Quantum Hamiltonian Complexity Part I

Sandy Irani
Computer Science Department UC Irvine

Postulate of Quantum Mechanics - Measurement

Any observable entity (energy, momentum, etc.) corresponds to a Hermitian operator. (Hermitian \leftrightarrow real eigenvalues)

Postulate of Quantum Mechanics - Measurement

Any observable entity (energy, momentum, etc.) corresponds to a Hermitian operator. (Hermitian \leftrightarrow real eigenvalues)
N-dimensional quantum system:
Measure $\quad \Rightarrow \quad$ outcome must be in $\left\{\lambda_{0}, \ldots, \lambda_{N-1}\right\}$ (Assume for now non-degeneracy: λ_{i} 's are distinct and there are N of them)

Postulate of Quantum Mechanics - Measurement

Any observable entity (energy, momentum, etc.) corresponds to a Hermitian operator. (Hermitian \leftrightarrow real eigenvalues)
N-dimensional quantum system:
Measure $\quad \Rightarrow \quad$ outcome must be in $\left\{\lambda_{0}, \ldots, \lambda_{N-1}\right\}$ (Assume for now non-degeneracy: λ 's are distinct and there are N of them)

After the measurement, system is in a state that is consistent with the outcome.

$$
\begin{array}{ll}
\lambda_{0} \leftrightarrow\left|v_{0}\right\rangle \\
\lambda_{1} \leftrightarrow\left|v_{1}\right\rangle
\end{array} \quad\left|v_{0}\right\rangle, \ldots,\left|v_{N-1}\right\rangle \text { orthonormal basis. }
$$

...

$$
\lambda_{N-1} \leftrightarrow\left|v_{N-1}\right\rangle
$$

Postulate of Quantum Mechanics - Measurement

Any observable entity (energy, momentum, etc.) corresponds to a Hermitian operator. (Hermitian \leftrightarrow real eigenvalues)
N-dimensional quantum system:
Measure $\quad \Rightarrow \quad$ outcome must be in $\left\{\lambda_{0}, \ldots, \lambda_{N-1}\right\}$ (Assume for now non-degeneracy: λ 's are distinct and there are N of them)

After the measurement, system is in a state that is consistent with the outcome.

$$
\begin{array}{ll}
\begin{array}{ll}
\lambda_{0} \leftrightarrow\left|v_{0}\right\rangle \\
\lambda_{1} \leftrightarrow\left|v_{1}\right\rangle & \\
\ldots & \\
\ldots & \text { Hermitian Operator with: } \\
\ldots & \text { Eigenvalues: } \lambda_{0}, \ldots, \lambda_{N-1} \\
\lambda_{N-1} \leftrightarrow\left|v_{N-1}\right\rangle & \text { Eigenvectors: }\left|v_{0}\right\rangle, \ldots,\left|v_{N-1}\right\rangle
\end{array} .
\end{array}
$$

Measurement, cont.

State: $|\Phi\rangle$
Measure quantity - operator $\mathrm{A}=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

Measurement, cont.

State: $|\Phi\rangle$
Measure quantity - operator $\mathrm{A}=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
|\Phi\rangle=\alpha_{0}\left|v_{0}\right\rangle+\cdots+\alpha_{N-1}\left|v_{N-1}\right\rangle
$$

Probability of outcome λ_{i} is:

$$
\left|\alpha_{i}\right|^{2}=\left|\left\langle v_{i} \mid \Phi\right\rangle\right|^{2}=\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle
$$

Measurement, cont.

State: $|\Phi\rangle$
Measure quantity - operator $\mathrm{A}=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
|\Phi\rangle=\alpha_{0}\left|v_{0}\right\rangle+\cdots+\alpha_{N-1}\left|v_{N-1}\right\rangle
$$

Probability of outcome λ_{i} is:

$$
\left|\alpha_{i}\right|^{2}=\left|\left\langle v_{i} \mid \Phi\right\rangle\right|^{2}=\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle
$$

Expected outcome is:
$\sum_{i} \operatorname{Prob}\left[\right.$ Outcome is $\left.\lambda_{i}\right] \cdot \lambda_{i}=\sum_{i}\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle \lambda_{i}$

Measurement, cont.

State: $|\Phi\rangle$
Measure quantity - operator $\mathrm{A}=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
|\Phi\rangle=\alpha_{0}\left|v_{0}\right\rangle+\cdots+\alpha_{N-1}\left|v_{N-1}\right\rangle
$$

Probability of outcome λ_{i} is:

$$
\left|\alpha_{i}\right|^{2}=\left|\left\langle v_{i} \mid \Phi\right\rangle\right|^{2}=\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle
$$

Expected outcome is:

$$
\begin{aligned}
& \quad \sum_{i} \operatorname{Prob}\left[\text { Outcome is } \lambda_{i}\right] \cdot \lambda_{i}=\sum_{i}\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle \lambda_{i} \\
& =\langle\Phi|\left(\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|\right)|\Phi\rangle=\langle\Phi| A|\Phi\rangle
\end{aligned}
$$

Measurement, cont.

State: $|\Phi\rangle$

Measure quantity - operator $\mathrm{A}=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
|\Phi\rangle=\alpha_{0}\left|v_{0}\right\rangle+\cdots+\alpha_{N-1}\left|v_{N-1}\right\rangle
$$

Probability of outcome λ_{i} is:

$$
\left|\alpha_{i}\right|^{2}=\left|\left\langle v_{i} \mid \Phi\right\rangle\right|^{2}=\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle
$$

Expected outcome is:

$$
\left.\begin{array}{c}
\sum_{i} \operatorname{Prob}\left[\text { Outcome is } \lambda_{i}\right] \cdot \lambda_{i}=\sum_{i}\left\langle\Phi \mid v_{i}\right\rangle\left\langle v_{i} \mid \Phi\right\rangle \lambda_{i} \\
=\langle\Phi|\left(\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|\right)|\Phi\rangle=\langle\Phi| A|\Phi\rangle \\
\\
\\
\\
\\
\\
\\
\langle, \ldots,]
\end{array}\right]\left[\begin{array}{c}
A \\
\end{array}\right]\left[\begin{array}{l}
\\
\hline \Phi\rangle
\end{array}\right.
$$

The Hamiltonian Operator - dynamics

The operator corresponding to energy is called the Hamiltonian, H.

The Hamiltonian Operator - dynamics

The operator corresponding to energy is called the Hamiltonian, H.
The time evolution of a closed quantum system is described by Schroedinger's Equation:

$$
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle
$$

The Hamiltonian Operator - dynamics

The operator corresponding to energy is called the Hamiltonian, H.
The time evolution of a closed quantum system is described by Schroedinger's Equation:

$$
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle
$$

Simulating the dynamics of quantum systems over time

$$
|\psi(0)\rangle \longrightarrow \begin{aligned}
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle . \quad & |\psi(t)\rangle \\
& =e^{-i H t}|\psi(0)\rangle
\end{aligned}
$$

The Hamiltonian Operator - dynamics

The operator corresponding to energy is called the Hamiltonian, H.
The time evolution of a closed quantum system is described by Schroedinger's Equation:

$$
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle
$$

Simulating the dynamics of quantum systems over time

$$
|\psi(0)\rangle \longrightarrow \begin{aligned}
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle . \quad & |\psi(t)\rangle \\
& =e^{-i H t}|\psi(0)\rangle
\end{aligned}
$$

The Hamiltonian Operator - equilibrium

If a system S interacts with its environment, S will eventually reach an equilibrium state, called the Gibbs state.

The Gibbs state is also determined by Hamiltonian H.

$$
H=\sum_{i} E_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

The Hamiltonian Operator - equilibrium

If a system S interacts with its environment, S will eventually reach an equilibrium state, called the Gibbs state.

The Gibbs state is also determined by Hamiltonian H.

$$
\begin{gathered}
H=\sum_{i} E_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
\rho_{e q}=\sum_{i} \frac{e^{-\beta E_{i}}}{Z}\left|v_{i}\right\rangle\left\langle v_{i}\right| \quad \text { where } \quad Z=\sum_{i} e^{-\beta E_{i}}
\end{gathered}
$$

Parameter β scales inversely with temperature
Z is called the partition function

The Hamiltonian Operator - equilibrium

If a system S interacts with its environment, S will eventually reach an equilibrium state, called the Gibbs state.

The Gibbs state is also determined by Hamiltonian H.

$$
\begin{gathered}
H=\sum_{i} E_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
\rho_{e q}=\sum_{i} \frac{e^{-\beta E_{i}}}{Z}\left|v_{i}\right\rangle\left\langle v_{i}\right| \quad \text { where } \quad Z=\sum_{i} e^{-\beta E_{i}}
\end{gathered}
$$

Parameter β scales inversely with temperature
Z is called the partition function

$$
\rho_{e q}=\frac{e^{-\beta H}}{Z} \quad \text { where } \quad Z=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

[Linden, Popescu, Short, Winter arXiv:0812.2385]

The Hamiltonian Operator - the ground state

As the temperature goes to 0 , the Gibbs state reaches the ground state.

$$
\lim _{\beta \rightarrow \infty} \rho_{e q}=\lim _{\beta \rightarrow \infty} \sum_{i} \frac{e^{-\beta E_{i}}}{Z}\left|v_{i}\right\rangle\left\langle v_{i}\right|=\left|v_{0}\right\rangle\left\langle v_{0}\right|
$$

The Hamiltonian Operator - the ground state

As the temperature goes to 0 , the Gibbs state reaches the ground state.

$$
\lim _{\beta \rightarrow \infty} \rho_{e q}=\lim _{\beta \rightarrow \infty} \sum_{i} \frac{e^{-\beta E_{i}}}{Z}\left|v_{i}\right\rangle\left\langle v_{i}\right|=\left|v_{0}\right\rangle\left\langle v_{0}\right|
$$

Given a Hamiltonian H for a quantum system S :

- Compute the ground energy E_{0} (lowest eigenvalue of H)
- Compute some property of the ground state $\left|v_{0}\right\rangle$

An Example of a Quantum System and Its Hamiltonian

Hydrogen Atom

-

$$
\psi(r, \theta, \phi)
$$

An Example of a Quantum System and Its Hamiltonian

Hydrogen Atom
The "state" is the position of the electron relative to the proton:

$$
\psi(r, \theta, \phi)
$$

The Hamiltonian describes the energy as a function of the electron location:

$$
\hat{H}=-\frac{h^{2}}{2 m_{e}} \Delta^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

$$
\Delta^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi^{2}}
$$

An Example of a Quantum System and Its Hamiltonian

Hydrogen Atom
The "state" is the position of the electron relative to the proton:

$$
\psi(r, \theta, \phi)
$$

The Hamiltonian describes the energy as a function of the electron location:

$$
\hat{H}=-\frac{h^{2}}{2 m_{e}} \Delta^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

$$
\Delta^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi^{2}}
$$

1s 2s

$2 p_{z}$

Local Hamiltonians

Quantum system composed of n interacting finite dimensional particles.

Local Hamiltonians

Quantum system composed of n interacting finite dimensional particles.

Hilbert space for a particle: \mathbb{C}^{d}

Local Hamiltonians

Quantum system composed of n interacting finite dimensional particles.

Hilbert space for a particle: \mathbb{C}^{d}
Hilbert space for the whole system:

$$
\left(\mathbb{C}^{d}\right)^{\otimes n}
$$

Dimension $=d^{n}$

Local Hamiltonians

Local Hamiltonians

Local Hamiltonians

The Hamiltonian for a 3-qubit system is an 8×8 matrix $H_{1,2,3}$.

Local Hamiltonians

The Hamiltonian for a 3-qubit system is an 8×8 matrix $H_{1,2,3}$.
The interaction between 3 qubits in an n-qubit system is $H_{1,2,3} \otimes I_{4, \ldots, n}$.

Local Hamiltonians

Local Hamiltonians

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

Local Hamiltonians

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits
System consists of $n d$-dimensional particles

Local Hamiltonians

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits
System consists of $n d$-dimensional particles

Hilbert space has dimension d^{n} Hamiltonian is a $d^{n} \times d^{n}$ matrix.

Local Hamiltonians

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits
System consists of $n d$-dimensional particles

Hilbert space has dimension d^{n} Hamiltonian is a $d^{n} \times d^{n}$ matrix.

Succinct representation:
At most $\binom{n}{k}=O\left(n^{k}\right)$ terms, each specified by $d^{2 k}$ entries.

Local Hamiltonians

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits
System consists of $n d$-dimensional particles

Hilbert space has dimension d^{n} Hamiltonian is a $d^{n} \times d^{n}$ matrix.

Succinct representation:
At most $\binom{n}{k}=O\left(n^{k}\right)$ terms, each specified by $d^{2 k}$ entries.

What is the ground state of the quantum system?

Local Hamiltonians

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits
System consists of $n d$-dimensional particles

Hilbert space has dimension d^{n} Hamiltonian is a $d^{n} \times d^{n}$ matrix.

Succinct representation:
At most $\binom{n}{k}=O\left(n^{k}\right)$ terms, each specified by $d^{2 k}$ entries.

Input: Hamiltonian H, real numbers E and Δ Is the ground energy of $H \leq E$ or $\geq E+\Delta$?

Local Hamiltonian Variations

Locality

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

Local Hamiltonian Variations

Locality

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

Local Hamiltonian Variations

Locality

$H=\sum_{a} H_{a}$
where each H_{a} acts on at most k qudits

$\{|0\rangle,|1\rangle, \ldots,|d-1\rangle\}$

Particle Dimension

Geometry

"Spin-Liquid Ground State of the $S=\frac{1}{2}$ Kagome Heisenberg Antiferromagnet"

Yan, Huse, White

Science, Vol 332, June 3, 2011

Is the Ground State a
Valence Bond
Crystal?

Kagome Lattice

Kagome Lattice
"Spin-Liquid Ground State of the $S=\frac{1}{2}$ Kagome Heisenberg Antiferromagnet"

Yan, Huse, White
Science, Vol 332, June 3, 2011

Is the Ground State a
Valence Bond
Crystal?
or a Spin Liquid?
"A key problem in searching for spin liquids in 2D models is that there are no exact or nearly exact analytical or computational methods to solve infinite 2D quantum lattice systems."

Yan, Huse, White
Science, Vol 332, June 3, 2011
"A key problem in searching for spin liquids in 2D models is that there are no exact or nearly exact analytical or computational methods to solve infinite 2D quantum lattice systems."

Yan, Huse, White
Science, Vol 332, June 3, 2011

What is the complexity of the

 Local Hamiltonian problem?- Set of local constraints
- Find a global state that minimizes cost

"Classical" Local Hamiltonian

$n d$-dimensional particles: $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$
Standard basis denoted by classical strings: $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
Each $x_{i} \in\{0, \ldots, d-1\}$

"Classical" Local Hamiltonian

$n d$-dimensional particles: $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$
Standard basis denoted by classical strings: $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
Each $x_{i} \in\{0, \ldots, d-1\}$
Special case of LH: $\quad H=\sum_{j} H_{j}$
Each H_{j} is diagonal in the standard basis. H is diagonal in the standard basis.

"Classical" Local Hamiltonian

$n d$-dimensional particles: $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$
Standard basis denoted by classical strings: $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
Each $x_{i} \in\{0, \ldots, d-1\}$
Special case of LH: $H=\sum_{j} H_{j}$
Each H_{j} is diagonal in the standard basis. H_{j} operates on particles H is diagonal in the standard basis.
$i_{1}, i_{2}, \ldots, i_{k}$

"Classical" Local Hamiltonian

$n d$-dimensional particles: $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$
Standard basis denoted by classical strings: $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
Each $x_{i} \in\{0, \ldots, d-1\}$
Special case of LH: $H=\sum_{j} H_{j}$
Each H_{j} is diagonal in the standard basis. H_{j} operates on particles H is diagonal in the standard basis.
$i_{1}, i_{2}, \ldots, i_{k}$

"Classical" Local Hamiltonian

$n d$-dimensional particles: $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes n}$
Standard basis denoted by classical strings: $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
Each $x_{i} \in\{0, \ldots, d-1\}$
Special case of LH: $H=\sum_{j} H_{j}$
Each H_{j} is diagonal in the standard basis. H_{j} operates on particles H is diagonal in the standard basis.
$i_{1}, i_{2}, \ldots, i_{k}$

Boolean Satisfiability and 3-SAT

Input: n Boolean variables x_{1}, \ldots, x_{n}
m clauses: C_{1}, \ldots, C_{m}.
C_{i} : disjunction of three literals. e.g., $\left(x_{i 1} \vee \neg x_{i 2} \vee x_{i 3}\right)$
Question: Is there a Boolean assignment to x_{1}, \ldots, x_{n} such that

$$
C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}=1 ?
$$

Local Hamiltonian is NP-hard

3SAT \propto LH

Local Hamiltonian is NP-hard

Local Hamiltonian is NP-hard

Local Hamiltonian is NP-hard

The class NP

NP
A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

The class NP

NP
A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

If $x \in L$, then there is a witness y such that $A(x, y)$ accepts.

The class NP

NP
A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

If $x \in L$, then there is a witness y such that $A(x, y)$ accepts.

If $x \notin L$, then for every y, $A(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$

The class NP

NP

A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

If $x \in L$, then there is a witness y such that $A(x, y)$ accepts.

SAT \in NP

x encodes an instance of 3-SAT
Witness y :
satisfying assignment $y_{i}=0 / 1$

If $x \notin L$, then for every y, $A(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$

The class NP

NP

A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

Poly-sized circuit family $\left\{C_{n}\right\}$
If $|x|=n$, then
$A(x, y)$ accepts $\leftrightarrow C_{n}(x, y)=1$
$A(x, y)$ rejects $\leftrightarrow C_{n}(x, y)=0$
If $x \in L$, then there is a witness y such that $A(x, y)$ accepts.

If $x \notin L$, then for every y, $A(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$

The class NP

NP

A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

Poly-sized circuit family $\left\{C_{n}\right\}$
If $|x|=n$, then
$A(x, y)$ accepts $\leftrightarrow C_{n}(x, y)=1$
$A(x, y)$ rejects $\leftrightarrow C_{n}(x, y)=0$
If $x \in L$, then there is a witness y such that $A(x, y)$ accepts.

If $x \notin L$, then for every y, $A(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$

The circuit family $\left\{C_{n}\right\}$ must be uniform:
There is a polynomial time Turing Machine that computes C_{n} on input 1^{n}

Promise Problems

Decision Problems: answer is "Yes" or "No"

$$
\begin{array}{rl}
L \subseteq\{0,1\}^{*} & x \in L \Rightarrow \text { "Yes" } \\
& x \notin L \Rightarrow \text { "No" }
\end{array}
$$

Promise Problems: input strings partitioned into 3 sets

Yes \cup No \cup Invalid $=\{0,1\}^{*}$

The class MA (Merlin-Arthur)

MA

A promise problem is in MA if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

The class MA (Merlin-Arthur)

MA

A promise problem is in MA if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y \text { Yes, then there is a }}$ witness y such that $R(x, y)$ accepts with prob $\geq \frac{2}{3}$.

The class MA (Merlin-Arthur)

MA

A promise problem is in MA if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y \text { Yes, then there is a }}$ witness y such that $R(x, y)$ accepts with prob $\geq \frac{2}{3}$.

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \frac{1}{3}$.

The class MA (Merlin-Arthur)

MA

A promise problem is in MA if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $x \in Y$ Yes, then there is a witness y such that $R(x, y)$ accepts with prob $\geq \frac{2}{3}$.

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \frac{1}{3}$.

If $\underline{x \in \operatorname{Invalid} \text {, then no guarantees! }}$

The class MA (Merlin-Arthur)

MA

A promise problem is in MA if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $x \in Y$ Yes, then there is a witness y such that $R(x, y)$ accepts with prob $\geq \frac{2}{3}$.

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \frac{1}{3}$.

If $\underline{x \in \operatorname{Invalid}, \text { then no guarantees! }}$
$|y| \leq \operatorname{poly}(|x|)$

The class MA (Merlin-Arthur)

A promise problem is in MA if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y e s, ~ t h e n ~ t h e r e ~ i s ~ a ~}$ witness y such that $R(x, y)$ accepts with prob $\geq \frac{2}{3}$.

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \frac{1}{3}$.

If $\underline{x \in \operatorname{Invalid} \text {, then no guarantees! }}$

$$
|y| \leq \operatorname{poly}(|x|)
$$

Uniform, polynomial-sized circuit family $\left\{C_{n}\right\}$: iff $|x|=n$, then

$$
\begin{aligned}
& x \in \operatorname{Yes} \leftrightarrow \exists y \text { such that } \\
& \quad \operatorname{Prob}_{r}\left[C_{n}(x, y, r)=1\right] \geq \frac{2}{3}
\end{aligned}
$$

$$
x \in \text { No } \leftrightarrow \forall y
$$

$$
\operatorname{Prob}_{r}\left[C_{n}(x, y, r)=1\right] \geq \frac{1}{3}
$$

The class QMA (Quantum Merlin Arthur)

QMA
A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

The class QMA (Quantum Merlin Arthur)

QMA
A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $\underline{x \in Y e s}$, then there is a
quantum witness $|\phi\rangle$ such that
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.

The class QMA (Quantum Merlin Arthur)

QMA
A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $\underline{x \in Y e s}$, then there is a
quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.

$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3$.

The class QMA (Quantum Merlin Arthur)

QMA
A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $\underline{x \in Y e s}$, then there is a
quantum witness $|\phi\rangle$ such that
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.

$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3$.
If $\underline{x \in \text { Invalid, then no guarantees! }}$

The class QMA (Quantum Merlin Arthur)

QMA

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in Y$ Yes, then there is a
quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq 2 / 3$.
 $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq 1 / 3$.

If $x \in$ Invalid, then no guarantees!
$|\phi\rangle$ has poly(n) qubits.

The class MA - amplification

MA(c, s)
A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

The class MA - amplification

MA(c, s)
A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y e s}$, then there is a
witness y such that $R(x, y)$ accepts with prob $\geq \mathbf{c}$

The class MA - amplification

MA(c, s)

A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y e s}$, then there is a
witness y such that $R(x, y)$ accepts with prob $\geq \mathbf{c}$

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \mathrm{S}$

$$
|x|=n \text { and }|y| \leq \operatorname{poly}(n)
$$

The class MA - amplification

MA(c, s)

A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y e s}$, then there is a
witness y such that
$R(x, y)$ accepts with prob $\geq \mathbf{c}$
If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \mathrm{S}$

$$
|x|=n \text { and }|y| \leq \operatorname{poly}(n)
$$

The class MA - amplification

MA(c, s)

A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $x \in \mathrm{Yes}$, then there is a witness y such that $R(x, y)$ accepts with prob $\geq \mathbf{c}$

If $c-s \geq \frac{1}{n^{d}}$, then
$M A(c, s)=M A\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)$

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \mathrm{S}$

$$
|x|=n \text { and }|y| \leq \operatorname{poly}(n)
$$

The class MA - amplification

MA(c, s)

A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $\underline{x \in Y e s}$, then there is a witness y such that $R(x, y)$ accepts with prob $\geq \mathbf{c}$

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \mathrm{S}$

$$
|x|=n \text { and }|y| \leq \operatorname{poly}(n)
$$

$$
\begin{gathered}
\text { If } c-s \geq \frac{1}{n^{d}}, \text { then } \\
\mathrm{MA}(c, s)=\mathrm{MA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)
\end{gathered}
$$

Repeat m times (with fresh random bits)
Threshold for acc $=\left(\frac{c+s}{2}\right) m$

The class MA - amplification

MA(c, s)

A promise problem is in NP if there is a polynomial time randomized algorithm R that takes two inputs, x and y :

If $x \in$ Yes, then there is a witness y such that $R(x, y)$ accepts with prob $\geq \mathbf{c}$

If $x \in$ No, then for every y, $R(x, y)$ accepts with prob $\leq \mathrm{S}$

$$
|x|=n \text { and }|y| \leq \operatorname{poly}(n)
$$

If $c-s \geq \frac{1}{n^{d}}$, then
$\operatorname{MA}(c, s)=\mathrm{MA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)$

Repeat m times (with fresh random bits)
Threshold for acc $=\left(\frac{c+s}{2}\right) m$
By Chernoff's Inequality
For m = sufficiently large polynomial in n, Probability number of accepts deviates from the expectation by more than $\left(\frac{c-s}{2}\right) m$ is exponentially small

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA
if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA
if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in Y$ Yes, then there is a quantum witness $|\phi\rangle$ such that
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$
If $\underline{x \in N o}$, then for every $|\phi\rangle$,
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in Y$ Yes, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in Y$ Yes, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

If $c-s \geq \frac{1}{n^{d}}$, then

$$
\operatorname{QMA}(c, s)=\operatorname{QMA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)
$$

Completeness:

$$
||\Phi\rangle| \Phi\rangle|\Phi\rangle \quad \text { • • } \quad|\Phi\rangle
$$

m independent copies

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $x \in Y$ Yes, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$

If $c-s \geq \frac{1}{n^{d}}$, then

$$
\operatorname{QMA}(c, s)=\operatorname{QMA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)
$$

Completeness:

$$
||\Phi\rangle| \Phi\rangle|\Phi\rangle \quad \text { • • } \quad|\Phi\rangle
$$

m independent copies
Soundness:

$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $\underline{x} \in \mathrm{Yes}$, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

If $c-s \geq \frac{1}{n^{d}}$, then
$\operatorname{QMA}(c, s)=\operatorname{QMA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)$
Completeness:

$$
||\Phi\rangle| \Phi\rangle|\Phi\rangle \quad \text { • • } \quad|\Phi\rangle
$$

m independent copies
Soundness:

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $\underline{x} \in \mathrm{Yes}$, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

$$
\begin{gathered}
\text { If } c-s \geq \frac{1}{n^{d}}, \text { then } \\
\operatorname{QMA}(c, s)=\operatorname{QMA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)
\end{gathered}
$$

Completeness:

$$
||\Phi\rangle| \Phi\rangle|\Phi\rangle \quad \text { • • } \quad|\Phi\rangle
$$

m independent copies
Soundness:

ACC ACC Even when conditioned on
$\leq s \leq s$ outcome of V_{1} 's measurement

The class QMA - amplification

QMA(c, s)

A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n$:

If $\underline{x} \in \mathrm{Yes}$, then there is a quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $y=\operatorname{poly}(n)$ qubits.

$$
\begin{gathered}
\text { If } c-s \geq \frac{1}{n^{d}}, \text { then } \\
\operatorname{QMA}(c, s)=\operatorname{QMA}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)
\end{gathered}
$$

Completeness:

$$
||\Phi\rangle| \Phi\rangle|\Phi\rangle \quad \text { • • } \quad|\Phi\rangle
$$

m independent copies
Soundness:

ACC ACC Even when conditioned on
$\leq s \leq s$ outcome of V_{1} 's measurement

The Marriott-Watrous "Trick"

$\mathrm{QMA}_{y}(c, s)$

A promise problem is in QMA
if there is a poly-sized uniform
quantum circuit family $\left\{C_{n}\right\}$
such that on input x, where
$|x|=n:$
If $\underline{x \in Y e s, ~ t h e n ~ t h e r e ~ i s ~ a ~}$ quantum witness $|\phi\rangle$ such that
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$
If $\underline{x \in N o}$, then for every $|\phi\rangle$,
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq S$
$|\phi\rangle$ has $\mathbf{y}(\mathbf{n})$ qubits.

The Marriott-Watrous "Trick"

$\mathrm{QMA}_{y}(c, s)$
A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n:$

If $c-s \geq \frac{1}{n^{c}}$, then
$\operatorname{QMA}_{y}(c, s)=\operatorname{QMA}_{y}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)$
for every polynomial y

If $\underline{x \in Y e s, ~ t h e n ~ t h e r e ~ i s ~ a ~}$ quantum witness $|\phi\rangle$ such that
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$
If $\underline{x \in N o}$, then for every $|\phi\rangle$,
$\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq \mathbf{S}$
$|\phi\rangle$ has $\mathbf{y}(\mathbf{n})$ qubits.

The Marriott-Watrous "Trick"

$\mathrm{QMA}_{y}(c, s)$
A promise problem is in QMA if there is a poly-sized uniform quantum circuit family $\left\{C_{n}\right\}$ such that on input x, where $|x|=n:$

If $\underline{x \in Y e s, ~ t h e n ~ t h e r e ~ i s ~ a ~}$ quantum witness $|\phi\rangle$ such that $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \geq \mathbf{c}$

If $\underline{x \in N o}$, then for every $|\phi\rangle$, $\operatorname{Prob}\left[C_{n}(x,|\phi\rangle)=1\right] \leq \mathbf{S}$

If $c-s \geq \frac{1}{n^{c}}$, then
$\operatorname{QMA}_{y}(c, s)=\operatorname{QMA}_{y}\left(1-\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)$
for every polynomial y
Probabilistically try and back up after a measurement.

Measure for a successful back up.
Principle of deferred measurements.
$|\phi\rangle$ has $\mathbf{y}(\mathbf{n})$ qubits.

Complexity Classes and Complete Problems
$\mathrm{NP} \subseteq \mathrm{MA} \subseteq \mathrm{QMA}$

Complexity Classes and Complete Problems
$\mathrm{NP} \subseteq \mathrm{MA} \subseteq \mathrm{QMA} \subseteq \mathrm{PP} \subseteq \mathrm{PSPACE}$

Complexity Classes and Complete Problems

Boolean satisfiability
 is complete for NP
 [Cook-Levin]

Complexity Classes and Complete Problems

Complexity Classes and Complete Problems

$\mathrm{P} \subseteq \mathrm{BPP} \subseteq \mathrm{BQP}$

Complexity Classes and Complete Problems

The Local Hamiltonian Problem

Input:
H_{1}, \ldots, H_{r}, set of Hermitian positive semi-definite matrices operating on k qudits of dimension d, with bounded norm $\left\|H_{i}\right\| \leq 1$.

The Local Hamiltonian Problem

Input:
H_{1}, \ldots, H_{r}, set of Hermitian positive semi-definite matrices operating on k qudits of dimension d, with bounded norm $\left\|H_{i}\right\| \leq 1$.

The Local Hamiltonian Problem

 Input:H_{1}, \ldots, H_{r}, set of Hermitian positive semi-definite matrices operating on k qudits of dimension d, with bounded norm $\left\|H_{i}\right\| \leq 1$.

Each matrix indicates the set of k qudits (out of the set of n qudits in the system) on which it operates. Each matrix is given with poly(n) bits.

The Local Hamiltonian Problem

 Input:H_{1}, \ldots, H_{r}, set of Hermitian positive semi-definite matrices operating on k qudits of dimension d, with bounded norm $\left\|H_{i}\right\| \leq 1$.

Each matrix indicates the set of k qudits (out of the set of n qudits in the system) on which it operates. Each matrix is given with poly(n) bits.

Two real numbers E and $\Delta \geq 1 / \operatorname{poly}(n)$

The Local Hamiltonian Problem

 Input:H_{1}, \ldots, H_{r}, set of Hermitian positive semi-definite matrices operating on k qudits of dimension d, with bounded norm $\left\|H_{i}\right\| \leq 1$.

Each matrix indicates the set of k qudits (out of the set of n qudits in the system) on which it operates. Each matrix is given with poly(n) bits.

Two real numbers E and $\Delta \geq 1 / \operatorname{poly}(n)$
Output:
Is the smallest eigenvalue of $H=H_{1}+\cdots+H_{r} \leq E$ or are all eigenvalues $\geq E+\Delta$?

The Local Hamiltonian Problem

 Input:H_{1}, \ldots, H_{r}, set of Hermitian positive semi-definite matrices operating on k qudits of dimension d, with bounded norm $\left\|H_{i}\right\| \leq 1$.

Eigenvalues of each H_{i} in $[0,1]$.
$H_{i}+\alpha I \rightarrow$ eigenvalues of H shift by α
$\alpha H \rightarrow$ eigenvalues of H scale by factor of α
Each matrix indicates the set of k qudits (out of the set of n qudits in the system) on which it operates. Each matrix is given with poly(n) bits.

Two real numbers E and $\Delta \geq 1 / \operatorname{poly}(n)$
Output:
Is the smallest eigenvalue of $H=H_{1}+\cdots+H_{r} \leq E$ or are all eigenvalues $\geq E+\Delta$?

Local Hamiltonian is in QMA

Boolean
 Satisfiability
 $\in N P$

Local Hamiltonian is in QMA

Boolean
 Satisfiability
 $\in N P$

Is $\Phi(y)$ satisfiable?
Witness:
Satisfying
assignment y

Local Hamiltonian is in QMA

Boolean Satisfiability

Is $\Phi(y)$ satisfiable?
Witness:
Satisfying
assignment y

Local
 Hamiltonian
 \in QMA

Local Hamiltonian is in QMA

Boolean
 Satisfiability
 $\in N P$

Local
 Hamiltonian

$$
\begin{gathered}
\text { Is } \Phi(y) \\
\text { satisfiable? } \\
\text { Witness: } \\
\text { Satisfying } \\
\text { assignment } y
\end{gathered}
$$

Is there a state whose energy (according to H)
is less than E ?
$\langle\Phi| H|\Phi\rangle \leq E$?

Local Hamiltonian is in QMA

Boolean
 Satisfiability

Local
 Hamiltonian

> Is $\Phi(y)$ satisfiable?

> Witness:
> Satisfying assignment y

Is there a state whose energy (according to H)
is less than E ?
$\langle\Phi| H|\Phi\rangle \leq E$?
Witness: $|\Phi\rangle$

Local Hamiltonian is in QMA

Boolean

Satisfiability

$\in N P$

Local
 Hamiltonian

$$
\begin{gathered}
\text { Is } \Phi(y) \\
\text { satisfiable? } \\
\text { Witness: } \\
\text { Satisfying } \\
\text { assignment } y
\end{gathered}
$$

Is there a state whose energy (according to H)
is less than E ?
$\langle\Phi| H|\Phi\rangle \leq E$?
Witness: $|\Phi\rangle$

Guarantee:
There exists $|\Phi\rangle$ such that $\langle\Phi| H|\Phi\rangle \leq E$ OR
For all $|\Phi\rangle, \quad\langle\Phi| H|\Phi\rangle \geq E+\Delta$

Local Hamiltonian is in QMA

Boolean

Satisfiability

> Is $\Phi(y)$ satisfiable?

> Witness:
> Satisfying assignment y

Is there a state whose energy (according to H)
is less than E ?
$\langle\Phi| H|\Phi\rangle \leq E ?$
Witness: $|\Phi\rangle$

Guarantee:

There exists $|\Phi\rangle$ such that $\langle\Phi| H|\Phi\rangle \leq E$ OR
For all $|\Phi\rangle, \quad\langle\Phi| H|\Phi\rangle \geq E+\Delta$

Need a measurement whose outcome = 1 with probability $\propto\langle\Phi| H|\Phi\rangle$.

Local Hamiltonian is in QMA

$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)
Add auxiliary bit and implement unitary:
For every j :

$$
\left|v_{a j}\right\rangle|0\rangle \Rightarrow\left|v_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
$$

Measure last qubit

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)
Add auxiliary bit and implement unitary:
For every j :

$$
\left|v_{a j}\right\rangle|0\rangle \Rightarrow\left|v_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
$$

Measure last qubit

$$
|\Phi\rangle|0\rangle=\sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle|0\rangle
$$

k qubits
H_{a} acts on
the rest
of the qubits

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)
Add auxiliary bit and implement unitary:
For every j:

$$
\left|v_{a j}\right\rangle|0\rangle \Rightarrow\left|v_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
$$

Measure last qubit

$$
\begin{aligned}
|\Phi\rangle|0\rangle= & \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle|0\rangle \Rightarrow \\
& \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
\end{aligned}
$$

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)
Add auxiliary bit and implement unitary:
For every j:

$$
\left|v_{a j}\right\rangle|0\rangle \Rightarrow\left|v_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
$$

Measure last qubit

$$
\begin{aligned}
|\Phi\rangle|0\rangle= & \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle|0\rangle \Rightarrow \\
& \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
\end{aligned}
$$

Prob of measuring 1 :

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)
Add auxiliary bit and implement unitary:
For every j:

$$
\left|v_{a j}\right\rangle|0\rangle \Rightarrow\left|v_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
$$

Measure last qubit

$$
\begin{aligned}
|\Phi\rangle|0\rangle= & \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle|0\rangle \Rightarrow \\
& \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
\end{aligned}
$$

Prob of measuring 1: $\sum_{j}\left|\alpha_{a j}\right|^{2} \lambda_{a j}$

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)
Add auxiliary bit and implement unitary:
For every j:

$$
\left|v_{a j}\right\rangle|0\rangle \Rightarrow\left|v_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
$$

Measure last qubit

$$
\begin{aligned}
|\Phi\rangle|0\rangle= & \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle|0\rangle \Rightarrow \\
& \sum_{j} \alpha_{a j}\left|v_{a j}\right\rangle\left|\beta_{a j}\right\rangle\left(\sqrt{1-\lambda_{a j}}|0\rangle+\sqrt{\lambda_{a j}}|1\rangle\right)
\end{aligned}
$$

Prob of measuring $1: \sum_{j}\left|\alpha_{a j}\right|^{2} \lambda_{a j}=\langle\Phi| H_{a}|\Phi\rangle$

Local Hamiltonian is in QMA

$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)

If H_{a} is picked, prob of measuring $1:=\langle\Phi| H_{a}|\Phi\rangle$

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)

If H_{a} is picked, prob of measuring $1:=\langle\Phi| H_{a}|\Phi\rangle$
Probability of measuring 1 (overall):

$$
=\frac{1}{r} \sum_{a=1}^{r}\langle\Phi| H_{a}|\Phi\rangle=\frac{1}{r}\langle\Phi| H|\Phi\rangle
$$

Local Hamiltonian is in QMA
$H=H_{1}+H_{2}+\cdots+H_{r} \quad$ Each H_{i} is k-local
Pick H_{a} at random where $H_{a}=\sum_{j} \lambda_{a j}\left|v_{a j}\right\rangle\left\langle v_{a j}\right|$ (recall $0 \leq \lambda_{a j} \leq 1$)

If H_{a} is picked, prob of measuring $1:=\langle\Phi| H_{a}|\Phi\rangle$
Probability of measuring 1 (overall):

$$
\begin{aligned}
& \quad=\frac{1}{r} \sum_{a=1}^{r}\langle\Phi| H_{a}|\Phi\rangle=\frac{1}{r}\langle\Phi| H|\Phi\rangle \\
& \text { either } \leq E / r \quad \text { OR } \geq(E+\Delta) / r
\end{aligned}
$$

Boolean Satisfiability is NP-hard [Cook-Levin]

Start with a generic language L in NP
Is $x \in L$?

Boolean Satisfiability is NP-hard [Cook-Levin]

Start with a generic language L in NP
Is $x \in L$?

Is there a string y that causes this circuit to output 1 ?

Boolean Satisfiability is NP-hard [Cook-Levin]

Start with a generic language L in NP
Is $x \in L$?

Boolean Formula:
 $\Phi_{x}(y)$

Is there a string y that causes this circuit to output 1 ?

Boolean Satisfiability is NP-hard [Cook-Levin]

Start with a generic language L in NP
Is $x \in L$?

Boolean Formula: $\Phi_{x}(y)$

Is there a string y that causes this
Is $\Phi_{x}(y)$ satisfiable? circuit to output 1 ?

Local Hamiltonian is QMA-hard

Start with a generic promise problem in QMA Is $x \in$ Yes? or is $x \in \mathrm{NO}$?

Local Hamiltonian is QMA-hard

Start with a generic promise problem in QMA Is $x \in Y$ Yes? or is $x \in N O$?

Is there a quantum state $\phi\rangle$ that causes this quantum circuit to output 1 with high probability?

Local Hamiltonian is QMA-hard

Start with a generic promise problem in QMA Is $x \in$ Yes? or is $x \in \mathrm{NO}$?

\Rightarrow Hamiltonian:
$\left(H_{x}, E, \Delta\right)$

Is there a quantum state $\phi\rangle$ that causes this quantum circuit to output 1 with high probability?

Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic promise problem in QMA Is $x \in$ Yes? or is $x \in \mathrm{NO}$?

5-Local \Rightarrow Hamiltonian:
 $\left(H_{x}, E, \Delta\right)$

Is there a quantum state $\phi\rangle$ that causes this quantum circuit
\Rightarrow Ground energy of $H_{x} \leq E$ to output 1 with high probability?

Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic promise problem in QMA Is $x \in$ Yes? or is $x \in \mathrm{NO}$?

$$
\Rightarrow \begin{gathered}
\\
\Rightarrow \\
\\
\text { Hamiltonian: } \\
\left(H_{x}, E, \Delta\right)
\end{gathered}
$$

Is there a quantum state $\phi\rangle$ that causes this quantum circuit
$\Rightarrow \quad$ Ground energy of $H_{x} \leq E$ to output 1 with high probability?
For every $|\phi\rangle$, circuit outputs 0 w.h.p. \Rightarrow Ground energy of $H_{x} \geq E+\Delta$

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Is there a string y that causes this circuit to output 1 ?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Reduction: input x

- Use $|x|=n$ to compute C_{n} (uniformity)

Is there a string y that causes this circuit to output 1?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Reduction: input x

- Use $|x|=n$ to compute C_{n} (uniformity)
- Convert C_{n} to a Boolean formula

Is there a string y that causes this circuit to output 1?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Reduction: input x

- Use $|x|=n$ to compute C_{n} (uniformity)
- Convert C_{n} to a Boolean formula
- Add terms to hard-code input x and enforce output
$=1$.
Is there a string y that causes this circuit to output 1?

Circuit to Boolean formula

Circuit C_{n} has gates G_{1}, \ldots, G_{m}, where $m=\operatorname{poly}(n)$.
Add variables g_{1}, \ldots, g_{m}, one for each gate.

Circuit to Boolean formula

Circuit C_{n} has gates G_{1}, \ldots, G_{m}, where $m=\operatorname{poly}(n)$.
Add variables g_{1}, \ldots, g_{m}, one for each gate.
Add a clause for each gate:

Circuit to Boolean formula

Circuit C_{n} has gates G_{1}, \ldots, G_{m}, where $m=\operatorname{poly}(n)$.
Add variables g_{1}, \ldots, g_{m}, one for each gate.
Add a clause for each gate:

Hard-code x :
$x_{i}=0 \rightarrow$ add clause $\left(\neg x_{i}\right)$
$x_{i}=1 \rightarrow$ add clause $\left(x_{i}\right)$

Circuit to Boolean formula

Circuit C_{n} has gates G_{1}, \ldots, G_{m}, where $m=\operatorname{poly}(n)$.
Add variables g_{1}, \ldots, g_{m}, one for each gate.
Add a clause for each gate:

Hard-code x :

$$
\begin{array}{ll}
x_{i}=0 & \rightarrow \text { add clause }\left(\neg x_{i}\right) \\
x_{i}=1 & \rightarrow \text { add clause }\left(x_{i}\right)
\end{array}
$$

Output of $G_{m}=$ output of circuit: Add clause (g_{m})

Circuit to Boolean formula

Circuit C_{n} has gates G_{1}, \ldots, G_{m}, where $m=\operatorname{poly}(n)$.
Add variables g_{1}, \ldots, g_{m}, one for each gate.
Add a clause for each gate:

Hard-code x :

$$
\begin{array}{ll}
x_{i}=0 & \rightarrow \text { add clause }\left(\neg x_{i}\right) \\
x_{i}=1 & \rightarrow \text { add clause }\left(x_{i}\right)
\end{array}
$$

Output of $G_{m}=$ output of circuit: Add clause (g_{m})

Boolean formula is the conjunction of all the clauses.

Circuit to Boolean formula

Circuit C_{n} has gates G_{1}, \ldots, G_{m}, where $m=\operatorname{poly}(n)$.
Add variables g_{1}, \ldots, g_{m}, one for each gate.
Add a clause for each gate:

Hard-code x :

$$
\begin{array}{ll}
x_{i}=0 & \rightarrow \text { add clause }\left(\neg x_{i}\right) \\
x_{i}=1 & \rightarrow \text { add clause }\left(x_{i}\right)
\end{array}
$$

Output of $G_{m}=$ output of circuit: Add clause (g_{m})

Boolean formula is the conjunction of all the clauses.
Can reduce to CNF or 3SAT form.

The class NP and Turing Machine Tableaus

A problem is in NP if there is a polynomial time algorithm A that takes two inputs, x and y :

If $x \in L$, then there is a witness
y such that $A(x, y)$ accepts.

If $x \notin L$, then for every y, $A(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$

The class NP and Turing Machine Tableaus

A problem is in NP if there is a polynomial time algorithm $A \sim$ poly (n), where $|x|=n$ that takes two inputs, x and y :

If $x \in L$, then there is a witness
y such that $A(x, y)$ accepts.

If $x \notin L$, then for every y, $A(x, y)$ rejects.
$|y| \leq \operatorname{poly}(x)$

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Is there a string y that causes this
Turing Machine to accept?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Is there a string y that causes this Turing Machine to accept?

Boolean Satisfiability is NP-hard

Start with a generic language L in NP
Is $x \in L$?

Is there a string y that causes this Turing Machine to accept?
$\Leftrightarrow \quad$ Is $\Phi_{x}(y)$ satisfiable?

Turing Machine Tableau

Turing Machine Tableau

TM Tableau:
Configurations written in a 2D array for a Turing Machine M in input (x, y)

Width: space used $\leq n^{c}$

Turing Machine to Boolean formula

Contents of a cell determined by the three cells above it.

q_{1} / a	b	c
q_{2} / b		

b	a	c
a		

Turing Machine to Boolean formula

Contents of a cell determined by the three cells above it.

Can build Boolean circuit STEP

- input (binary encording of) 3 cells
- output (binary encording of) 1 cell

Circuit is constant size

Turing Machine to Boolean formula

Contents of a cell determined by the three cells above it.

Can build Boolean circuit STEP

- input (binary encording of) 3 cells
- output (binary encording of) 1 cell

Circuit is constant size

Each circuit can be converted to a Boolean formula (set of Boolean constraints)

Turing Machine to Boolean formula

Turing Machine to Boolean formula

Output 1 iff cell contains $q_{A C C}$

Turing Machine to Boolean formula

Output 1 iff cell contains $q_{A C C}$

Turing Machine to Boolean formula

STEP STEP STEP STEP
 STEP
|||l|

Output 1 iff cell contains $q_{A C C}$

Turing Machine to Boolean formula

Features we will keep for QMA

Hard code input x into
circuit/constraints
Input y (witness) is variable

Output 1 iff cell contains $q_{A C C}$

Turing Machine to Boolean formula

STEP

Features we will keep for QMA

Hard code input x into circuit/constraints

Input y (witness) is variable
Satisfied constraints \Rightarrow State represents entire history of the computation.
(Configuration after each step)

Output 1 iff cell contains $q_{A C C}$

Turing Machine to Boolean formula

Output 1 iff cell contains $q_{A C C}$

Features we will keep for QMA

Hard code input x into
circuit/constraints
Input y (witness) is variable
Satisfied constraints \Rightarrow State represents entire history of the computation. (Configuration after each step)

Additional term to test if computation accepts

Turing Machine to Boolean formula

Output 1 iff cell contains $q_{A C C}$

Features we will keep for QMA

Hard code input x into circuit/constraints

Input y (witness) is variable

> Satisfied constraints \Rightarrow State represents entire history of the computation. (Configuration after each step)

Additional term to test if computation accepts

On to Part II...

