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Recap: The Local Hamiltonian Problem
Input:

H1, . . . , Hr :
Hermitian positive semi-definite matrices
operating on k qudits of dimension d
with bounded norm ‖Hi‖ ≤ 1.
n qudits in the system.
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Recap: The Local Hamiltonian Problem
Input:

H1, . . . , Hr :
Hermitian positive semi-definite matrices
operating on k qudits of dimension d
with bounded norm ‖Hi‖ ≤ 1.
n qudits in the system.

Two real numbers E and ∆ ≥ 1/poly(n)

Output:

Is the smallest eigenvalue of H = H1 + · · · + Hr ≤ E
or are all eigenvalues ≥ E + ∆?
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Recap: The class QMA (Quantum Merlin Arthur)

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x , where
|x | = n:

If x ∈ L, then there is a witness
y such that M(x , y ) accepts.

If x 6∈ L, then for every y ,
M(x , y ) rejects.

NP

Boolean Satisfiability
is NP-complete

|y | ≤ poly(x)
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Recap: The class QMA (Quantum Merlin Arthur)

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x , where
|x | = n:

If x ∈ L, then there is a witness
y such that M(x , y ) accepts.

If x 6∈ L, then for every y ,
M(x , y ) rejects.

NP

Boolean Satisfiability
is NP-complete

|y | ≤ poly(x)

QMA
A promise problem is in QMA if
there is a poly-sized uniform quan-
tum circuit family {Cn} such that
on input x , where |x | = n:

If x ∈ YES, then there is a
quantum witness |φ〉 such that
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x ∈ NO, then for every |φ〉,
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.

Local Hamiltonian
is QMA-complete
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Recap: The class QMA (Quantum Merlin Arthur)

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x , where
|x | = n:

If x ∈ L, then there is a witness
y such that M(x , y ) accepts.

If x 6∈ L, then for every y ,
M(x , y ) rejects.

NP

Boolean Satisfiability
is NP-complete

|y | ≤ poly(x)

QMA
A promise problem is in QMA if
there is a poly-sized uniform quan-
tum circuit family {Cn} such that
on input x , where |x | = n:

If x ∈ YES, then there is a
quantum witness |φ〉 such that
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x ∈ NO, then for every |φ〉,
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.

Local Hamiltonian
is QMA-complete

1− 1
2n

1
2n
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Recap: Local Hamiltonian is in QMA

Boolean
Satisfiability

∈ NP

Is Φ(y )
satisfiable?

Witness:
Satisfying

assignment y
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Recap: Local Hamiltonian is in QMA

Boolean
Satisfiability

∈ NP

Is Φ(y )
satisfiable?

Witness:
Satisfying

assignment y

Local
Hamiltonian

∈ QMA

Is there a state whose
energy (according to H)

is less than E?
〈Φ|H|Φ〉 ≤ E?

Witness: |Φ〉
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Recap: Local Hamiltonian is in QMA

Boolean
Satisfiability

∈ NP

Is Φ(y )
satisfiable?

Witness:
Satisfying

assignment y

Local
Hamiltonian

∈ QMA

Is there a state whose
energy (according to H)

is less than E?
〈Φ|H|Φ〉 ≤ E?

Witness: |Φ〉
Guarantee:
There exists |Φ〉 such that 〈Φ|H|Φ〉 ≤ E

OR
For all |Φ〉, 〈Φ|H|Φ〉 ≥ E + ∆

Showed a measurement
whose outcome = 1 with
probability ∝ 〈Φ|H|Φ〉.

⇒
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Recap: Local Hamiltonian is QMA-hard
Start with a generic language L in QMA

Is x ∈ L?

Is there a quantum state φ〉
that causes this quantum circuit
to output 1 with high probability?

0/1
|x〉

|φ〉
Cn

M

|0〉/|1〉
|0〉/|1〉

|0〉/|1〉

|0〉/|1〉
|0〉/|1〉
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Recap: Local Hamiltonian is QMA-hard
Start with a generic language L in QMA

Is x ∈ L?

Is there a quantum state φ〉
that causes this quantum circuit
to output 1 with high probability?

k -Local
Hamiltonian:

(Hx , E ,∆)
⇒

Is the ground energy of
Hx

≤ E or ≥ E + ∆?

⇔

0/1
|x〉

|φ〉
Cn

M

|0〉/|1〉
|0〉/|1〉

|0〉/|1〉

|0〉/|1〉
|0〉/|1〉

[Kitaev 1995]
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Recap: Local Hamiltonian is QMA-hard
Start with a generic language L in QMA

Is x ∈ L?

Is there a quantum state φ〉
that causes this quantum circuit
to output 1 with high probability?

k -Local
Hamiltonian:

(Hx , E ,∆)
⇒

Is the ground energy of
Hx

≤ E or ≥ E + ∆?

⇔

0/1
|x〉

|φ〉
Cn

M

|0〉/|1〉
|0〉/|1〉

|0〉/|1〉

|0〉/|1〉
|0〉/|1〉

[Kitaev 1995]
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The Hamiltonian Hx

Ht = 1
2

[
I ⊗ |t〉〈t| + I ⊗ |t − 1〉〈t − 1| + Ut ⊗ |t〉〈t − 1| − U†t ⊗ |t − 1〉〈t|

]
Hprop =

∑T
t=1 Ht

1√
T + 1

T∑
t=0

Ut Ut−1 · · ·U2U1|x〉|ξ〉 ⊗ |t〉
Ground State: Spectral Gap:

≥ 1
2(T+1)2
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The Hamiltonian Hx

Ht = 1
2

[
I ⊗ |t〉〈t| + I ⊗ |t − 1〉〈t − 1| + Ut ⊗ |t〉〈t − 1| − U†t ⊗ |t − 1〉〈t|

]
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∑T
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1√
T + 1

T∑
t=0

Ut Ut−1 · · ·U2U1|x〉|ξ〉 ⊗ |t〉
Ground State: Spectral Gap:

≥ 1
2(T+1)2

Hinit =
n∑

j=1

|xj〉〈xj |j ⊗ |0〉〈0|clock

Input x = x1x2 · · · xn
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The Hamiltonian Hx

Ht = 1
2

[
I ⊗ |t〉〈t| + I ⊗ |t − 1〉〈t − 1| + Ut ⊗ |t〉〈t − 1| − U†t ⊗ |t − 1〉〈t|

]
Hprop =

∑T
t=1 Ht

1√
T + 1

T∑
t=0

Ut Ut−1 · · ·U2U1|x〉|ξ〉 ⊗ |t〉
Ground State: Spectral Gap:

≥ 1
2(T+1)2

Hinit =
n∑

j=1

|xj〉〈xj |j ⊗ |0〉〈0|clock

Input x = x1x2 · · · xn

Hout = |0〉〈0|1 ⊗ |T 〉〈T |clock

Computation
accepts:
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The Hamiltonian Hx

Ht = 1
2

[
I ⊗ |t〉〈t| + I ⊗ |t − 1〉〈t − 1| + Ut ⊗ |t〉〈t − 1| − U†t ⊗ |t − 1〉〈t|

]
Hprop =

∑T
t=1 Ht

1√
T + 1

T∑
t=0

Ut Ut−1 · · ·U2U1|x〉|ξ〉 ⊗ |t〉
Ground State: Spectral Gap:

≥ 1
2(T+1)2

Hinit =
n∑

j=1

|xj〉〈xj |j ⊗ |0〉〈0|clock

Input x = x1x2 · · · xn

Hout = |0〉〈0|1 ⊗ |T 〉〈T |clock

Computation
accepts:

H = Hprop + Hinit + Hout
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H =
∑

a Ha

where each Ha acts on at most k qudits

Locality
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Local Hamiltonian Variations

H =
∑

a Ha

where each Ha acts on at most k qudits

Locality

Particle Dimension

{|0〉, |1〉, . . . , |d − 1〉}

{|j〉

Geometry
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Quantum Hamiltonian Complexity - Sandy Irani

QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 13-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 13-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

Improved to 8-state
[Hallgren, Nagaj,
Narayanaswami 2013]
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2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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state of a Hamiltonian which
is easy to prepare.
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state of a Hamiltonian which
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(e.x. |00 · · · 00〉)

Hfinal
Final ground state
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a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T
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T ·Hstar t + t

T ·Hfinal
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Adiabatic Quantum Computation

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T

H(t) = (T−t)
T ·Hstar t + t

T ·Hfinal

Adiabatic Theorem
Final state will be close to the

ground state of Hfinal if speed of
transition is

Ω( ‖Hfinal −Hstar t‖/∆(H(t))2+δ )

∆(H): Spectral gap of H
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Adiabatic Quantum Computation

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T

H(t) = (T−t)
T ·Hstar t + t

T ·Hfinal

Adiabatic Theorem
Final state will be close to the

ground state of Hfinal if speed of
transition is

Ω( ‖Hfinal −Hstar t‖/∆(H(t))2+δ )

∆(H): Spectral gap of H

Final measurement to
determine result of

computation
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The Adiabatic Model
Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science
2001]
Adiabatic computation may be more robust against certain kinds of
errors.
[Childs, Farhi, Preskill]
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Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
an instance of Boolean
Satisfiability

Evolve Hamiltonian from
Hstar t to Hfinal over time T
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The Adiabatic Model
Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science
2001]
Adiabatic computation may be more robust against certain kinds of
errors.
[Childs, Farhi, Preskill]

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
an instance of Boolean
Satisfiability

Evolve Hamiltonian from
Hstar t to Hfinal over time T

What is the spectral
gap of the intermediate

Hamiltonians?
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Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science
2001]
Adiabatic computation may be more robust against certain kinds of
errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?
• Can a quantum circuit simulate an adiabatic computation?

• Can an adiabatic computation perform any computation performed
by a quantum circuit?
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The Adiabatic Model
Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science
2001]
Adiabatic computation may be more robust against certain kinds of
errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?
• Can a quantum circuit simulate an adiabatic computation?

• Can an adiabatic computation perform any computation performed
by a quantum circuit?

Yes - [van Dam, Mosca, Vazirani]

Yes...
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Adiabatic Quantum Computation

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T

Adiabatic Theorem
Final state will be close to the

ground state of Hfinal if speed of
transition is

Ω(‖Hfinal − Hstar t‖/∆(H(t))2+δ

H(t) = (T−t)
T ·Hstar t + t

T ·Hfinal
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Adiabatic Quantum Computation

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T

Adiabatic Theorem
Final state will be close to the

ground state of Hfinal if speed of
transition is

Ω(‖Hfinal − Hstar t‖/∆(H(t))2+δ

Hfinal = Hprop

Hamiltonian whose ground
state is the computation

state for Quantum Circuit C
with input x .

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

H(t) = (T−t)
T ·Hstar t + t

T ·Hfinal



Quantum Hamiltonian Complexity - Sandy Irani

Circuit to Adiabatic Computation
Hstar t has unique ground state:

|00 · · · 00〉|00 · · · 00〉
Computation Clock



Quantum Hamiltonian Complexity - Sandy Irani

Circuit to Adiabatic Computation
Hstar t has unique ground state:

|00 · · · 00〉|00 · · · 00〉

Cn

|0〉
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|0〉
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X

X
X

Computation Clock

Hfinal is Hprop for this circuit:

Initial X gates set the input
bits according to input x
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Hstar t has unique ground state:
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Cn

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

X

X
X

Computation Clock

Hfinal is Hprop for this circuit:

Initial X gates set the input
bits according to input x

Adiabatic computation should end
up in a state close to:

1√
T + 1

T∑
t=0

Ut · · ·U1|00 · · · 00〉|t〉
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Circuit to Adiabatic Computation
Hstar t has unique ground state:

|00 · · · 00〉|00 · · · 00〉

Cn

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

X

X
X

Computation Clock

Hfinal is Hprop for this circuit:

Initial X gates set the input
bits according to input x

Adiabatic computation should end
up in a state close to:

1√
T + 1

T∑
t=0

Ut · · ·U1|00 · · · 00〉|t〉

|T 〉〈T |clock

Measure: Probability to measure the
clock in state T is 1

T +1|1〉〈1|outthen
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Lower Bound Spectral Gap



1
2 − 1

2
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
·

·
·

− 1
2 1 − 1

2 0
− 1

2 1 − 1
2

− 1
2

1
2



Hfinal =Hstar t =

0
1

1
. . .

1
1


Spectral gap of:

(1− s)Hstar t + sHfinal for s ∈ [0, 1] is ≥ 1
2(T + 1)2
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltonian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 12-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltonian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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Kitaev Construction:

1√
T+1

∑T
t=0 |ψt〉|1t+10T−t〉

Computation Qubits
Clock Qubits
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2D Local Hamiltonian Reduction

The ”Clock” is distributed throughout the entire quantum system:

State space for a particle:

|0〉 |0〉

|1〉 |1〉

{|0〉, |1〉} ⊗ {| 〉, | 〉, | 〉}

∪ {| 〉, | 〉, | 〉} =

Kitaev Construction:

1√
T+1

∑T
t=0 |ψt〉|1t+10T−t〉

Computation Qubits
Clock Qubits

|0〉

|1〉
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T
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Some particles have a computation bit embedded in their state.
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2D Local Hamiltonian Reduction, cont.
Clock state is a pattern of colors on the 2D grid of particles:

n

T

|∗〉

|∗〉

|∗〉

|∗〉

Some particles have a computation bit embedded in their state.

Enforce valid clock state with
”forbidden”

local configurations:
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2D Local Hamiltonian Reduction, cont.

n

T

|∗〉

|∗〉

|∗〉

Advancing the clock and implementing gates:

|∗〉
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2D Local Hamiltonian Reduction, cont.

n

T

|∗〉

|∗〉

|∗〉

Advancing the clock and implementing gates:

|∗〉
|∗〉

|∗〉
|∗〉

I
|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

+ I + U + U†

|∗〉

t t t +1 t +1 t +1 t +1t t

Applied to two particles in

|∗〉
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2D Local Hamiltonian Reduction, cont.

n

T

|∗〉

|∗〉

|∗〉

|∗〉

Advancing the clock and implementing gates:

|∗〉
|∗〉

|∗〉
|∗〉

I
|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

+ I + U + U†

|∗〉

|∗〉

t t t +1 t +1 t +1 t +1t t

Applied to two particles in

|∗〉
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Need to ensure at most one propagation term applied to each valid
clock state.
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clock state.



Quantum Hamiltonian Complexity - Sandy Irani

Clock Configuration Graph

Vertices: Standard basis of clock states
Edge (x , y ) if a propogation term converts x to y

Valid Clock States
Invalid Clock States

···

Need to ensure at most one propagation term applied to each valid
clock state.
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 13-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

Improved to 8-state
[Hallgren, Nagaj,
Narayanaswami 2013]
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1-Dimensional Local Hamiltonian
Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P:

T (n) = 2d2T (n/2) + O(1)
⇒

T (n) = O(nlog(2d2))

Why the
difference?

1√
T +1

∑T
t=0 |ψt〉|1t+10T−t〉
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1D Local Hamiltonian

|∗〉 |∗〉 |∗〉 |∗〉 |∗〉 |∗〉

n qubits n qubits

n

T

n + 2 n + 2 n + 2 n + 2 n + 2

T (n + 2) qubits

Active site triggers
transition to next clock

state.
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n qubits n qubits

n

T

n + 2 n + 2 n + 2 n + 2 n + 2

T (n + 2) qubits

|∗〉 |∗〉 |∗〉 |∗〉 |∗〉|∗〉
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Clairvoyance Lemma



1
2 − 1

2
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
·

·
·

− 1
2 1 − 1

2 0
− 1

2 1 − 1
2

− 1
2

1
2





0
0

1
. . .

0
0



Need to lower bound lowest eigenvalue of:

+
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

1
2 − 1

2
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
·

·
·

− 1
2 1 − 1

2 0
− 1

2 1 − 1
2

− 1
2

1
2





0
0

1
. . .

0
0



Need to lower bound lowest eigenvalue of:

+

Ω(1/K 3), where K is the length of the chain
Need to upper bound the length of the ”invalid” chains
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Quantum Hamiltonian Complexity - Sandy Irani

1D Local Hamiltonian

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)

In most systems of physical interest:

The Hamlitonian describing the energy of the system
is the same for each pair of neighboring particles.

|∗〉 |∗〉 |∗〉 |∗〉 |∗〉 |∗〉

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle
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Translational Invariance

1) Input: (d, n, h1, h2)

Particle/Variable dimension

Number of Particles/Variables

Constraints to be applied
in each dimension

2) Fixed Problem Parameters: (d, h1, h2)
Input: n

Variable
Constraint

Fixed
Constraint
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Translational Invariance
How hard is it to find ground states of translationally invariant
quantum systems?

Hamiltonian term H on two d-dimensional particles
Fixed 2d × 2d matrix. H

Problem input: N (the number of particles in the system)

Problem parameters:

Output:

When H is applied to every pair of neighboring particles in a
line of n particles, is the ground energy

≤ p(N) OR ≥ p(N) + 1
q(N)?

Two polynomials p(N) or q(N).

log N bits (Note the size of the input is now log-
arithmic in the size of the system)
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QMA

L ∈ QMA if there is a
poly-sized uniform

quantum circuit family {Cn}:

If x ∈ L ⇒ ∃ |φ〉
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x 6∈ L ⇒ ∀ |φ〉
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

QMA

L ∈ QMA if there is a
poly-sized uniform

quantum circuit family {Cn}:

If x ∈ L ⇒ ∃ |φ〉
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x 6∈ L ⇒ ∀ |φ〉
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.

EXP

EXP

EXP

EXP-time quantum
Turing Machine V

Prob[V (x , |φ〉) accepts] ≥ 2/3

Prob[V (x , |φ〉) accepts] ≤ 1/3
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

L ⇒ finite term H.

Instance x ⇒ N size of the system

To reduce a language L in QMAEXP to T.I. Local Hamiltonian:
Description of L
(i.e. the verifier)

needs to be encoded in a
constant-sized H.

Polynomials p and q
(depend on running time of V )

∃|ψ〉 such that prob
V (x , |ψ〉) accepts ≥ 2/3

⇒ H on N-particle chain has
ground energy ≤ p(N)

∀|ψ〉:
V (x , |ψ〉) accepts ≤ 1/3

⇒ H on N-particle chain has
ground energy ≥ p(N)+1/q(N)
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Translationally Invariant Local Hamiltonian

Ground State of H is ”computation state” encoding a process:

1) ”Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine MBC :

Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.

Function f : Z→ {0, 1}∗:
After N steps, f (N) appears on the tape.
Reduction: given string x , find N such that f (N) = x .
|x | ≈ log N

MBC can be made quantum. [Bernstein-Vazirani]
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Translationally Invariant Local Hamiltonian

Ground State of H is ”computation state” encoding a process:

1) Simulate MBC for N steps.

2) Simulate V for N steps using output of MBC as input to V .
where N is the length of the chain.

Need a clock that counts the number of particles in the chain twice.

Each ”tick” of the clock triggers a step of a QTM.
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〈 〉

Particle 1

Particle 2

Particle 3 Particle N

Particle states:
6-tuple denoting the state for each track.

〈OR

Track 6: Quantum witness |ψ〉 for V
Track 5: V state and head location

Track 4: MBC state and head location
Track 3: QTM Work Tape

Track 1: Clock second hand
Track 2: Clock minute hand

〉OR
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Translationally Invariant Local Hamiltonian

〈 〉

Particle 1

Particle 2

Particle 3 Particle N

Particle states:
6-tuple denoting the state for each track.

〈OR

Track 6: Quantum witness |ψ〉 for V
Track 5: V state and head location

Track 4: MBC state and head location
Track 3: QTM Work Tape

〉OR
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The Thermodynamic Limit

· · ·· · ·
· · ·

· · · What are the properties of the
ground state as N →∞?

Translationally-Invariant:
Each grid dimension has its own term

Ground Energy Density: H(N) Hamiltonian on an N × N finite grid.

α0 = limN→∞
λ0(H(N))

N2

(energy per particle)
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In 2D: H = (Hhor iz , Hver t )
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Input: Hamiltonian term H on two d-dimensional particles. (n bits)

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

In 2D: H = (Hhor iz , Hver t )

Determining the Spectral Gap of H is undecidable.
Is ∆ ≥ 1 or is H gapless?

[Cubitt, Perez-Garcia, Wolf Nature, 2015]
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018]

2D
1D
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Input: Hamiltonian term H on two d-dimensional particles. (n bits)

What is the ground Energy Density (energy per particle) when H is
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[Gottesman, Irani, 2010]

In 2D: H = (Hhor iz , Hver t )

Determining the Spectral Gap of H is undecidable.
Is ∆ ≥ 1 or is H gapless?

[Cubitt, Perez-Garcia, Wolf Nature, 2015]
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The Thermodynamic Limit

Input: Hamiltonian term H on two d-dimensional particles. (n bits)

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Determining the Energy Density to within
the nth bit of precision is QMAEXP -complete.

[Gottesman, Irani, 2010]

In 2D: H = (Hhor iz , Hver t )

Determining the Spectral Gap of H is undecidable.
Is ∆ ≥ 1 or is H gapless?

[Cubitt, Perez-Garcia, Wolf Nature, 2015]
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018]

2D
1D

Weaker Version
of

Translational
Invariance
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Translational Invariance

1) Input: (d, n, h1, h2)

Particle/Variable dimension

Number of Particles/Variables

Constraints to be applied
in each dimension

2) Fixed Problem Parameters: (d, h1, h2)
Input: n

Finite
Systems

In

Infinite
family of

Hamiltonians

One
Hamiltonian

Ground Energy Density = α0
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Function-GED (hrow , hcol )
Input: n (binary number)

Output: α, where |α− α0| ≤ 1
2n

α0 = .101110010100010011101101 . . .

n
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Function Ground Energy Density (Function-GED)

Function-GED (hrow , hcol )
Input: n (binary number)

Output: α, where |α− α0| ≤ 1
2n

α0 = .101110010100010011101101 . . .

n
Why a function problem?

In order to determine the nth bit, you need to know the first
n − 1 bits.

Also...more natural?
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Oracle language: Decision-GED (hrow , hcol )

Input: α ∈ [0, 1] specified with n bits

Output: Accept if α0 ≤ α
Reject if α0 ≥ α + 1

2n

N2×N2

Observation:
The ground energy for an N2 × N2 grid
is within ±O

(
1
N

)
of α0

⇒ Decision-GED ∈ QMA-EXP
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Containment

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by 1
2

α0 = .101110010100010011101101 . . .

n
Input : n

Binary Search: O(n) iterations

Query Prescision: 1
2n

(log n bits)

(EXP time)

(Oracle class: QMA-EXP)


