Lecture \#5
Stoquastic Hamiltonians
Aug 4, 2023
(based in part in lecture in March 2018 UCSD quantum school by D. Gosset)

Let H be a Hamiltonian specified in the standard basis.

Definition H is stoquastic if
[Bra wii, DiVincenzo, Oeiviera, Ternate 2007]

$$
\langle x| H|y\rangle \leq 0 \text { for all } x \neq y \text {. }
$$

will use a stronger definition:
$\forall i \quad h_{i}$ is stoquastic

$$
\langle x| h_{i}|y\rangle \leq 0 \text { for all } x \neq y \text {. }
$$

Examples
Hprop from the
(1) Laplacian matrix of a graph

$$
\begin{gathered}
\text { diagonal } \\
\langle v| D|v\rangle=\text { desex }(v)
\end{gathered} \text { adjacency matrix }_{\text {sta }}^{\text {sons }}
$$

(2) Hamiltonian from adiabatic computation when: - final H is classical (diagonal)

- initial H has ground state $|+\rangle^{\otimes n}$

$$
H(s)=(1-s) \sum_{i=1}^{n} \frac{I-x_{i}}{2}+s H_{\text {five }}
$$

Sometimes with a local change of basis.
(3) Many Hamiltonians from physics

- ferromagnetic Heisenberg
- quantum transverse Ising model
- infracting bosons on a lattice
- anti-ferronagnetic Heisenberg on cubic lattice

Does the local Hamiltonian become easier if H is stoquastic?

Stoquastic local Hamiltomians more dike classical (diagonal) Hamiltonians.

We will show:
Ground slate of stoquastic $H: \quad|\psi\rangle=\sum_{x}^{1} \alpha_{x}|x\rangle$

$$
\alpha_{x} \in \mathbb{R}^{\geq 0}
$$

Complexity
Given on LH, decide if ground energy $\leq a$ ar $\geq b$.
Ceneral H
$a-b \geq \frac{1}{\text { poly }}$
QMA - complete
[Kitaev]
$a=0 \quad$ (Frustration-Free)
„QMA1 - complete
verifier accepts VES instances with prob $=1$.

Stoquargtic H
$a-b \geqslant 1 /$ poly
Stog FF - complete.
[Bravyi-Bessen -Terhal]
$a=0$
MAA - complete
[Bravyi-Terhal 2008] $M A$-couplete poblem.

$$
\begin{aligned}
& \text { MA (Merlin-Arthur) } N P \leq M A \leq S t o q M A \subseteq O M A \text {. } \\
& \text { if } x \in Y E S \quad \exists y \in\left\{0,13^{m} \text { classical } V\right. \\
& \operatorname{Pr}[V(x, y) \text { accepts }] \geqslant 2 / 3 \\
& \text { if } x \in N o \quad \forall y \text {. } \\
& \operatorname{Pr}[v(x, y) \text { accepts }] \leqslant 1 / 3 \\
& \text { stigMA is the same } \\
& \text { except that verifier } \\
& \text { can have "quentum-like" } \\
& \text { circuit with a specific form. }
\end{aligned}
$$

Numerical Methods

Geveral H
brute force dingonalization
20-30 quatrits.

Stoquastic H
Quantime route Carlo
"no sign problew"
works hewristically up to 1000 's quibits.
Adiabalic Quantum Computing.
Geveral H
capable of effecient
universal Queatum Computing.
$[A \Delta K L L R]$

Stoquastic H
frustration-free stog H adiabatic
can be simulated classically.

Non-Negative Ground States
Claim: Let H be stoquastic. Then \mathcal{F} ground state $|\psi\rangle$ of H such that $\quad\langle z \mid \psi\rangle \geqslant 0 \quad \forall$ $z \in\{0,1\}^{n}$.
Proof: Let $|\phi\rangle$ be any ground state of H

$$
|\phi\rangle=\sum_{\pi} \alpha_{x}|x\rangle
$$

Define $|\psi\rangle={\underset{\pi}{x}}^{2}\left|\alpha_{x}\right||x\rangle$. Then.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{x}\left|\alpha_{x}\right|^{2}\langle x| H|x\rangle+\sum_{x \neq y}\left|\alpha_{x}\right|\left|\alpha_{y}\right|\langle x| H|y\rangle \\
& \leq \sum_{x}\left|\alpha_{x}\right|^{2}\langle x| H|x\rangle+\sum_{x \neq y} \alpha_{x}^{*} \alpha_{y}\langle x| H|y\rangle . \\
& =\langle\phi| H|\phi\rangle .
\end{aligned}
$$

Ground States of Stoqrastic Hamiltonians are Non-Negative
Definition: H is reducible if \exists permutation matrix P such that PTHP is block diagonal.

Perron-Frobenius Theorem:
(1) If H is irreducible and stoquastic, then ground state $|4\rangle$ is unique and $\langle x \mid x\rangle>0 \quad \forall x$.
(2) If H is reducible and stoquastic, then \exists or tho normal basis of the ground space $|4,\rangle \cdots\left|\psi_{m}\right\rangle$ such that

$$
\left\langle x \mid \psi_{j}\right\rangle \geq 0 \quad \forall j, x
$$

Marlear Chain from stoquastic H [Bravyi-Terhal 2008 axis: 0806.1746]
Start with $\sum_{i=1}^{m} h_{i}$
(assume irredricible for now $\langle x \mid \psi\rangle\rangle 0$ for g.s. $|\psi\rangle\rangle$
Scale t add identity so that:

$$
\begin{aligned}
& 0 \leq h_{j} \leq I . \quad 0 \leq \sum h_{i} \leq m \\
& H=\sum_{i=1}^{m} h_{i}-E \quad \text { choose } E \text { s.t. } H|\psi\rangle=0 .
\end{aligned}
$$

$\Rightarrow \quad 0 \leq H \leq m$ and ground energy $=0$.

Define: $G=I-\frac{H}{2 m} \Rightarrow I / 2 \leq G \leq I$.
and $P_{y x}=\frac{\langle y \mid \psi\rangle}{\langle x \mid \psi\rangle}\langle y| G|x\rangle \quad \operatorname{supp}(\psi)$
Claim: $P[x \rightarrow y]=P_{x \rightarrow y}$ defines a Marker Chain.
Proof: First show $P_{x \rightarrow y} \geq 0$
Follows from $\begin{aligned} & \langle y \mid \psi\rangle>0 \\ & \alpha x|\psi\rangle>0\end{aligned}$ and

Next shor $\sum_{y} P_{x \rightarrow y}=1 \quad \forall x$

$$
\begin{aligned}
& \sum_{y} P_{x \rightarrow y}=\sum_{y} \frac{\langle\psi \mid y\rangle\langle y| f|x\rangle}{\langle\psi \mid x\rangle}=\frac{\langle\psi| \sigma|x\rangle}{\langle\psi \mid x\rangle} \\
& G|\psi\rangle=\begin{array}{c}
\left(I-\frac{\psi}{2 m}\right)|\psi\rangle=|\psi\rangle \\
(H|\psi\rangle=0)
\end{array}=\frac{\langle\psi \mid x\rangle}{\langle\psi \mid x\rangle}
\end{aligned}
$$

The unique limiting distribution of the Pyx Marker Chain is:

$$
\left.\left.\pi(x)=\langle x \mid 4\rangle^{2} \quad x \in\right\}_{0}, 1\right\}^{n} .
$$

Follows from the fact that H (and hence Pyx M.C.) are irreducible and satisfies detailed balance:

Stare from arbitrary $z \in\{0,1\}^{n}$.

$$
T_{\operatorname{mix}}(\epsilon, z) \triangleq \min \left\{t \geq 0:\left\|p^{t} z-\pi\right\|_{1} \leq t\right\}
$$

standard mixing time bound

$$
T_{\text {mix }}(t, z) \leq \frac{1}{1-\lambda_{2}} \quad \log \left[\frac{1}{2 \epsilon \mathbb{T}(z)}\right]
$$

${ }^{4} 2 \underline{l}$ largest eigenvalue of P.

$$
\pi(z)=\langle\psi \mid z\rangle^{2}
$$

What is λ_{2} for P ?
Claim: $1-\lambda_{2}=\frac{\operatorname{gap}(H)}{2 m}$
Recall $P_{x \rightarrow y}=\frac{\langle y \mid \psi\rangle}{\langle x \mid \psi\rangle}\langle y| G|x\rangle$

$$
P=D G D^{-1} \quad \text { for } D=\delta_{x y}\langle\psi \mid x\rangle
$$

G and P are similar matrices \Rightarrow same eigenvalues

$$
G=I-H / 2 \mathrm{~m} .
$$

Upshot:

$$
\begin{aligned}
T_{\text {mix }}(t, z) & \leqslant \frac{1}{1-\lambda_{2}} \log \left[\frac{1}{2 t \mathbb{T}(z)}\right] \\
& =\frac{2 m}{\operatorname{gap}(H)} \log \left[\frac{1}{2 t\langle\psi \mid x\rangle^{2}}\right]
\end{aligned}
$$

Given a "warm start" $\langle z \mid \psi\rangle^{2} \geq \Omega\left(2^{-\operatorname{polg}(n)}\right)$

$$
\text { and if } \operatorname{gap}(H) \geqslant \Omega\left(\frac{1}{\text { poly }(n)}\right)
$$

then chain mixes to π in poly-time.

Caveat: Running the M.C. requires Knowing $P_{x \rightarrow y}$ (which requires knowing $\langle\psi \mid x\rangle$'s) (which we don't know). Land E.
\Rightarrow Braves + Tertial show that if H is frustration-free then $\frac{\langle y \mid \psi\rangle}{\langle x \mid 4\rangle}$ can be efficiently computed.

Let $H|\psi\rangle=0$ and $\langle x \mid \psi\rangle>0 \quad \left\lvert\, G=I-\frac{H}{2 m}\right.$
If $P_{x \rightarrow y}>0$ then $\langle y| f|x\rangle>0$

For a given x,
there are poly (n) y
s.t. $\langle y\| h_{i}\|x\rangle<0$
for some i.

Claim: if H is stoquastic and $F F$ then:
[BT 2008]

$$
\frac{\langle\psi \mid y\rangle}{\langle\psi \mid x\rangle}=\sqrt{\frac{\langle y| \pi_{i}|y\rangle}{\langle x| \pi_{i}|x\rangle}} \quad \begin{aligned}
& \pi_{i} \text { projector } \\
& \text { on to zero } \\
& \text { eigenspere of } h_{i}
\end{aligned}
$$

Intuition: π projuctar onto groundspace of H.

$$
\pi=\sum_{a}^{*}\left|\psi_{a}\right\rangle\left\langle\psi_{a}\right|
$$

$\left|\psi_{a}\right\rangle$ is non-regative
$\left|\psi_{a}\right\rangle$ orthonormal

If: (disjoint support)
(i) $\pi|x\rangle$
(2) $\langle x \mid \psi\rangle>0$
then
(3) $\langle x| \pi|y\rangle>0$

$$
\frac{\langle x \mid y\rangle}{\langle y \mid 4\rangle}=\sqrt{\frac{\langle x| \pi|x\rangle}{\langle y| \pi|y\rangle}}
$$

If $F F$ then $\pi_{i}|\psi\rangle=|4\rangle$. same the for π_{i} If $\langle x| h_{i}|y\rangle<0$ then $\langle x| \pi_{i}|y\rangle>0$

Implications of Claim (Simulating Adiabatic Computation
If there is an adiabatic path $H(s) s: 0 \rightarrow 1$
Idea
(1) Easy to find
$\langle x \mid \psi(0)\rangle$
$14(0)\rangle>$
stan
7
For $T=0, \ldots, T-1$, use steady state of
$H(J / T)$ as a
(2) $H(s)$ is Star. FF w/ unique ground Warm start for state + gap $\geqslant 1 /$ poly (n).
$H(J+1 / T)$.
(3) Path is smooth $\|d H(s) / d s\| \leq$ poly (n)

Then a classical algorithm can appoximitaly sample firm

$$
\pi(x)=\langle\psi(1) \mid x\rangle^{2}
$$

Implications of Claim (Simulating Adiabatic Computation
If there is an adiabatic path $H(s)$ s:0 $\rightarrow 1$
Idea:
(1) Easy to find $\langle x \mid \psi(0)\rangle \quad|\psi(0)\rangle$ grow stan of $\mathrm{H}(0)$.
For $J=0, \ldots, T-1$,
Without stoquastic condition, universal for $Q C$. use steady state of $H(T / T)$ as a Warm start for
(2) $H(s)$ is Stor. FF w/ unique ground state $+\operatorname{gap} \geqslant 1 /$ poly (n). $H(J+1 / T)$.
(3) Path is smooth $\|d H(s) / d s\| \leq$ poly (n)

Then a classical algorithm can approximately sample firm $\pi(x)=\langle\psi(1) \mid x\rangle^{2}$

Adiabatic Evolution with general local H is equivalent to the quantum circuit model
\Rightarrow Is there a natural circuit model corresponding to adiabatic evolution of Stoquastic (nor-FF) Hamiltorians?

Complexity of LH for Stog-FF Hamiltoniaus
Given a stoquastic LIt determine if:

$$
\begin{array}{cll}
\cdot \exists|\psi\rangle & H|\psi\rangle=0 \\
\text { or } \cdot \forall|\psi\rangle & \langle\psi| H|\psi\rangle \geq a & \text { (a } \leqslant 1 / \text { prig })
\end{array}
$$

- This will be at least NP-hard because Boolean satisfiability is a special ease. Hew to
- Verifier can send as a witness $x \in\left\{0,1 z^{n}\right.$ verify??

$$
\langle x \mid 4\rangle \geqslant R\left(2-\operatorname{rag}^{(m)}\right)
$$

Stog $F F-L H \in M A$

- Prover can send a starting point far a random walk:

$$
x \text { s.t. } \quad\langle x \mid \psi\rangle \geq \Omega\left(2^{-\operatorname{polg}(\omega)}\right)
$$

- One idea for verification:
- implement random walk until convergence, then measure energy.
- Repeat for accuracy.

Can verify "Yes" instances
What about "No" instances?

MA Verification for Stoq-MA
Define $S_{\text {good }}=\left\{x \mid\langle x| \pi_{a}|x\rangle>0 \quad f a\right\}$.
\rightarrow poly-tine checkable condition.

$$
S_{\text {bad }}=3_{0,13^{n}}-S_{\text {goo }} .
$$

\Rightarrow the random walk is closed on Sgramo
Shows: starting from $x \in S_{\text {gone }}-S_{\text {ground }}$ whip will beach a string in Shed.

$$
\overline{S_{\text {ground }}}=\left\{x \mid\langle x| \pi_{\text {groma }}|x\rangle>0\right\}
$$

Verification Procedure:

- Prover sends start string x to Verifier (supposedly $x \in S$) send x that maximizes $\langle x| \pi|x\rangle$
- Verifier runs random walk for T steps
- at each step if current string is in Scad \Rightarrow Reject.
- If Sad has not been reached after t an additional Teteps \rightarrow Accept. check always satisfied
for yes instances.

How big does T have to be
\Rightarrow No instance $\lambda_{0}(H)>E$.

$\leq \sum_{x_{T}}\left\langle x_{0}\right| G^{\top}\left|x_{T}\right\rangle \leq 2^{n}\left(1-\frac{t}{2 m}\right)^{\top}$
If $\epsilon>y_{\text {poly }}(n)$, will be \exp small with $T \sim$ poly (n)

Hardness of Stog FF LH for MH is shown even when ground state is a uniform superposition. [BT 08].

Aharonor $\&$ Grilo derandomite this process when 4 is gapped and has a ground state which is a uniform super position.

If there is a gap amplification procedure for unifam $F F$ stor $L H$ then $N P=\mu A$.

