_{0}\right| \leq \frac{1}{2^{n}}$

$$
\alpha_{0}=\underbrace{.101110010100010011101101 \ldots}_{\mathrm{n}}
$$

Why a function problem?
In order to determine the $n^{\text {th }}$ bit, you need to know the first $n-1$ bits.

Also...more natural?

Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXPQMA-EXP Function-GED is hard for FEXPNEXP

Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXPQMA-EXP Function-GED is hard for FEXPNEXP

FEXP:
Functions
computable
by
EXP-time
classical
Turing Machine

Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXP QMA-EXP Function-GED is hard for FEXPNEXP

FEXP:
Functions computable by
EXP-time classical
Turing Machine
QMA-EXP:
YES instances can be verified by
EXP time quantum verifier with
EXP-size quantum witness

Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXP QMA-EXP
 Function-GED is hard for FEXP NEXP

FEXP:
Functions
computable
by
EXP-time classical
Turing Machine

NEXP
 QMAN CVID:
 YES instances can be verified by
 EXP time quantum verifier with classical

EXP-size quantum witness
classical

Containment

Function-GED is contained in FEXPQMA-EXP

Containment

Function-GED is contained in FEXPQMA-EXP
Oracle language: Decision-GED ($h_{\text {row }}, h_{\text {col }}$)
Input: $\alpha \in[0,1]$ specified with n bits
Output: Accept if $\alpha_{0} \leq \alpha$ Reject if $\alpha_{0} \geq \alpha+\frac{1}{2^{n}}$

Containment

Function-GED is contained in FEXPQMA-EXP
Oracle language: Decision-GED ($h_{\text {row }}, h_{\text {col }}$)
Input: $\alpha \in[0,1]$ specified with n bits
Output: Accept if $\alpha_{0} \leq \alpha$ Reject if $\alpha_{0} \geq \alpha+\frac{1}{2^{n}}$

Observation:
The ground energy for an $N^{2} \times N^{2}$ grid is within $\pm O\left(\frac{1}{N}\right)$ of α_{0}
\Rightarrow Decision-GED \in QMA-EXP

Containment

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by $\frac{1}{2}$

$$
\alpha_{0}=\underbrace{.101110010100010011101101 \ldots}_{\mathrm{n}}
$$

Containment

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by $\frac{1}{2}$

$$
\alpha_{0}=\underbrace{.101110010100010011101101 \ldots}_{n}
$$

Input: n (log n bits)
Binary Search: $O(n)$ iterations (EXP time)
Query Prescision: $\frac{1}{2^{n}}$ (Oracle class: QMA-EXP)

