# Quantum Hamiltonian Complexity Part III

Sandy Irani
Computer Science Department
UC Irvine

# Recap: The Local Hamiltonian Problem

### Input:

 $H_1, \ldots, H_r$ :

Hermitian positive semi-definite matrices operating on k qudits of dimension d with bounded norm  $||H_i|| \le 1$ . n qudits in the system.

# Recap: The Local Hamiltonian Problem

### Input:

 $H_1, \ldots, H_r$ :

Hermitian positive semi-definite matrices operating on k qudits of dimension d with bounded norm  $||H_i|| \le 1$ . n qudits in the system.

Two real numbers E and  $\Delta \geq 1/\text{poly}(n)$ 

### Output:

Is the smallest eigenvalue of  $H = H_1 + \cdots + H_r \le E$  or are all eigenvalues  $\ge E + \Delta$ ?

# Recap: The class QMA (Quantum Merlin Arthur)

# **NP**

A problem is in NP if there is a polynomial time Turing Machine M such that on input x, where |x| = n:

If  $x \in L$ , then there is a witness y such that M(x, y) accepts.

If  $x \notin L$ , then for every y, M(x, y) rejects.

$$|y| \leq \mathsf{poly}(x)$$

# Boolean Satisfiability is NP-complete

# Recap: The class QMA (Quantum Merlin Arthur)

# **NP**

A problem is in NP if there is a polynomial time Turing Machine M such that on input x, where |x| = n:

If  $x \in L$ , then there is a witness y such that M(x, y) accepts.

If  $x \notin L$ , then for every y, M(x, y) rejects.

$$|y| \leq \mathsf{poly}(x)$$

Boolean Satisfiability is NP-complete

## **QMA**

A *promise* problem is in QMA if there is a poly-sized uniform **quantum** circuit family  $\{C_n\}$  such that on input x, where |x| = n:

If  $x \in YES$ , then there is a **quantum** witness  $|\phi\rangle$  such that  $Prob[C_n(x, |\phi\rangle) = 1] \ge 2/3$ .

If  $x \in NO$ , then for every  $|\phi\rangle$ , Prob[ $C_n(x, |\phi\rangle) = 1$ ]  $\leq 1/3$ .

 $|\phi\rangle$  has poly(n) qubits.

Local Hamiltonian is QMA-complete

# Recap: The class QMA (Quantum Merlin Arthur)

# **NP**

A problem is in NP if there is a polynomial time Turing Machine M such that on input x, where |x| = n:

If  $x \in L$ , then there is a witness y such that M(x, y) accepts.

If  $x \notin L$ , then for every y, M(x, y) rejects.

$$|y| \leq \mathsf{poly}(x)$$

Boolean Satisfiability is NP-complete

### QMA

A *promise* problem is in QMA if there is a poly-sized uniform **quantum** circuit family  $\{C_n\}$  such that on input x, where |x| = n:

If  $x \in YES$ , then there is a **quantum** witness  $|\phi\rangle$  such that  $Prob[C_n(x, |\phi\rangle) = 1] \ge 2\sqrt{3}$ .  $1 - \frac{1}{2^n}$ 

If  $x \in NO$ , then for every  $|\phi\rangle$ , Prob $[C_n(x, |\phi\rangle) = 1] \le 1/3$ .  $\frac{1}{2^n}$ 

 $|\phi\rangle$  has poly(n) qubits.

Local Hamiltonian is QMA-complete

# Recap: Local Hamiltonian is in QMA

 $\begin{array}{c} \text{Boolean} \\ \text{Satisfiability} \end{array} \in \text{NP}$ 

Is  $\Phi(y)$  satisfiable? Witness: Satisfying assignment y

# Recap: Local Hamiltonian is in QMA

Boolean Satisfiability

 $\in \mathsf{NP}$ 

Local Hamiltonian

 $\in \mathsf{QMA}$ 

Is  $\Phi(y)$  satisfiable? Witness: Satisfying assignment y

Is there a state whose energy (according to H) is less than *E*?

 $\langle \Phi | H | \Phi \rangle \leq E$ ?

Witness:  $|\Phi\rangle$ 

# Recap: Local Hamiltonian is in QMA

 $\begin{array}{c} \text{Boolean} \\ \text{Satisfiability} \end{array} \in$ 

 $\in \mathsf{NP}$ 

Local Hamiltonian

 $\in \mathsf{QMA}$ 

#### Guarantee:

There exists  $|\Phi\rangle$  such that  $\langle\Phi|H|\Phi\rangle\leq E$ OR  $\Longrightarrow$ For all  $|\Phi\rangle$ ,  $\langle\Phi|H|\Phi\rangle\geq E+\Delta$  Is  $\Phi(y)$  satisfiable? Witness: Satisfying assignment y

Is there a state whose energy (according to H) is less than *E*?

 $\langle \Phi | H | \Phi \rangle \leq E$ ?

Witness:  $|\Phi\rangle$ 

Showed a measurement whose outcome = 1 with probability  $\propto \langle \Phi | H | \Phi \rangle$ .

# Recap: Local Hamiltonian is QMA-hard

Start with a generic language L in QMA

Is 
$$x \in L$$
?



Is there a quantum state  $\phi$  that causes this quantum circuit to output 1 with high probability?

# Recap: Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA

Is 
$$x \in L$$
?



Is there a quantum state  $\phi$  that causes this quantum circuit to output 1 with high probability?



Is the ground energy of  $H_x$ < E or >  $E + \Delta$ ?

# Recap: Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA

Is 
$$x \in L$$
?



Is there a quantum state  $\phi$  that causes this quantum circuit to output 1 with high probability?



Is the ground energy of  $H_x$ < E or >  $E + \Delta$ ?

$$H_{t} = \frac{1}{2} \left[ I \otimes |t\rangle\langle t| + I \otimes |t - 1\rangle\langle t - 1| + U_{t} \otimes |t\rangle\langle t - 1| - U_{t}^{\dagger} \otimes |t - 1\rangle\langle t| \right]$$

$$H_{prop} = \sum_{t=1}^{T} H_{t}$$

Ground State:

$$\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_t U_{t-1} \cdots U_2 U_1 |x\rangle |\xi\rangle \otimes |t\rangle \qquad \qquad \geq \frac{1}{2(T+1)^2}$$

# Spectral Gap:

$$\geq \frac{1}{2(T+1)^2}$$

$$H_{t} = \frac{1}{2} \left[ I \otimes |t\rangle\langle t| + I \otimes |t - 1\rangle\langle t - 1| + U_{t} \otimes |t\rangle\langle t - 1| - U_{t}^{\dagger} \otimes |t - 1\rangle\langle t| \right]$$

$$H_{prop} = \sum_{t=1}^{T} H_{t}$$

#### Ground State:

$$\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_t U_{t-1} \cdots U_2 U_1 |x\rangle |\xi\rangle \otimes |t\rangle \qquad \qquad \geq \frac{1}{2(T+1)^2}$$

### Spectral Gap:

$$\geq \frac{1}{2(T+1)^2}$$

Input 
$$x = x_1 x_2 \cdots x_n$$

$$H_{init} = \sum_{j=1}^{n} |\overline{x_j}\rangle \langle \overline{x_j}|_j \otimes |0\rangle \langle 0|_{clock}$$

$$H_{t} = \frac{1}{2} \left[ I \otimes |t\rangle\langle t| + I \otimes |t - 1\rangle\langle t - 1| + U_{t} \otimes |t\rangle\langle t - 1| - U_{t}^{\dagger} \otimes |t - 1\rangle\langle t| \right]$$

$$H_{prop} = \sum_{t=1}^{T} H_{t}$$

Ground State:

$$\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_t U_{t-1} \cdots U_2 U_1 |x\rangle |\xi\rangle \otimes |t\rangle \qquad \qquad \geq \frac{1}{2(T+1)^2}$$

Spectral Gap:

$$\geq \frac{1}{2(T+1)^2}$$

Input 
$$x = x_1 x_2 \cdots x_n$$

$$H_{init} = \sum_{j=1}^{n} |\overline{x_j}\rangle\langle\overline{x_j}|_j \otimes |0\rangle\langle 0|_{clock}$$

Computation accepts:

$$H_{out} = |0\rangle\langle 0|_1 \otimes |T\rangle\langle T|_{clock}$$

$$H_{t} = \frac{1}{2} \left[ I \otimes |t\rangle\langle t| + I \otimes |t - 1\rangle\langle t - 1| + U_{t} \otimes |t\rangle\langle t - 1| - U_{t}^{\dagger} \otimes |t - 1\rangle\langle t| \right]$$

$$H_{prop} = \sum_{t=1}^{T} H_{t}$$

#### Ground State:

$$\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_t U_{t-1} \cdots U_2 U_1 |x\rangle |\xi\rangle \otimes |t\rangle \qquad \qquad \geq \frac{1}{2(T+1)^2}$$

### Spectral Gap:

$$\geq \frac{1}{2(T+1)^2}$$

Input 
$$x = x_1 x_2 \cdots x_n$$

$$H_{init} = \sum_{j=1}^{n} |\overline{x_j}\rangle\langle\overline{x_j}|_j \otimes |0\rangle\langle 0|_{clock}$$

### Computation accepts:

$$H_{out} = |0\rangle\langle 0|_1 \otimes |T\rangle\langle T|_{clock}$$

$$H = H_{prop} + H_{init} + H_{out}$$

### Local Hamiltonian Variations



# Locality

$$H = \sum_{a} H_{a}$$
  
where each  $H_{a}$  acts on at most  $k$  qudits

### Local Hamiltonian Variations



# Locality

$$H = \sum_{a} H_{a}$$
  
where each  $H_{a}$  acts on at most  $k$  qudits

# Particle Dimension

$$\{|j\rangle$$
  
 $\{|0\rangle, |1\rangle, \dots, |d-1\rangle\}$ 

### Local Hamiltonian Variations



# Locality

$$H = \sum_{a} H_{a}$$
  
where each  $H_{a}$  acts on at most  $k$  qudits

# Particle Dimension

$$\{|j\rangle$$
 $\{|0\rangle, |1\rangle, \dots, |d-1\rangle\}$ 

Geometry



5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]



5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]



5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]



5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]



1-dimensional 13-state Hamiltonian is QMA-complete

[Aharonov, Gottesman, Irani, Kempe, 2009]



5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]



1-dimensional 13-state Hamiltonian is QMA-complete

[Aharonov, Gottesman, Irani, Kempe, 2009]



Improved to 8-state

[Hallgren, Nagaj, Narayanaswami 2013]

5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]



1-dimensional 13-state Hamiltonian is QMA-complete

[Aharonov, Gottesman, Irani, Kempe, 2009]



Improved to 8-state

[Hallgren, Nagaj, Narayanaswami 2013]

 $H_{start}$ Start system in the ground state of a Hamiltonian which is easy to prepare. (e.x.  $|00\cdots00\rangle$ )

0

 $H_{start}$ Start system in the ground state of a Hamiltonian which is easy to prepare. (e.x.  $|00\cdots00\rangle$ )  $H_{\it final}$ 

Final ground state encodes the answer to a computation.

Evolve Hamiltonian from  $H_{start}$  to  $H_{final}$  over time T

H<sub>start</sub>

Start system in the ground state of a Hamiltonian which is easy to prepare.

(e.x.  $|00\cdots00\rangle$ )

 $H_{final}$ 

Final ground state encodes the answer to a computation.

Evolve Hamiltonian from  $H_{a}$ , to  $H_{a}$ , over time T

H<sub>start</sub> to  $H_{final}$  over time TH<sub>start</sub>

Start system in the ground state of a Hamiltonian which is easy to prepare.

(e.x.  $|00\cdots 00\rangle$ )

H(t) =  $\frac{(T-t)}{T} \cdot H_{start} + \frac{t}{T} \cdot H_{final}$ 

### **Evolve Hamiltonian from**

 $H_{start}$  to  $H_{final}$  over time T

*H*<sub>start</sub>

Start system in the ground state of a Hamiltonian which is easy to prepare.

Final ground state encodes the answer to a computation.

$$H(t) = \frac{(T-t)}{T} \cdot H_{start} + \frac{t}{T} \cdot H_{final}$$

### **Adiabatic Theorem**

Final state will be close to the ground state of  $H_{final}$  if speed of transition is

$$\Omega(\|H_{final} - H_{start}\|/\Delta(H(t))^{2+\delta})$$

 $\Delta(H)$ : Spectral gap of H

### **Evolve Hamiltonian from**

 $H_{start}$  to  $H_{final}$  over time T

*H*<sub>start</sub>

Start system in the ground state of a Hamiltonian which is easy to prepare.

$$H(t) = \frac{(T-t)}{T} \cdot H_{start} + \frac{t}{T} \cdot H_{final}$$

**Adiabatic Theorem** 

Final state will be close to the ground state of  $H_{final}$  if speed of transition is

$$\Omega(\|H_{final} - H_{start}\|/\Delta(H(t))^{2+\delta})$$

Final measurement to determine result of computation

Final ground state

a computation.

encodes the answer to

 $\Delta(H)$ : Spectral gap of H

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in *Science* 2001]

Adiabatic computation may be more robust against certain kinds of errors.

[Childs, Farhi, Preskill]

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in *Science* 2001]

Adiabatic computation may be more robust against certain kinds of errors.

[Childs, Farhi, Preskill]

Evolve Hamiltonian from

 $H_{start}$  to  $H_{final}$  over time T

*H*<sub>start</sub>

Start system in the ground state of a Hamiltonian which is easy to prepare.

(e.x.  $|00\cdots00\rangle$ )

 $H_{final}$ 

Final ground state encodes the answer to an instance of Boolean Satisfiability

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in *Science* 2001]

Adiabatic computation may be more robust against certain kinds of errors.

[Childs, Farhi, Preskill]

Evolve Hamiltonian from  $H_{start}$  to  $H_{final}$  over time T

 $H_{start}$ 

Start system in the ground state of a Hamiltonian which is easy to prepare.  $(e.x. |00 \cdots 00\rangle)$ 

What is the spectral gap of the intermediate Hamiltonians?

 $H_{final}$ 

Final ground state encodes the answer to an instance of Boolean Satisfiability

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in *Science* 2001]

Adiabatic computation may be more robust against certain kinds of errors.

[Childs, Farhi, Preskill]

# How Powerful is the Adiabatic Model?

Can a quantum circuit simulate an adiabatic computation?

• Can an adiabatic computation perform any computation performed by a quantum circuit?

#### The Adiabatic Model

Originally suggested in the context of solving NP-hard problems [Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda in *Science* 2001]

Adiabatic computation may be more robust against certain kinds of errors.

[Childs, Farhi, Preskill]

## How Powerful is the Adiabatic Model?

Can a quantum circuit simulate an adiabatic computation?
 Yes - [van Dam, Mosca, Vazirani]

• Can an adiabatic computation perform any computation performed by a quantum circuit?

Yes...

# Adiabatic Quantum Computation

#### **Evolve Hamiltonian from**

 $H_{start}$  to  $H_{final}$  over time T

*H*<sub>start</sub>

Start system in the ground state of a Hamiltonian which is easy to prepare.

(e.x. 
$$|00\cdots00\rangle$$
)

 $H_{final}$ 

Final ground state encodes the answer to a computation.

$$H(t) = \frac{(T-t)}{T} \cdot H_{start} + \frac{t}{T} \cdot H_{final}$$

#### Adiabatic Theorem

Final state will be close to the ground state of  $H_{final}$  if speed of transition is

$$\Omega(\|H_{final} - H_{start}\|/\Delta(H(t))^{2+\delta})$$

# Adiabatic Quantum Computation

#### **Evolve Hamiltonian from**

 $H_{start}$  to  $H_{final}$  over time T

 $H_{start}$ 

Start system in the ground state of a Hamiltonian which is easy to prepare.

#### Adiabatic Theorem

Final state will be close to the ground state of  $H_{final}$  if speed of transition is

$$\Omega(\|H_{final}-H_{start}\|/\Delta(H(t))^{2+\delta})$$

 $H_{final}$ 

Final ground state encodes the answer to a computation.

$$H(t) = \frac{(T-t)}{T} \cdot H_{start} + \frac{t}{T} \cdot H_{final}$$

 $H_{final} = H_{prop}$ 

Hamiltonian whose ground state is the computation state for Quantum Circuit *C* with input *x*.

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

 $H_{start}$  has unique ground state:

$$|00\cdots00\rangle|00\cdots00\rangle$$
Computation Clock

 $H_{start}$  has unique ground state:

$$\begin{array}{c|c} 00\cdots00 \\ \hline \\ \text{Computation} & \text{Clock} \end{array}$$

Initial *X* gates set the input bits according to input *x* 

 $H_{final}$  is  $H_{prop}$  for this circuit:



 $H_{start}$  has unique ground state:

$$\begin{array}{c|c}
|00\cdots00\rangle & |00\cdots00\rangle \\
\hline
\text{Computation} & \text{Clock}
\end{array}$$

Initial X gates set the input bits according to input x

Adiabatic computation should end up in a state close to:

$$\frac{1}{\sqrt{T+1}}\sum_{t=0}^{T}U_t\cdots U_1|00\cdots 00\rangle|t\rangle$$

 $H_{final}$  is  $H_{prop}$  for this circuit:



 $H_{start}$  has unique ground state:

$$\begin{array}{c|c} |00\cdots00\rangle |00\cdots00\rangle \\ \hline \text{Computation} & \text{Clock} \end{array}$$

Initial *X* gates set the input bits according to input *x* 

Adiabatic computation should end up in a state close to:

$$\frac{1}{\sqrt{T+1}}\sum_{t=0}^{T}U_{t}\cdots U_{1}|00\cdots 00\rangle|t\rangle$$

Measure:

$$|T\rangle\langle T|_{clock}$$
 then  $|1\rangle\langle 1|_{out}$ 

 $H_{final}$  is  $H_{prop}$  for this circuit:



Probability to measure the clock in state T is  $\frac{1}{T+1}$ 

# Lower Bound Spectral Gap

$$H_{start} = H_{final} = \begin{bmatrix} 0 & & & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & & & & \\ -\frac{1}{2} & 1 & -\frac{1}{2} & & \\ & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ & & & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ & & & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \end{bmatrix}$$

Spectral gap of:

$$(1-s)H_{start} + sH_{final} \text{ for } s \in [0,1] \text{ is } \ge \frac{1}{2(T+1)^2}$$

# **QMA-complete Problems**

5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltonian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltonian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]



1-dimensional 12-state Hamiltonian is QMA-complete

[Aharonov, Gottesman, Irani, Kempe, 2009]



Kitaev Construction:

$$\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\psi_t\rangle |1^{t+1}0^{T-t}\rangle$$
Computation Qubits

Clock Qubits

**Kitaev Construction:** 

$$\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\psi_t\rangle |1^{t+1}0^{T-t}\rangle$$
Computation Qubits

Clock Qubits

The "Clock" is distributed throughout the entire quantum system:

State space for a particle:

$$\{|0\rangle,|1\rangle\}\otimes\{|\bigcirc\rangle,|\bigcirc\rangle,|\bigcirc\rangle\}$$
 
$$(0) (0) (0)$$
 
$$(1) (1) (1)$$

Clock state is a pattern of colors on the 2D grid of particles:



Clock state is a pattern of colors on the 2D grid of particles: Some particles have a computation bit embedded in their state.



Clock state is a pattern of colors on the 2D grid of particles: Some particles have a computation bit embedded in their state.



Enforce valid clock state with "forbidden" local configurations:



Advancing the clock and implementing gates:



Advancing the clock and implementing gates:



$$\left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \end{array} \right| \right\rangle \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \begin{array}{c} \left| \end{array} \right| \\ \left| \end{array} \right| \\ \left| \left| \right| \\ \left| \left| \right| \right| \\ \left| \left| \right| \\ \left| \left| \right| \right| \\ \left| \left| \right| \right| \\ \left| \left| \right| \right| \\ \left| \left| \right|$$
 
$$| \left| \left| \right|$$

Applied to two particles in



Advancing the clock and implementing gates:



$$\left| \begin{array}{c|c} | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & \\ | & &$$

Applied to two particles in

# Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid clock state.

# Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid

clock state.

Vertices: Standard basis of clock states

Edge (x, y) if a propogation term converts x to y



# Clock Configuration Graph

Need to ensure at most one propagation term applied to each valid

clock state.

Vertices: Standard basis of clock states Edge (x, y) if a propogation term converts x to y

Valid Clock States





















































# **QMA-complete Problems**

5-local 2-state Hamiltonian is QMA-Complete [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete [Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete [Kempe, Kitaev, Regev 2005]

2-dimensional 2-local Hamiltonian is QMA-complete [Oliveira Terhal 2008]



1-dimensional 13-state Hamiltonian is QMA-complete

[Aharonov, Gottesman, Irani, Kempe, 2009]



Improved to 8-state [Hallgren, Nagaj, Narayanaswami 2013]

Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:

1D MAX-2-SAT with d-state variables is in P:



Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:

1D MAX-2-SAT with d-state variables is in P:



$$T(n) = 2d^{2}T(n/2) + O(1)$$

$$\Rightarrow$$

$$T(n) = O(n^{\log(2d^{2})})$$

Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Analog:

1D MAX-2-SAT with d-state variables is in P:





$$T(n) = 2d^{2}T(n/2) + O(1)$$

$$\Rightarrow$$

$$T(n) = O(n^{\log(2d^{2})})$$

Why the difference?

$$\frac{1}{\sqrt{T+1}}\sum_{t=0}^{T}\left|\psi_{t}\right\rangle\left|\mathbf{1}^{t+1}\mathbf{0}^{T-t}\right\rangle$$















1D clock: can't eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states

Edge (x, y) if a propagation term converts x to y

1D clock: can't eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states

Edge (x, y) if a propagation term converts x to y

Clock configuration with cost 0: O

Clock configuration with cost  $\geq$  1:  $\bullet$   $|ab\rangle\langle ab|$ 

1D clock: can't eliminate all invalid clock states with a local term

### Configuration Graph:

Vertices: Standard basis of clock states

Edge (x, y) if a propagation term converts x to y

Clock configuration with cost 0: O

Clock configuration with cost  $\geq$  1:  $\bullet$   $|ab\rangle\langle ab|$ 

Valid Clock States



1D clock: can't eliminate all invalid clock states with a local term

### Configuration Graph:

Vertices: Standard basis of clock states

Edge (x, y) if a propagation term converts x to y

Clock configuration with cost 0:  $\bigcirc$  Clock configuration with cost  $\ge$  1:  $\bigcirc$   $|ab\rangle\langle ab|$  Valid Clock

Quantum Hamiltonian Complexity - Sandy Irani

States

Need to lower bound lowest eigenvalue of:

Need to lower bound lowest eigenvalue of:

 $\Omega(1/K^3)$ , where K is the length of the chain Need to upper bound the length of the "invalid" chains



[AGIK]: 12 states per particle

[Narayanaswami, Hallgren]: 9 states per particle



[AGIK]: 12 states per particle

[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)



[AGIK]: 12 states per particle

[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)

In most systems of physical interest:

The Hamlitonian describing the energy of the system is the same for each pair of neighboring particles.

1) Input:  $(d, n, h_1, h_2)$ 

Particle/Variable dimension

1) Input: (d, n, h<sub>1</sub>, h<sub>2</sub>)

Number of Particles/Variables



Particle/Variable dimension

Constraints to be applied in each dimension

1) Input:  $(d, n, h_1, h_2)$ Number of Particles/Variables

2) Fixed Problem Parameters:  $(d, h_1, h_2)$ Input: n



How hard is it to find ground states of translationally invariant quantum systems?

### Problem parameters:

Hamiltonian term H on two d-dimensional particles Fixed  $2^d \times 2^d$  matrix.



How hard is it to find ground states of translationally invariant quantum systems?

### Problem parameters:

Hamiltonian term H on two d-dimensional particles Fixed  $2^d \times 2^d$  matrix.



Problem input: *N* (the number of particles in the system)

How hard is it to find ground states of translationally invariant quantum systems?

### Problem parameters:

Hamiltonian term H on two d-dimensional particles Fixed  $2^d \times 2^d$  matrix.



Two polynomials p(N) or q(N).

Problem input: N (the number of particles in the system)

## Output:

When H is applied to every pair of neighboring particles in a line of n particles, is the ground energy

$$\leq p(N)$$
 OR  $\geq p(N) + \frac{1}{q(N)}$ ?

How hard is it to find ground states of translationally invariant quantum systems?

### Problem parameters:

Hamiltonian term H on two d-dimensional particles Fixed  $2^d \times 2^d$  matrix.



Two polynomials p(N) or q(N).

Problem input: N (the number of particles in the system)

Output:

log N bits (Note the size of the input is now logarithmic in the size of the system)

When H is applied to every pair of neighboring particles in a line of *n* particles, is the ground energy

$$\leq p(N)$$
 OR  $\geq p(N) + \frac{1}{q(N)}$ ?

# Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

### <u>QMA</u>

 $L \in \mathsf{QMA}$  if there is a poly-sized uniform quantum circuit family  $\{C_n\}$ :

If 
$$x \in L \Rightarrow \exists | \varphi \rangle$$
  
Prob[ $C_n(x, | \varphi \rangle) = 1$ ]  $\geq 2/3$ .

If 
$$x \notin L \Rightarrow \forall | \varphi \rangle$$
  
Prob[ $C_n(x, | \varphi \rangle) = 1$ ]  $\leq 1/3$ .

 $|\phi\rangle$  has poly(n) qubits.

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

## **QMA<sub>EXP</sub>**

 $L \in QMA$  if there is a EXP pays-sized uniform quantum circuit family  $\{C_n\}$ :

If 
$$x \in L \Rightarrow \exists | \varphi \rangle$$
  
Prob[ $C_n(x, | \varphi \rangle) = 1$ ]  $\geq 2/3$ .

If 
$$x \notin L \Rightarrow \forall | \varphi \rangle$$
  
Prob[ $C_n(x, | \varphi \rangle) = 1$ ]  $\leq 1/3$ .

$$|\phi\rangle$$
 has poly(n) qubits.

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

## **QMA<sub>EXP</sub>**

 $L \in QMA$  if there is a EXP pays-sized uniform quantum circuit family  $\{C_n\}$ :

EXP-time quantum Turing Machine *V* 

If 
$$x \in L \Rightarrow \exists | \varphi \rangle$$
  
 $\text{Prob}[C_n(x, | \varphi \rangle) = 1] \geq 2/3$ .  $\blacktriangleleft$   $\text{Prob}[V(x, | \varphi \rangle) \text{ accepts}] \geq 2/3$   
If  $x \notin L \Rightarrow \forall | \varphi \rangle$   
 $\text{Prob}[C_n(x, | \varphi \rangle) = 1] \leq 1/3$ .  $\blacktriangleleft$   $\text{Prob}[V(x, | \varphi \rangle) \text{ accepts}] \leq 1/3$   
 $| \varphi \rangle$  has poly(n) qubits.

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

To reduce a language L in  $QMA_{EXP}$  to **T.I.** Local Hamiltonian:

 $L \Rightarrow \text{ finite term } H.$ 

Instance  $x \Rightarrow N$  size of the system

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

To reduce a language L in  $QMA_{EXP}$  to **T.I.** Local Hamiltonian:

1-Dimensional Translationally Invariant Local Hamiltonian is [Gottesman, Irani, 2010]  $QMA_{EXP}$ -complete.

To reduce a language L in  $QMA_{EXP}$  to **T.I.** Local Hamiltonian:

Description of 
$$L$$

$$L \Rightarrow \text{ finite term } H. \qquad \text{(i.e. the verifier)}$$

$$(\text{depend on running time of } V) \qquad \text{needs to be encoded in a}$$

$$\text{Instance } x \Rightarrow M \text{ size of the system} \qquad \text{constant-sized } H.$$

Instance  $x \Rightarrow N$  size of the system

$$\exists |\psi\rangle$$
 such that prob  $V(x,|\psi\rangle)$  accepts  $\geq 2/3$ 



H on N-particle chain has ground energy  $\leq p(N)$ 

1-Dimensional Translationally Invariant Local Hamiltonian is *QMA<sub>EXP</sub>*-complete. [Gottesman, Irani, 2010]

To reduce a language L in  $QMA_{EXP}$  to **T.I.** Local Hamiltonian:

 $L \Rightarrow \text{finite term } H. \stackrel{\blacktriangleleft}{}$ Polynomials p and q(depend on running time of V)

Instance  $x \Rightarrow N$  size of the system

Description of *L*—— (i.e. the verifier)
needs to be encoded in a constant-sized *H*.

 $\exists |\psi 
angle$  such that prob  $V(x,|\psi 
angle)$  accepts  $\geq 2/3$ 

 $\Rightarrow$ 

H on N-particle chain has ground energy  $\leq p(N)$ 

$$\forall |\psi\rangle$$
:  $V(x,|\psi\rangle)$  accepts  $\leq 1/3$ 



*H* on *N*-particle chain has ground energy  $\geq p(N) + 1/q(N)$ 

Ground State of *H* is "computation state" encoding a *process*:

- 1) "Count" the number of particles and write the number in binary on the tape.
- 2) Use the result of Step 1 as the input to Verifier *V*

Ground State of *H* is "computation state" encoding a *process*:

- 1) "Count" the number of particles and write the number in binary on the tape.
- 2) Use the result of Step 1 as the input to Verifier *V*

### Binary Counter Turing Machine $M_{BC}$ :

Contents of the tape are a binary counter.

Start with 0 and continually increment the counter.

Ground State of *H* is "computation state" encoding a *process*:

- 1) "Count" the number of particles and write the number in binary on the tape.
- 2) Use the result of Step 1 as the input to Verifier *V*

### Binary Counter Turing Machine $M_{BC}$ :

Contents of the tape are a binary counter.

Start with 0 and continually increment the counter.

Function 
$$f: \mathbb{Z} \to \{0, 1\}^*$$
:

After N steps, f(N) appears on the tape.

Reduction: given string x, find N such that f(N) = x.

$$|x| \approx \log N$$

Ground State of *H* is "computation state" encoding a *process*:

- 1) "Count" the number of particles and write the number in binary on the tape.
- 2) Use the result of Step 1 as the input to Verifier *V*

### Binary Counter Turing Machine $M_{BC}$ :

Contents of the tape are a binary counter.

Start with 0 and continually increment the counter.

Function 
$$f: \mathbb{Z} \to \{0, 1\}^*$$
:

After N steps, f(N) appears on the tape.

Reduction: given string x, find N such that f(N) = x.

$$|x| \approx \log N$$

 $M_{BC}$  can be made quantum. [Bernstein-Vazirani]

Ground State of *H* is "computation state" encoding a *process*:

- 1) Simulate  $M_{BC}$  for N steps.
- 2) Simulate V for N steps using output of  $M_{BC}$  as input to V. where N is the length of the chain.

Ground State of *H* is "computation state" encoding a *process*:

- 1) Simulate  $M_{BC}$  for N steps.
- 2) Simulate V for N steps using output of  $M_{BC}$  as input to V. where N is the length of the chain.

Need a clock that counts the number of particles in the chain twice.

Each "tick" of the clock triggers a step of a QTM.



#### Particle states:

6-tuple denoting the state for each track.

OR



OR





#### Particle states:

6-tuple denoting the state for each track.





#### Particle states:

6-tuple denoting the state for each track.





#### Particle states:

6-tuple denoting the state for each track.

OR



OR





What are the properties of the ground state as  $N \to \infty$ ?



What are the properties of the ground state as  $N \to \infty$ ?

Translationally-Invariant:

Each grid dimension has its own term



What are the properties of the ground state as  $N \to \infty$ ?

Translationally-Invariant:

Each grid dimension has its own term

Ground Energy Density: H(N) Hamiltonian on an  $N \times N$  finite grid.

$$\alpha_0 = \lim_{N \to \infty} \frac{\lambda_0(H(N))}{N^2}$$

(energy per particle)

What is the ground Energy Density (energy per particle) when *H* is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits) In 2D:  $H = (H_{horiz}, H_{vert})$ 

What is the ground Energy Density (energy per particle) when *H* is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits) In 2D:  $H = (H_{horiz}, H_{vert})$ 

Determining the Spectral Gap of H is undecidable.

Is  $\Delta \geq 1$  or is H gapless?

[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] —— 1D

What is the ground Energy Density (energy per particle) when *H* is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits) In 2D:  $H = (H_{horiz}, H_{vert})$ 

Determining the Spectral Gap of H is undecidable.

Is  $\Delta \geq 1$  or is H gapless?

[Cubitt, Perez-Garcia, Wolf *Nature*, 2015] — 2D [Bausch, Cubitt, Lucia, Perez-Garcia, 2018] — 1D

Determining the Energy Density to within the  $n^{th}$  bit of precision is  $QMA_{EXP}$ -complete. [Gottesman, Irani, 2010]

What is the ground Energy Density (energy per particle) when *H* is applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimensional particles. (n bits) In 2D:  $H = (H_{horiz}, H_{vert})$ 

Determining the Spectral Gap of H is undecidable.

Is  $\Delta \geq 1$  or is H gapless?

[Cubitt, Perez-Garcia, Wolf *Nature*, 2015] — 2D [Bausch, Cubitt, Lucia, Perez-Garcia, 2018] — 1D

Determining the Energy Density to within the  $n^{th}$  bit of precision is  $QMA_{EXP}$ -complete. [Gottesman, Irani, 2010]

Weaker Version of Translational Invariance

### Translational Invariance



### Translational Invariance



Ground Energy Density =  $\alpha_0$ 

Function-GED ( $h_{row}$ ,  $h_{col}$ )

Input: *n* (binary number)

Output:  $\alpha$ , where  $|\alpha - \alpha_0| \leq \frac{1}{2^n}$ 

 $\alpha_0 = .101110010100010011101101...$ 

Function-GED ( $h_{row}$ ,  $h_{col}$ )

Input: *n* (binary number)

Output:  $\alpha$ , where  $|\alpha - \alpha_0| \leq \frac{1}{2^n}$ 

$$\alpha_0 = .101110010100010011101101...$$

Why a function problem?

In order to determine the  $n^{th}$  bit, you need to know the first n-1 bits.

Also...more natural?

Function-GED is contained in FEXP<sup>QMA-EXP</sup>
Function-GED is hard for FEXP<sup>NEXP</sup>

Function-GED is contained in <u>FEXPQMA-EXP</u>
Function-GED is hard for <u>FEXP</u>NEXP

```
FEXP:
Functions
computable
by
EXP-time
classical
Turing Machine
```

Function-GED is contained in <u>FEXPQMA-EXP</u>
Function-GED is hard for <u>FEXP</u>NEXP

FEXP:

**Functions** 

computable

by

**EXP-time** 

classical

**Turing Machine** 

QMA-EXP:

YES instances can be verified by

EXP time quantum verifier with

EXP-size quantum witness

Function-GED is contained in <u>FEXPQMA-EXP</u>
Function-GED is hard for <u>FEXP</u>NEXP

FEXP:

**Functions** 

computable

by

**EXP-time** 

classical

**Turing Machine** 

NEXP

**QMA-EXP:** 

YES instances can be verified by

EXP time quantum verifier with classical

EXP-size quantum witness classical

Function-GED is contained in FEXPQMA-EXP

Function-GED is contained in FEXPQMA-EXP

Oracle language: Decision-GED ( $h_{row}$ ,  $h_{col}$ )

Input:  $\alpha \in [0, 1]$  specified with *n* bits

Output: Accept if  $\alpha_0 \leq \alpha$ 

Reject if  $\alpha_0 \geq \alpha + \frac{1}{2^n}$ 

# Function-GED is contained in FEXPQMA-EXP

Oracle language: Decision-GED ( $h_{row}$ ,  $h_{col}$ )

Input:  $\alpha \in [0, 1]$  specified with *n* bits

Output: Accept if  $\alpha_0 \leq \alpha$ 

Reject if  $\alpha_0 \geq \alpha + \frac{1}{2^n}$ 



### Observation:

The ground energy for an  $N^2 \times N^2$  grid is within  $\pm O\left(\frac{1}{N}\right)$  of  $\alpha_0$ 

 $\Rightarrow$  Decision-GED  $\in$  QMA-EXP

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by  $\frac{1}{2}$ 

$$\alpha_0 = .101110010100010011101101...$$

Function-GED is contained in FEXPQMA-EXP

Binary Search using Decision-GED

2 queries reduces the interval size by  $\frac{1}{2}$ 

$$\alpha_0 = .101110010100010011101101...$$

Input: n (log n bits)

Binary Search: O(n) iterations (EXP time)

Query Prescision:  $\frac{1}{2^n}$  (Oracle class: QMA-EXP)