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Recap: The Local Hamiltonian Problem

Input:

H‘], o o ey Hr.
Hermitian positive semi-definite matrices

operating on k qudits of dimension d
with bounded norm || H;|| < 1.
n qudits in the system.
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Recap: The Local Hamiltonian Problem

Input:

H1, c ey H,—:
Hermitian positive semi-definite matrices
operating on k qudits of dimension d
with bounded norm || H;|| < 1.
n qudits in the system.

Two real numbers E and A > 1/poly(n)

Output:

Is the smallest eigenvalueoft H=H; +---+ H, < E
or are all eigenvalues > E + A?
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Recap: The class QMA (Quantum Merlin Arthur)
NP

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x, where
x| = n:

If x € L, then there is a withess
y such that M(x, y) accepts.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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Recap: The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x, where
x| = n:

If x € L, then there is a withess
y such that M(x, y) accepts.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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QMA

A promise problem is in QMA if
there is a poly-sized uniform quan-
tum circuit family {C,} such that
on input x, where |x| = n:

If x € YES, then there is a

quantum witness |¢) such that
Prob[Ca(x, |)) = 11> 2/3.

If x € NO, then for every |¢),
Prob[C,(x, |$)) = 1] < 1/8.

/) has poly(n) qubits.
Local Hamiltonian
is QMA-complete




Recap: The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x, where
x| = n:

If x € L, then there is a withess
y such that M(x, y) accepts.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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QMA

A promise problem is in QMA if
there is a poly-sized uniform quan-
tum circuit family {C,} such that
on input x, where |x| = n:

If x € YES, then there is a
quantum witness |$) such that

Prob[Cn(x, |$)) = 11 > 2.1 — 5
If x € NO, then for every |}),
Prob[Cp(x, |)) = 1] < D&, 4
/) has poly(n) qubits.

Local Hamiltonian

is QMA-complete




Recap: Local Hamiltonian is in QMA

s O(y)

Boolean satisfiable?
C e c NP Witness:
Satisfiability Satisfying

assignment y
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Recap: Local Hamiltonian is in QMA

s O(y)

Boolean satisfiable?
C e c NP Witness:
Satisfiability Satisfying

assignment y

Is there a state whose

Local energy (according to H)
. c QMA s less than E?
Hamiltonian (D|H|D) < E?

Witness: |®)
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Recap: Local Hamiltonian is in QMA

s O(y)

Boolean satisfiable?
C o c NP Witness:
Satisfiability Satisfying

assignment y

Is there a state whose

| energy (according to H)
(.)Cal. c QMA s less than E?
Hamiltonian (O|H|D) < E?
Witness: |®)
Guarantee:
There exists |®) such that (O|H|®) < E  |Showed a measurement
OR —> |whose outcome = 1 with
Forall |®@), (D|H|®) > E+ A probability o< (O|H|D).
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Recap: Local Hamiltonian is QMA-hard
Start with a generic language L in QMA

Is x € L?

MH0/1

X

o O O O O
~— T T T T

)
)
)
)
)

—h —h —h —h —h
S~ S~ S~ S~~~

Chn

)

s there a quantum state ¢)
that causes this quantum circuit
to output 1 with high probability?
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Recap: Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA

Is x € L?
it -0/
X)) oo = k-Local
1 L
| 10)/11) C, | —  Hamiltonian:
— (Hx, E, A)
b) — ’

s there a quantum state ¢) Is the ground energy of
that causes this quantum circuit H,
to output 1 with high probability? < Eor>E+A?

Quantum Hamiltonian Complexity - Sandy Irani



Recap: Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA

Is x € L?

X

o O O O O
~— T T T T

)
)
)
)
)

—h —h —h —h —h
S~ S~ S~ S~~~

Chn

)

s there a quantum state ¢)
that causes this quantum circuit
to output 1 with high probability?
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-0/1 5
“k-Local
—> Hamiltonian:
(Hy, E, A)
PN Is the ground energy of

H,
< Eor> E +A?



The Hamiltonian H,

He= 5 1|t + 1@ |t= 1)t — 1]+ U |t —1] = Uf @ [t— 1)(]
Hprop:z; H;

Ground State: Spectral Gap:

)
1
m;UtUt_1 LU BN > gy
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The Hamiltonian H,
Hy =1 [/® B+ 1@t — -1+ U@ |t —1] — U @[t — 1><t|}
Hprop = Z; H;

Ground State: Spectral Gap:

.
1 1
m;UtUt_1 UIE S 2 gy
|ﬂpUtX=X1X2'-'Xn n
Hinit = ‘7/> <7/’/ & |O><O’c/ock

=1
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The Hamiltonian H,
Hy =1 [/® B+ 1@t — -1+ U@ |t —1] — U @[t — 1><t|}
Hprop = Z; H;

Ground State: Spectral Gap:

i
1
D Uiy i) e) o[ty > S
VT +1 &= 2(T+1)
|ﬂpUtX=X1X2'-'Xn n
Hinit = 1X;) (Xj|; @ 10) (0| crock
j=1
Computation
accepts:
P Hout = [0)(0]1 ® | TN T oi0ck
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The Hamiltonian H,
Hy =1 [/@) B+ 1@t — -1+ U@ |t —1] — U @[t — 1><t|}
Hprop = Z; H;

Ground State: Spectral Gap:

i
1
D Uiy i) e) o[ty > S
VT +1 &= 2(T+1)
|ﬂpUtX=X1X2'-°Xn n
Hinit = 1X;) (Xj|; @ 10) (0| crock
j=1
Computation
accepts:
P Hout = [0)(0]1 ® | TN T oi0ck

H = Hprop + Hinit + Hout
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Local Hamiltonian Variations

@ Locality
OANEE
@ where each H, acts on at most k qudits
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Local Hamiltonian Variations

@ Locality
OANEE
@ where each H, acts on at most k qudits

Particle Dimension
/V
{10),[1),..., d—1)}
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Local Hamiltonian Variations

@ Locality
OANEE
@ where each H, acts on at most k qudits

Particle Dimension
el

U0, [1), s ld = 1)}

Geometry
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

®

* o
o —o-
*—o-
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

Quantum Hamiltonian Complexity - Sandy Irani



QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 13-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
*—<0—0 00
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 13-state Hamiltonian is
QMA-complete Improved to 8-state

[Aharonov, Gottesman, Irani, Kempe, 2009] [Hallgren, Nagaj,

Narayanaswami 2013
DAY y |
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 13-state Hamiltonian is
QMA-complete Improved to 8-state
[Aharonov, Gottesman, Irani, Kempe, 2009] [Hallgren, Nagaj,

Narayanaswami 2013
DAY y |
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Adiabatic Quantum Computation

o

Hstart
Start system in the ground

state of a Hamiltonian which
IS easy to prepare.
(e.x. |00 ---00))
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Adiabatic Quantum Computation

O O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 ---00))
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - --00))
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - --00)) (T—1) t
H(t) = T Hstart + T° Hyinai
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinai

Adiabatic Theorem
Final state will be close to the
ground state of Hy,y if speed of
transition is
Q) ”Hﬁna/ - Hsz‘arl‘H/A(H(t))2+6 )

A(H): Spectral gap of H
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinai

Adiabatic Theorem
Final state will be close to the
ground state of Hy,y if speed of
transition is
Q) ”Hﬁna/ - Hsz‘arl‘H/A(H(t))2+6 )

A(H): Spectral gap of H

Final measurement to
determine result of
computation
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science

2001]
Adiabatic computation may be more robust against certain kinds of

errors.
[Childs, Farhi, Preskill]
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science

2001]
Adiabatic computation may be more robust against certain kinds of

errors.
[Childs, Farhi, Preskill]

Evolve Hamiltonian from

O »O
Hstart Hiinar
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. an instance of Boolean

(e.x. |00 - - - 00)) Satisfiability
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science

2001]
Adiabatic computation may be more robust against certain kinds of

errors.
[Childs, Farhi, Preskill]

Evolve Hamiltonian from

O O

Hstari Hsinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to

an instance of Boolean
Satisfiability

IS easy to prepare.

What is the spectral
(e.x. |00---00))

gap of the intermediate
Hamiltonians?
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science
2001]

Adiabatic computation may be more robust against certain kinds of
errors.

[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?

® Can a quantum circuit simulate an adiabatic computation?

® Can an adiabatic computation perform any computation performed
by a quantum circuit?
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in Science
2001]

Adiabatic computation may be more robust against certain kinds of
errors.

[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?

® Can a quantum circuit simulate an adiabatic computation?
Yes - [van Dam, Mosca, Vazirani]

® Can an adiabatic computation perform any computation performed
by a quantum circuit?

Yes...
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinar

Adiabatic Theorem
Final state will be close to the
ground state of Hy,y if speed of
transition is
Q(HHﬁnal _ HstartH/A(H(t))2+6
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A >0
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinar
Adiabatic Theorem Hfinai = Hprop
Final state will be close to the Hamiltonian whose ground
ground state of Hy,y if speed of state is the computation
transition is state for Quantum Circuit C
Q(HHﬁnal T HstartH/A(H(t))2+6 with inpUt X.

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state:
|00---00)|00---00)
Computation Clock
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state: Hfinal 1S Hprop for this circuit:
I|OO---OO>”\OO---OO>I ] od
Computation Clock —
/ —X— —
Initial X gates set the input | 0)—1X— —
bits according to input x Cn

OO O O O O O O O O
N i i g N T S S i
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state: Hfinal 1S Hprop for this circuit:
|00---00)|00---00) ]
Computation Clock

Initial X gates set the input / i

bits according to input x

:

Cn

Adiabatic computation should end
up in a state close to:

OO O O O O O O O O
N i i g N T S S i

\/Tiz:u, . U;]00 - - - 00) 1)
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state: Hfinal 1S Hprop for this circuit:
|00---00)|00---00) ]

:

Computation Clock

Initial X gates set the input / i

bits according to input x

Cn

Adiabatic computation should end
up in a state close to:

OO O O O O O O O O
N i i g N T S S i

1

T
> Up--- U4]00- - - 00) 1)
v T +1 -

Measure: probabilty to measure the
|T><T‘C/OCK then ‘1><1 ‘OUZ‘ clock in state T is TLH
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Lower Bound Spectral Gap

Hstart — Hﬁna/ —
0 1 [z 2
—1 1

1 2
o -

Spectral gap of:

(1 — S)Hstart + SHiina for s € [0,1]is >

Quantum Hamiltonian Complexity - Sandy Irani

_% 0
o
2(T +1)2




QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

-dimensional 2-local 6-state Hamiltonian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltonian is QMA-complete
[Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete
[Oliveira Terhal 2008]

1-dimensional 12-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
*—<0—0 00
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2D Local Hamiltonian Reduction

Kitaev Construction:

T AT—
\/%ZEOlN)O”“t ‘o’ t>

\
Clock Qubits

Computation Qubits
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2D Local Hamiltonian Reduction

Kitaev Construction:

T AT—
\/;-*HZEOlN)t?l“t ‘o’ t>

Computation Qubits Clock Qubits

The ”Clock” is distributed throughout the entire quantum system:

State space for a particle:

{10}, 10} @ {l@), @), 1O} o
v{@) @, 0} @@ @ e
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2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
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2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
Some particles have a computation bit embedded in their state.
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2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
Some particles have a computation bit embedded in their state.

Enforce valid clock state with
"forbidden”
local configurations:

C@)O0
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2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

R d X JOIOIOI0
00000

00O OO
@000 CO0
T

)
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2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

‘1900
000

®\0 |©

t t t+1  t+1

bt 88t vi8) gl v

Applied to two particles in
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2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

o)

t

Applied to two particles in

(+)
()

t

+ /

‘1900
000

Ne

t+1  t+1




Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid
clock state.
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Clock Configuration Graph

Need to ensure at most one propagation term applied to each vali

clock state.

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y
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Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid

clock state.

Vertices: Standard basis of clock states

Edge (x, y) if a propogation term converts x to y

Valid Clock States

(@)

Q

0000
0000
0000
0000
0000
0000
0000

P

°
o

0000
[p S—
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2D Local Hamiltonian Reduction

\ ®000

n ® 000

® 000

, ®000
-
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2D Local Hamiltonian Reduction

\ @000

n ® 000

® 000

, ®000
-
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2D Local Hamiltonian Reduction

OCO0OO

OCO0OO
"O00O0

1000 O
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2D Local Hamiltonian Reduction

OCO0OO

OCO0OO

"O00O0

1000 @
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2D Local Hamiltonian Reduction

OCO0OO

OCO0OO

"O00O0

1000 @
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2D Local Hamiltonian Reduction

OCO0OO

OCO0OO

"O00O0

1009 ®
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

=0 O O

! QOOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

= O OO

! QOOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

=0 O O

! QOOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

® O OO

! @OOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

® O OO

! @OOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

® O OO

! @OOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0
; ® OO0
® O OO

, ele

e
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

® O OO

! QQOQ
-
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2D Local Hamiltonian Reduction

4 ® OO0

; ® O OO

® O 0O

! QQOQ
-
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2D Local Hamiltonian Reduction

A ®000
i ® 000
®®/00

| 00

1@
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2D Local Hamiltonian Reduction

A ®000
i ® 000
@000

| 00

1@
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2D Local Hamiltonian Reduction

A ®000
i ® 000
@ @00

| 00

1@
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2D Local Hamiltonian Reduction

OCO0OO
"O00O0
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2D Local Hamiltonian Reduction

OCO0OO
"O00O0
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2D Local Hamiltonian Reduction

OCO0OO
"O00O0
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2D Local Hamiltonian Reduction

OCO0OO
"O00O0
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2D Local Hamiltonian Reduction

OCO0OO
"O00O0

Quantum Hamiltonian Complexity - Sandy Irani




2D Local Hamiltonian Reduction

OCO0OO
"O00O0
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 13-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
*—<0—0 00

Improved to 8-state
[Hallgren, Nagaj,
Narayanaswami 2013]
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P:

Q A A A WA WA WA WA WA O
| NN AN UI IU NN AN |
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P:

Q A A A WA WA WA WA WA O
| NN AN UI IU NN AN |

T(n) =2d°T(n/2) + O(1)
—
T(n) _ O(nlog(2d2))
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:
1D MAX-2-SAT with d-state variables is in P:

Q A A A WA WA WA WA WA O
| NN AN UI IU NN AN |

Why the
= 20° difference?
T(n) = 2d°T(n/2) + O(1)
~ 1N 11Tt
T(n) = o(nlog(Zdz)) VT+1 Zt=0 |1|)t>‘ >
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2

n qubits n qubits
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2

Active site triggers
transition to next clock
/ state.

O@@Q{}C}Q{}O{){}G@{}O—

| | | | >
n qubits n qubits
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2

9202020000, 20, J0L0020208 20,020
| | | | L,

n qubits n qubits
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y

Clock configuration with cost 0: O
Clock configuration with cost > 1: @  |ab)(ab|
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y

Clock configuration with cost 0: O
Clock configuration with cost > 1: @  |ab)(ab|

Valid
Clock
States
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propagation term converts x to y

Clock configuration with cost 0: O
Clock configuration with cost > 1: @  |ab)(ab|

Valid
Clock
States
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Clairvoyance Lemma

Need to lower bound lowest eigenvalue of:

N|—
N|—

0

o

Quantum Hamiltonian Complexity - Sandy Irani
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Clairvoyance Lemma

Need to lower bound lowest eigenvalue of:

N|—
N —

N|—

0

o
-
=
|
=

0

N =

N|—=

N —=

1

N|—=

N|—

N = o
=
[

Q(1/K?), where K is the length of the chain

Need to upper bound the length of the "invalid” chains
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1D Local Hamiltonian

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle
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1D Local Hamiltonian

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)
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1D Local Hamiltonian

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)

In most systems of physical interest:

The Hamlitonian describing the energy of the system
IS the same for each pair of neighboring particles.
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Translational Invariance

1) |npUt: (d, n, h1, h2)
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Translational Invariance

Particle/Variable dimension

1) InpUt: (d, n, hy, h2)
\\

Number of Particles/Variables
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Translational Invariance

Constraints to be applied

Particle/Variable dimension in each dimension

Y

1) Input: (d, n, hy, hy)
\\

Number of Particles/Variables
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Translational Invariance

Constraints to be applied

Particle/Variable dimension in each dimension

Y

1) Input: (d, n, hy, hy)
\\

Number of Particles/Variables

2) Fixed Problem Parameters: (d, hy, h»)
Input: n
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Translational Invariance

Constraints to be applied

Particle/Variable dimension in each dimension

_ e

Variable 1) Input: (d, n‘,\lh1, hzl)

Constraint
Number of Particles/Variables

Fixed 2)

Constraint Fixed Problem Parameters: (d, hy, ho)

Input: n

Quantum Hamiltonian Complexity - Sandy Irani



Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '
Fixed 29 x 29 matrix.
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Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '

Fixed 29 x 29 matrix.

Problem input: N (the number of particles in the system)
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Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '

Fixed 29 x 29 matrix.
Two polynomials p(N) or g(N).

Problem input: N (the number of particles in the system)

Output:

When H is applied to every pair of neighboring particles in a
line of n particles, is the ground energy

<p(N) OR > p(N)+ 7
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Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '

Fixed 29 x 29 matrix.
Two polynomials p(N) or g(N).

Problem input: N (the number of particles in the system)

load N bits (Note the size of the input is now log-
Output: | arithmic in the size of the system)

When H is applied to every pair of neighboring particles in a
line of n particles, is the ground energy

<p(N) OR > p(N)+ 7
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

QMA

L € QMA if there is a
poly-sized uniform
quantum circuit family {C,}:

fxel = 3|d)
Prob[C,(x, |d)) = 1] > 2/8.

fx gL = V|b)
Prob[C,(x, |d)) = 1] < 1/8.

/&) has poly(n) qubits.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

QMAExp

L € QMA if there is a

EXP pely-sized uniform
quantum circuit family {C,}:

fxel = 3|d)
Prob[C,(x, |d)) = 1] > 2/8.

fx gL = V|b)
Prob[C,(x, |d)) = 1] < 1/8.

EXP
|d) has PRty (n) qubits.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

QMAExp

L € QMA if there is a
EXP M/—sized uniform
quantum circuit family {C,}:

EXP-time quantum
Turing Machine V

fxel = 3|d)
Prob[C,(x, |)) = 1] > 2/3. «— Prob[V/(x,

fx gL = V|b)
Prob[C,(x, |d)) = 1] < 1/3. <«— Prob[V/(x,

EXP
|d) has PRty (n) qubits.

¢)) accepts] > 2/3

¢)) accepts] < 1/3
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

L = finiteterm H.

Instance x = N size of the system
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

; finite 1 . Description of L
= finteterm H. -——___ ..
Polynomials p and g (I.e. the verifier)

(depend on running time of V) needs to be encoded in a
Instance x = N size of the system constant-sized H.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

. Description of L
[ = fintetermH. «—_

Polynomials p and g (I.e. the verifier) |
(depend on running time of V) needs to be encoded in a
Instance x = N size of the system constant-sized H.

) such that prob

— H on N-particle chain has
V(x,

) accepts > 2/3 ground energy < p(N)
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

. Description of L
[ = fintetermH. +——__

Polynomials p and g (l.e. the verifier)
(depend on running time of V) needs to be encoded in a
Instance x = N size of the system constant-sized H.
) such that prob — H on N-particle chain has
V(x, 1)) accepts > 2/3 ground energy < p(N)
V): —. | H on N-particle chain has
V(x, [\)) accepts < 1/3 ground energy > p(N)+1/q(N)
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine Mpg¢:

Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine Mpg¢:

Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.

Function f : Z — {0, 1}*:

After N steps, f(N) appears on the tape.

Reduction: given string x, find N such that f(N) = x.
x| ~ log N
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine Mpg¢:

Contents of the tape are a binary counter.
Start with 0 and continually increment the counter.

Function f : Z — {0, 1}*:

After N steps, f(N) appears on the tape.
Reduction: given string x, find N such that f(N) = x.
x| ~ log N

Mgc can be made quantum. [Bernstein-Vazirani]
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) Simulate Mg¢ for N steps.

2) Simulate V for N steps using output of Mgc as input to V.
where N is the length of the chain.
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) Simulate Mg¢ for N steps.

2) Simulate V for N steps using output of Mgc as input to V.
where N is the length of the chain.

Need a clock that counts the number of particles in the chain twice.

Each tick” of the clock triggers a step of a QTM.
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Translationally Invariant Local Hamiltonian

Track 1: Clock second hand
Track 2: Clock minute hand
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

AN \

Particle 3 Particle N

Particle 1
Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [{] OR [}
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Translationally Invariant Local Hamiltonian

00/00000000 00000000000 0

Track 2: Clock minute hand
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

/ \ Particle 3 Particle N

Particle 1

Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [{] OR [}
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Translationally Invariant Local Hamiltonian

0000000000 00000000000
Ol 0000000000000 00000000 0
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

/ \ Particle 3 Particle N

Q@O

Particle 1
Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [(] OR [}
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Translationally Invariant Local Hamiltonian

00000000000 0000000000O
O10C0000000CO0000000000000
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

/ \ Particle 3 Particle N

Q@O

Particle 1
Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [(] OR [}
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The Thermodynamic Limit

What are the properties of the

//// ground state as N — 00?
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The Thermodynamic Limit
What are the properties of the

77/// ground state as N — oco?

Translationally-Invariant:
Each grid dimension has its own term
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The Thermodynamic Limit

What are the properties of the

//// ground state as N — 00?

Translationally-Invariant:
Each grid dimension has its own term

Ground Energy Density:  H(N) Hamiltonian on an N x N finite grid.

- Ao (H(N
0 =l LD

(energy per particle)
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)
In2D: H = (Hhoriz= Hvert)
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)
In2D: H = (Hhoriz= Hvert)

Determining the Spectral Gap of H is undecidable.

Is A > 1 oris H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015]<—2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] «—1D
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)
In2D: H = (Hhoriz= Hvert)

Determining the Spectral Gap of H is undecidable.

Is A > 1 oris H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015]<—2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] «—1D

Determining the Energy Density to within

the n'" bit of precision is QMAgxp-complete.
[Gottesman, Irani, 2010]
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits)
In2D: H = (HhOI’i25 Hvert)

Determining the Spectral Gap of H is undecidable.

Is A > 1 oris H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015]<—2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] «—1D

Weaker Version
of
Translational
Invariance

Determining the Energy Density to within

the n'" bit of precision is QMAgxp-complete.
[Gottesman, Irani, 2010]
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Translational Invariance

Finite
Systems _ Constraints to be applied
4 Particle/Variable dimension in each dimension

_ e

Variable 1) |npu’[: (d n\h1,h2

Constraint

Number of Particles/Variables

Fixed 2)

Constraint Fixed Problem Parameters: (d, hy, ho)

Input: n
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Translational Invariance

In Finite

Systems _ _ . . Constraints to be applied
Particle/Variable dimension in each dimension

infinite | ’/ /

amily of | 1) INput: (ds\s\hhhz)

Hamiltoniang

Number of Particles/Variables

O
Ham”?fnian 2) Fixed Problem Parameters: (d, hy, ho)

N —put——
Ground Energy Density = &
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Function Ground Energy Density (Function-GED)

Function-GED (h,ow, hcor)
Input: n (binary number)

Output: &, where |ox — og| < %

xo =.101110010100010011101101 . ..
| |
n
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Function Ground Energy Density (Function-GED)

Function-GED (h,ow, hcor)
Input: n (binary number)

Output: &, where |ox — og| < %

xo =.101110010100010011101101 . ..
| |

n

Why a function problem?

In order to determine the n'" bit, you need to know the first
n — 1 bits.

Also...more natural?

Quantum Hamiltonian Complexity - Sandy Irani



Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXPQMA-EXP
Function-GED is hard for FEXPNEXP
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Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXPQMA'EXP
Function-GED is hard for FEXPNEXP

FEXP:
Functions
computable
by
EXP-time
classical
Turing Machine
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Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXPQMA'EXP
Function-GED is hard for FEXPNEXP

FEXP:
Functions QMA-EXP:
computable YES instances can be verified by
Oy
EXP-time EXP time quantum verifier with
classical

Turing Machine EXP-size quantum witness
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Function Ground Energy Density (Function-GED)

Function-GED is contained in FEXPQMA'EXP

Function-GED is hard for FEXPNEXP

FEXP:
Functions QMA-EXP:
computable YES instances can be verified by
Oy
EXP-time EXP time guantum verifier with
classical

Turing Machine EXP-size guantum withess
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Containment

Function-GED is contained in FEXPQMA-EXP
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Containment

Function-GED is contained in FEXPQMA-EXP

Oracle language: Decision-GED (h,ow, hcor)
Input: & € [0, 1] specified with n bits

Output: Accept if g <

Reject if og > o + -

an
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Containment

Function-GED is contained in FEXPQMA-EXP

Oracle language: Decision-GED (h,ow, hcor)
Input: & € [0, 1] specified with n bits

Output: Accept if g <

Reject if og > o + -

an

Observation:
The ground energy for an N* x N? grid
is within £0 (1) of o

\ = Decision-GED € QMA-EXP
N? x N2
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Containment

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by 1

xo =.101110010100010011101101 . ..
| |

n
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Containment

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by 1

xo =.101110010100010011101101 . ..
| |

N
Input : n (log n bits)

Binary Search: O(n) iterations (EXP time)
Query Prescision: 5;  (Oracle class: QMA-EXP)
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