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Postulate of Quantum Mechanics - Measurement

Any observable entity (energy, momentum, etc.) corresponds to a
Hermitian operator.

N-dimensional quantum system:

After the measurement, system is in a state that is consistent
with the outcome.

Measure ⇒ outcome must be in {λ0, . . . , λN−1}

λ0 ↔ |v0〉
λ1 ↔ |v1〉

. . .

λN−1 ↔ |vN−1〉

Hermitian Operator with:
Eigenvalues: λ0, . . . , λN−1

Eigenvectors: |v0〉, . . . , |vN−1〉

(Hermitian↔ real eigenvalues)

|v0〉, . . . , |vN−1〉 orthonormal basis.

(Assume for now non-degeneracy: λi ’s are distinct and there are N of them)
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Measurement, cont.

State: |Φ〉

Measure quantity - operator A =
∑

i λi |vi〉〈vi |

|Φ〉 = α0|v0〉 + · · · + αN−1|vN−1〉

Probability of outcome λi is:

|αi |2 = |〈vi |Φ〉|2 = 〈Φ|vi〉〈vi |Φ〉

Expected outcome is:∑
i Prob[Outcome is λi ]·λi =

∑
i〈Φ|vi〉〈vi |Φ〉λi

= 〈Φ|
(∑

i λi |vi〉〈vi |
)
|Φ〉 = 〈Φ|A|Φ〉

[ , . . . , ]

 A

 
〈Φ|

|Φ〉



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - dynamics
The operator corresponding to energy is called the Hamiltonian, H.



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - dynamics

The time evolution of a closed quantum system is described by
Schroedinger’s Equation:

i}
d |ψ〉

dt
= H|ψ〉.

The operator corresponding to energy is called the Hamiltonian, H.



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - dynamics

The time evolution of a closed quantum system is described by
Schroedinger’s Equation:

i}
d |ψ〉

dt
= H|ψ〉.

|ψ(0)〉 |ψ(t)〉

Simulating the dynamics of quantum systems over time

i} d|ψ〉
dt = H|ψ〉.

= e−iHt |ψ(0)〉

The operator corresponding to energy is called the Hamiltonian, H.



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - dynamics

The time evolution of a closed quantum system is described by
Schroedinger’s Equation:

i}
d |ψ〉

dt
= H|ψ〉.

|ψ(0)〉 |ψ(t)〉

Simulating the dynamics of quantum systems over time

i} d|ψ〉
dt = H|ψ〉.

= e−iHt |ψ(0)〉

The operator corresponding to energy is called the Hamiltonian, H.



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - equilibrium
If a system S interacts with its environment, S will eventually reach an
equilibrium state, called the Gibbs state.

The Gibbs state is also determined by Hamiltonian H.

H =
∑

i Ei |vi〉〈vi |



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - equilibrium
If a system S interacts with its environment, S will eventually reach an
equilibrium state, called the Gibbs state.

ρeq =
∑

i
e−βEi

Z |vi〉〈vi | where Z =
∑

i e−βEi

The Gibbs state is also determined by Hamiltonian H.

Z is called the partition function
Parameter β scales inversely with temperature

H =
∑

i Ei |vi〉〈vi |



Quantum Hamiltonian Complexity - Sandy Irani

The Hamiltonian Operator - equilibrium
If a system S interacts with its environment, S will eventually reach an
equilibrium state, called the Gibbs state.

ρeq = e−βH

Z where Z = Tr
(
e−βH

)
ρeq =

∑
i

e−βEi

Z |vi〉〈vi | where Z =
∑

i e−βEi

The Gibbs state is also determined by Hamiltonian H.

Z is called the partition function
Parameter β scales inversely with temperature

H =
∑

i Ei |vi〉〈vi |

[Linden, Popescu, Short, Winter arXiv:0812.2385]
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As the temperature goes to 0,

the Gibbs state reaches the ground state.
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Z |vi〉〈vi | = |v0〉〈v0|
(assuming a unique ground state)
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The Hamiltonian Operator - the ground state
As the temperature goes to 0,

the Gibbs state reaches the ground state.

limβ→∞ ρeq = limβ→∞
∑

i
e−βEi

Z |vi〉〈vi | = |v0〉〈v0|
(assuming a unique ground state)

Given a Hamiltonian H for a quantum system S:

• Compute the ground energy E0 (lowest eigenvalue of H)

• Compute some property of the ground state |v0〉
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An Example of a Quantum System and Its Hamiltonian

The ”state” is the position of the electron
relative to the proton:

ψ(r , θ,φ)
The Hamiltonian describes the energy
as a function of the electron location:

Ĥ = − h2

2me
∆2 − e2

4πε0r

∆2 = 1
r2

∂
∂r

(
r2 ∂

∂r

)
+ 1

r2 sinθ
∂
∂θ

(
sin θ ∂

∂r

)
+ 1

r2 sin2 θ
∂

∂φ2



Quantum Hamiltonian Complexity - Sandy Irani

An Example of a Quantum System and Its Hamiltonian

The ”state” is the position of the electron
relative to the proton:

ψ(r , θ,φ)
The Hamiltonian describes the energy
as a function of the electron location:

Ĥ = − h2

2me
∆2 − e2

4πε0r

∆2 = 1
r2

∂
∂r

(
r2 ∂

∂r

)
+ 1

r2 sinθ
∂
∂θ

(
sin θ ∂

∂r

)
+ 1

r2 sin2 θ
∂

∂φ2

...
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Local Hamiltonians

Quantum system composed of
n interacting finite dimensional
particles.

Hilbert space for a particle: Cd

Hilbert space for the whole system:(
Cd
)⊗n

Dimension = dn
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Local Hamiltonians
The Hamiltonian for a 3-qubit system is
an 8× 8 matrix H1,2,3.
The interaction between 3 qubits in an
n-qubit system is H1,2,3 ⊗ I4,...,n.

00...0xxx
00...1xxx

1...10xxx
1...11xxx

.
.

.

. . .

00
...

0x
xx

00
...

1x
xx

1.
..1

0x
xx

1.
..1

1x
xx

. . .Hn−2,n−1,n
I1,...,n−3 ⊗ Hn−2,n−1,n

h =

h
h

h

h
h

h
h
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H =
∑

a Ha

where each Ha acts on at most k qudits

System consists of n d-dimensional
particles

Hilbert space has dimension dn

Hamiltonian is a dn × dn matrix.

Succinct representation:
At most

(n
k

)
= O(nk ) terms,

each specified by d2k entries.
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Local Hamiltonians

H =
∑

a Ha

where each Ha acts on at most k qudits

System consists of n d-dimensional
particles

Hilbert space has dimension dn

Hamiltonian is a dn × dn matrix.

Succinct representation:
At most

(n
k

)
= O(nk ) terms,

each specified by d2k entries.

What is the ground state of the quantum system?
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Local Hamiltonians

H =
∑

a Ha

where each Ha acts on at most k qudits

System consists of n d-dimensional
particles

Hilbert space has dimension dn

Hamiltonian is a dn × dn matrix.

Succinct representation:
At most

(n
k

)
= O(nk ) terms,

each specified by d2k entries.

Input: Hamiltonian H, real numbers E and ∆
Is the ground energy of H ≤ E or ≥ E + ∆?
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Locality

Particle Dimension
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{|j〉
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Local Hamiltonian Variations

H =
∑

a Ha

where each Ha acts on at most k qudits

Locality

Particle Dimension

{|0〉, |1〉, . . . , |d − 1〉}

{|j〉

Geometry
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Kagome Lattice


1 0 0 0
0 −1 −2 0
0 −2 −1 0
0 0 0 1


00 01 10

11

00

01

11

10

11

Heisenberg
Antiferromagnet

Model

“Spin-Liquid Ground State of the S = 1
2

Kagome Heisenberg Antiferromagnet”

Yan, Huse, White

Science, Vol 332, June 3, 2011
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Is the Ground State a
Valence Bond

Crystal?

“Spin-Liquid Ground State of the S = 1
2

Kagome Heisenberg Antiferromagnet”

Yan, Huse, White

Science, Vol 332, June 3, 2011
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Kagome Lattice
11

Is the Ground State a
Valence Bond

Crystal?

“Spin-Liquid Ground State of the S = 1
2

Kagome Heisenberg Antiferromagnet”

Yan, Huse, White

Science, Vol 332, June 3, 2011

or a Spin Liquid?
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“A key problem in searching for spin liquids in 2D models is that there
are no exact or nearly exact analytical or computational methods to
solve infinite 2D quantum lattice systems.”

Yan, Huse, White
Science, Vol 332, June 3, 2011
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“A key problem in searching for spin liquids in 2D models is that there
are no exact or nearly exact analytical or computational methods to
solve infinite 2D quantum lattice systems.”

Yan, Huse, White
Science, Vol 332, June 3, 2011

What is the complexity of the
Local Hamiltonian problem?

• Set of local constraints

• Find a global state that minimizes cost
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Standard basis denoted by classical strings: |x1, x2, . . . , xn〉
Each xi ∈ {0, . . . , d − 1}
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”Classical” Local Hamiltonian

n d-dimensional particles: H =
(
Cd
)⊗n

Standard basis denoted by classical strings: |x1, x2, . . . , xn〉
Each xi ∈ {0, . . . , d − 1}

Special case of LH: H =
∑

j Hj

Each Hj is diagonal in the standard basis.



∗
∗
∗
∗
∗
∗
∗
∗



H is diagonal in the standard basis.
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n d-dimensional particles: H =
(
Cd
)⊗n

Standard basis denoted by classical strings: |x1, x2, . . . , xn〉
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j Hj
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∗
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Hj operates on particles
i1, i2, . . . , ik

(a1, . . . , ak )

(a1, . . . , ak )

Cost/Energy of setting:
xi1 = a1, . . . , xik = ak

H is diagonal in the standard basis.
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”Classical” Local Hamiltonian

n d-dimensional particles: H =
(
Cd
)⊗n

Standard basis denoted by classical strings: |x1, x2, . . . , xn〉
Each xi ∈ {0, . . . , d − 1}

Special case of LH: H =
∑

j Hj

Each Hj is diagonal in the standard basis.



∗
∗
∗
∗
∗
∗
∗
∗



Hj operates on particles
i1, i2, . . . , ik

(a1, . . . , ak )

(a1, . . . , ak )

Cost/Energy of setting:
xi1 = a1, . . . , xik = ak

Ground state is a
standard basis state

(i.e. a classical string)

Weighted Constraint
Satisfaction Problem

H is diagonal in the standard basis.
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Boolean Satisfiability and 3-SAT
Input: n Boolean variables x1, . . . , xn

m clauses: C1, . . . , Cm.

Ci : disjunction of three literals. e.g., (xi1 ∨ ¬xi2 ∨ xi3)

Question: Is there a Boolean assignment to x1, . . . , xn such that

C1 ∧ C2 ∧ · · · ∧ Cm = 1 ?
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Local Hamiltonian is NP-hard



0
0

1
0

0
0

0
0


⇔ (x ∨ ¬y ∨ z)

010

010

3SAT ∝ LH
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Local Hamiltonian is NP-hard



0
0

1
0

0
0

0
0


⇔ (x ∨ ¬y ∨ z)

010

010

3SAT ∝ LH

|010〉〈010| =



Quantum Hamiltonian Complexity - Sandy Irani

Local Hamiltonian is NP-hard



0
0

1
0

0
0

0
0


⇔ (x ∨ ¬y ∨ z)

010

010

H =
∑

j HCj ⇔ C1 ∧ C2 ∧ · · · ∧Cm

H has a
zero energy

ground state

⇔ C1∧C2∧· · ·∧Cm

is satisfiable.

3SAT ∝ LH

|010〉〈010| =
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that takes two inputs, x and y :

NP
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y such that A(x , y ) accepts.

NP
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The class NP

A problem is in NP if there is
a polynomial time algorithm A
that takes two inputs, x and y :

If x ∈ L, then there is a witness
y such that A(x , y ) accepts.

If x 6∈ L, then for every y ,
A(x , y ) rejects.

NP

|y | ≤ poly(x)
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The class NP

A problem is in NP if there is
a polynomial time algorithm A
that takes two inputs, x and y :

If x ∈ L, then there is a witness
y such that A(x , y ) accepts.

If x 6∈ L, then for every y ,
A(x , y ) rejects.

NP

|y | ≤ poly(x)

SAT ∈ NP

x encodes an instance of 3-SAT

Witness y :
satisfying assignment yi = 0/1
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The class NP

A problem is in NP if there is
a polynomial time algorithm A
that takes two inputs, x and y :

If x ∈ L, then there is a witness
y such that A(x , y ) accepts.

If x 6∈ L, then for every y ,
A(x , y ) rejects.

NP

|y | ≤ poly(x)

Poly-sized circuit family {Cn}
If |x | = n, then
A(x , y ) accepts↔ Cn(x , y ) = 1
A(x , y ) rejects↔ Cn(x , y ) = 0

0/1

y

x
Cn
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The class NP

A problem is in NP if there is
a polynomial time algorithm A
that takes two inputs, x and y :

If x ∈ L, then there is a witness
y such that A(x , y ) accepts.

If x 6∈ L, then for every y ,
A(x , y ) rejects.

NP

|y | ≤ poly(x)

Poly-sized circuit family {Cn}
If |x | = n, then
A(x , y ) accepts↔ Cn(x , y ) = 1
A(x , y ) rejects↔ Cn(x , y ) = 0

The circuit family {Cn} must be uniform:
There is a polynomial time Turing Machine that computes Cn on input 1n

0/1

y

x
Cn
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Promise Problems
Decision Problems: answer is ”Yes” or ”No”

L ⊆ {0, 1}∗ x ∈ L⇒ ”Yes”

x 6∈ L⇒ ”No”

Promise Problems: input strings partitioned into 3 sets

Yes ∪ No ∪ Invalid = {0, 1}∗
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The class MA (Merlin-Arthur)

A promise problem is in MA if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

MA
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The class MA (Merlin-Arthur)

A promise problem is in MA if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

If x ∈ Yes, then there is a
witness y such that
R(x , y ) accepts with prob ≥ 2

3 .

MA
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The class MA (Merlin-Arthur)

A promise problem is in MA if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

If x ∈ Yes, then there is a
witness y such that
R(x , y ) accepts with prob ≥ 2

3 .

If x ∈ No, then for every y ,
R(x , y ) accepts with prob ≤ 1

3 .

MA
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The class MA (Merlin-Arthur)

A promise problem is in MA if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

If x ∈ Yes, then there is a
witness y such that
R(x , y ) accepts with prob ≥ 2

3 .

If x ∈ No, then for every y ,
R(x , y ) accepts with prob ≤ 1

3 .

MA

If x ∈ Invalid, then no guarantees!
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The class MA (Merlin-Arthur)

A promise problem is in MA if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

If x ∈ Yes, then there is a
witness y such that
R(x , y ) accepts with prob ≥ 2

3 .

If x ∈ No, then for every y ,
R(x , y ) accepts with prob ≤ 1

3 .

MA

|y | ≤ poly(|x |)

If x ∈ Invalid, then no guarantees!

R(x,y):
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The class MA (Merlin-Arthur)

A promise problem is in MA if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

If x ∈ Yes, then there is a
witness y such that
R(x , y ) accepts with prob ≥ 2

3 .

If x ∈ No, then for every y ,
R(x , y ) accepts with prob ≤ 1

3 .

MA

|y | ≤ poly(|x |)

Uniform, polynomial-sized
circuit family {Cn}: iff |x | = n, then

x ∈ Yes↔ ∃y such that
Probr [Cn(x , y , r ) = 1] ≥ 2

3

x ∈ No↔ ∀y
Probr [Cn(x , y , r ) = 1] ≥ 1

3

0/1y

x

Cn

r

If x ∈ Invalid, then no guarantees!

R(x,y):
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The class QMA (Quantum Merlin Arthur)

QMA
A promise problem is in QMA if there is a
poly-sized uniform quantum circuit family
{Cn} such that on input x , where |x | = n:
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The class QMA (Quantum Merlin Arthur)

QMA
A promise problem is in QMA if there is a
poly-sized uniform quantum circuit family
{Cn} such that on input x , where |x | = n:

If x ∈ Yes, then there is a
quantum witness |φ〉 such that
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x ∈ No, then for every |φ〉,
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.

0/1
|x〉

|φ〉
Cn

M

|0〉/|1〉
|0〉/|1〉

|0〉/|1〉

|0〉/|1〉
|0〉/|1〉

If x ∈ Invalid, then no guarantees!
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A promise problem is in NP if
there is a polynomial time
randomized algorithm R that
takes two inputs, x and y :

If x ∈ Yes, then there is a
witness y such that
R(x , y ) accepts with prob ≥

If x ∈ No, then for every y ,
R(x , y ) accepts with prob ≤

MA(c, s)

|x | = n and |y | ≤ poly(n)

c

s

If c − s ≥ 1
nd , then

MA(c, s) = MA
(
1− 1

2n , 1
2n

)

≥ 1/nd

cs 10

Repeat m times
Threshold for acc =

(
c+s
2

)
m

c+s
2

By Chernoff’s Inequality
For m = sufficiently large polynomial in n,
Probability number of accepts deviates from
the expectation by more than

( c−s
2

)
m

is exponentially small

(with fresh random bits)
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The Marriott-Watrous “Trick”

If c − s ≥ 1
nc , then

QMAy (c, s) = QMAy

(
1− 1

2n ,
1
2n

)
for every polynomial y

QMAy (c, s)

|φ〉 has y(n) qubits.

Probabilistically try and back
up after a measurement.

Measure for a successful back up.

Principle of deferred
measurements.

A promise problem is in QMA
if there is a poly-sized uniform
quantum circuit family {Cn}
such that on input x , where
|x | = n:

If x ∈ Yes, then there is a
quantum witness |φ〉 such that
Prob[Cn(x , |φ〉) = 1] ≥

If x ∈ No, then for every |φ〉,
Prob[Cn(x , |φ〉) = 1] ≤

c

s
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Complexity Classes and Complete Problems

NP ⊆ MA ⊆ QMA ⊆ PP ⊆ PSPACE

Boolean satisfiability
is complete for NP

Local Hamiltonian
is complete for QMA

[Cook-Levin] [Kitaev]

P ⊆ BPP ⊆ BQP

⊆ ⊆BPP BQPP

⊆⊆ ⊆
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The Local Hamiltonian Problem
Input:

H1, . . . , Hr , set of Hermitian positive semi-definite matrices operating
on k qudits of dimension d , with bounded norm ‖Hi‖ ≤ 1.

Each matrix indicates the set of k qudits (out of the set of n qudits in
the system) on which it operates. Each matrix is given with poly(n)
bits.

Two real numbers E and ∆ ≥ 1/poly(n)

Output:

Is the smallest eigenvalue of H = H1 + · · · + Hr ≤ E
or are all eigenvalues ≥ E + ∆?

Eigenvalues of each Hi in [0, 1].
Hi + αI → eigenvalues of H shift by α
αH → eigenvalues of H scale by factor of α
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Local Hamiltonian is in QMA

Boolean
Satisfiability

∈ NP

Is Φ(y )
satisfiable?

Witness:
Satisfying

assignment y

Local
Hamiltonian

∈ QMA

Is there a state whose
energy (according to H)

is less than E?
〈Φ|H|Φ〉 ≤ E?

Witness: |Φ〉
Guarantee:
There exists |Φ〉 such that 〈Φ|H|Φ〉 ≤ E

OR
For all |Φ〉, 〈Φ|H|Φ〉 ≥ E + ∆

Need a measurement
whose outcome = 1 with
probability ∝ 〈Φ|H|Φ〉.

⇒
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Local Hamiltonian is in QMA

H = H1 + H2 + · · · + Hr Each Hi is k -local

Pick Ha at random where Ha =
∑

j λaj |vaj〉〈vaj |
(recall 0 ≤ λaj ≤ 1)

Add auxiliary bit and implement unitary:

|vaj〉|0〉 ⇒ |vaj〉
(√
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√
λaj |1〉

)For every j :

Measure last qubit
|Φ〉|0〉 =

∑
j αaj |vaj〉|βaj〉|0〉 ⇒∑
j αaj |vaj〉|βaj〉

(√
1− λaj |0〉 +

√
λaj |1〉

)
Prob of measuring 1:

∑
j |αaj |2λaj = 〈Φ|Ha|Φ〉
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Local Hamiltonian is in QMA

H = H1 + H2 + · · · + Hr Each Hi is k -local

Pick Ha at random where Ha =
∑

j λaj |vaj〉〈vaj |
(recall 0 ≤ λaj ≤ 1)

If Ha is picked, prob of measuring 1: = 〈Φ|Ha|Φ〉

Probability of measuring 1 (overall):

= 1
r

∑r
a=1〈Φ|Ha|Φ〉 = 1

r 〈Φ|H|Φ〉

either ≤ E/r OR ≥ (E + ∆)/r
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Boolean Satisfiability is NP-hard
Start with a generic language L in NP

Is x ∈ L?

0/1

y

x

Cn0/1
0/1
0/1
0/1
0/1
0/1

Is there a string y that causes this
circuit to output 1?

Boolean
Formula:
Φx (y )

⇒

Is Φx (y ) satisfiable?⇔

[Cook-Levin]
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Is there a quantum state φ〉
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Local Hamiltonian is QMA-hard
Start with a generic promise problem in QMA

Is x ∈ Yes? or is x ∈ NO?

Is there a quantum state φ〉
that causes this quantum circuit
to output 1 with high probability?

5-Local
Hamiltonian:

(Hx , E ,∆)
⇒

Ground energy of Hx ≤ E⇒

0/1
|x〉

|φ〉
Cn

M

|0〉/|1〉
|0〉/|1〉

|0〉/|1〉

|0〉/|1〉
|0〉/|1〉

[Kitaev 1995]

For every |φ〉, circuit outputs 0 w.h.p. ⇒ Ground energy of Hx ≥ E +∆
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Boolean Satisfiability is NP-hard
Start with a generic language L in NP

Is x ∈ L?

0/1

y

x

Cn0/1
0/1
0/1
0/1
0/1
0/1

Is there a string y that causes this
circuit to output 1?

Reduction: input x

• Use |x | = n to compute Cn

(uniformity)

• Convert Cn to a Boolean
formula

• Add terms to hard-code
input x and enforce output
= 1.
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Circuit to Boolean formula
Circuit Cn has gates G1, . . . , Gm, where m = poly (n).

Add variables g1, . . . , gm, one for each gate.

Add a clause for each gate:

OR gi

a

b
⇒ ((a∨b)↔ gi )

gi
a

b
⇒ ((a∧b)↔ gi )AND

gia ⇒ (¬a↔ gi )NOT

Hard-code x :
xi = 0 → add clause (¬xi )
xi = 1 → add clause (xi )

Output of Gm = output of circuit:
Add clause (gm)

Boolean formula is the conjunction of all the clauses.
Can reduce to CNF or 3SAT form.

y

x
Cn

gm
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a polynomial time algorithm A
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If x ∈ L, then there is a witness
y such that A(x , y ) accepts.

If x 6∈ L, then for every y ,
A(x , y ) rejects.

NP

|y | ≤ poly(x)
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The class NP and Turing Machine Tableaus

A problem is in NP if there is
a polynomial time algorithm A
that takes two inputs, x and y :

If x ∈ L, then there is a witness
y such that A(x , y ) accepts.

If x 6∈ L, then for every y ,
A(x , y ) rejects.

NP

|y | ≤ poly(x)

Turing Machine that
runs in time

poly(n), where |x | = n
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Turing Machine Tableau

TM Tableau:
Configurations written in a 2D array

for a Turing Machine M in input (x , y )

q0/x1 x2 ym· · ·
a q1/x2 · · ·

· · ·
ym

ymq3/a b

· · ·
· · ·
· · ·

· · ·

··
·
··
·

··
·

· ·
·

qA/− – – – –

–

–

–

Turing Machine
M

(x , y ) Accept/
Reject

Width: space used
≤ nc

Height:
running time

= nc .
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q2/b
b c q1/a
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b c a

a

b c
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• input (binary encording of) 3 cells
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Circuit is constant size
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Turing Machine to Boolean formula
Contents of a cell determined by the three cells above it.

q1/a

q2/b
b c q1/a

b

b c a

a

b c

Can build Boolean circuit STEP
• input (binary encording of) 3 cells
• output (binary encording of) 1 cell

Circuit is constant size

q1/ab c

STEP

b

Each circuit can be converted to a Boolean formula
(set of Boolean constraints)
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On to Part II...


