(based in part on lecture in March 2018 UCSD quantum school by D. 6055et)

Stognastic local Hamiltonians more like classical (diagonal) Hamiltonians.

We will show . $\frac{1}{\pi} dx |x\rangle$ Ground slate of stognastic H: Øx € R≥o

$$MA (Merlin - Arthur) NP \leq MA \leq Sloq MA \leq OhA.$$

$$if x \in YES \exists y \in \{0, 1\}^{m} clessical V$$

$$Pr [V(x,y) accepts] \geq 2/3$$

$$if x \in NO \quad \forall y.$$

$$Pr [V(x,y) accepts] \leq 1/3$$

$$Stoq MA \quad is \quad the \quad same \qquad x \quad t \quad classical \\ revorsible \\ can have "guentum-like" \qquad |t\rangle^{m} \neq$$

Numerical Methods General H brute force dingonalization 20-30 qubits. Adiabatic Quantum Computing. General H capable of efficient Universal Quantum Computing. TANKLLR

Stognastic H Quantum houte Carlo " no sign problem" works heuristically up to 1000's gubits. Stograstic H frustration-free stog H a dia batic can be simulated classically.

Non-Negative Ground States]
Claim: Let H be shapestic. Then I ground
state
$$|\psi\rangle$$
 of H such that $\langle 2|\psi\rangle \ge 0$ V
 $2e_{30,13}^{n}$.
Proof: Let $|\psi\rangle$ be any ground state of H
 $|\psi\rangle = \sum_{x} \alpha_{x}|x\rangle$.
Define $|\psi\rangle = \sum_{x} |\alpha_{x}||x\rangle$. Then.
 $\langle \psi|H||\psi\rangle = \sum_{x} |\alpha_{x}|^{2} \langle x|H||x\rangle + \sum_{x\neq y} |\alpha_{x}||\alpha_{y}|| 2x||H||y\rangle$
 $\leq \sum_{x} |\alpha_{x}|^{2} \langle x|H||x\rangle + \sum_{x\neq y} |\alpha_{x}^{*} \alpha_{y} \langle x|H||y\rangle$.
 $= \langle \psi|H||\psi\rangle$.

Grohnd States of Stognastic Hamiltonians are Non-Negative
Definition: H is reducible of I permutation
matrix P such that PTHP is block diagonal.
Perron-Frobenius Theorem:
D If H is irreducible and stognastic, then ground
state 147 is unique and
$$\langle x|47 > 0 \ \forall x$$
.
D If H is reducible and stognastic, then
I or the normal basis of the ground space
 $H_1 \gamma \cdots H_m \rangle$ such that $\langle x|4j \rangle \ge 0 \ \forall j, x$.

Marleor Chain from Stoquestic H [Brangi-Terhel 2008

$$a \times iv: 0806.1746$$
]
Start with $\stackrel{m}{=}hi$ (assume irreducible for now
 $f \times | \psi \rangle > 0$ for g.s. $| \psi \rangle$)
Scale + add identity so hat:
 $0 \le h_{j} \le T$. $\rightarrow 0 \le 2h_{i} \le m$
 $H = \stackrel{m}{=}h_{i} - E$ choose $E = s.t.$ $H | \psi \rangle = 0$.
 $\Rightarrow 0 \le H \le m$ and ground enough = 0.

Define: $G = I - \frac{H}{2m} \Rightarrow \frac{1}{2} \leq G \leq I$. and $P_{yx} = \frac{\langle y | \psi \rangle}{\langle x | \psi \rangle} \langle y | 6 | x \rangle$ Supp (4)Claim: P[x > y] = Px-y defines a harles Chain. Proof: First show $P_{X=y} \ge 0$ and $\langle y|H|x \rangle$ Follows from $\langle y|4 \rangle > 0$ $\langle x|4 \rangle > 0$ x = y $\langle y|H|x \rangle \le 0$ x = y $\langle y|H|x \rangle \le 0$ $\prec y(H|x \neq M.$ X=3

Next show \$P_{x+y} = 1 \$Y_X $\frac{2}{3}P_{X=3y} = \frac{2}{3}\frac{\langle 4|y\rangle \langle y|6|x\rangle}{\langle 4|x\rangle} =$ 24/6/2> $\overline{\langle 4 | \chi \rangle}$ $G | \psi \rangle = \left(I - \frac{\#}{2m} \right) | \psi \rangle = | \psi \rangle$ $\left(\frac{\#}{\psi} = 0 \right)$ $\frac{24|x}{\sqrt{4|x}}$

The Unique limiting distribution of the Tyx
Markov Chain is:

$$TT(x) = \langle x | Y \rangle^2 \quad x \in Jo, 13^n.$$
Follows from the fact that H (and hence Pyx M.C.)
are irreducible and solisfies detailed balance:

$$TT(x) \cdot P_{x = y} = TT(y) P_{y = x}$$
How fast does this M.C. converge?
Walke on the support of
each 14: y is
irreducible.

Start from arbitrary
$$z \in \{0, 1\}^n$$
.
 $T_{\text{mix}}(\xi, z) \triangleq \min\{1 \ge 0\} : ||P^{\dagger}z - \pi ||_1 \le \xi\}$

Standard mixing time bound

$$T_{mix} (t_1 z) \leq \frac{1}{1 - \lambda_2} \log \left[\frac{1}{2t T(z)} \right]$$

$$2^{1/2} \text{ largest eigenvalue } T.$$

$$T(z) = \langle 4 | z \rangle^2$$

What is
$$\lambda_2$$
 for P ?
Claim: $1 - \lambda_2 = \frac{gap(H)}{2m}$
Recule $P_{X \Rightarrow y} = \frac{\langle y | 4 \rangle}{\langle x | 4 \rangle} \langle y | 6 | x \rangle$
 $P = D 6 D^{-1}$ for $D = Sxy \langle 4 | x \rangle$
 f and P are similar matrices = D same eigenvalues
 $G = I - H/2m$.

Up shot:

 $T_{\text{mix}}(\ell, 2) \leq \frac{1}{1-\lambda_2} \log \left(\frac{1}{2\ell T(2)} \right)$ $= \frac{2m}{g_{ap}(H)} \log \left[\frac{1}{2t + (x)^2} \right]$ Given a "warm start" $\langle z | Y \rangle^2 \ge \int (2^{-poly(n)})$ and if $g_{ap}(H) \ge \Omega\left(\frac{1}{p_{oly}(n)}\right)$ then chain mixes to TT in poly-time.

Caveat: Running the M.C. requires
Knowing
$$P_{X \Rightarrow Y}$$
 (which requires knowing $\angle Y|_X \ge 3$)
(which we don't know).

 $G = I - \frac{H}{2m}$ Let H14>=0 and < y | F | x > > 0 If Px-y>0 Then < y | H] x > < 0. For a given x, \Rightarrow there are poly(n) y s-t. zylhilx> 20 Lylhilx > 20 for some i_ => for some i. is Stognastic and FF Claim: if then: H [BT 2008] $= \sqrt{\frac{2y}{\pi_i | y >}} \\ \frac{1}{\sqrt{x} | \pi_i | x >}$ $\langle \psi | \psi \rangle$ Ti projector $\langle 4|\chi \rangle =$ on to zero ligenspace of hi

Intuition: TT projector onto ground space of H. 14. > is hon-hegalive $T = \sum_{a}^{r} |\psi_{a} \rangle \langle \psi_{a}|$ ly'a) ortho-normal (disjoint support) If: Supp (4a) $\begin{array}{c} \textcircledlen \\ (\textcircledlen) \\ \textcircledlen \\ (\textcircledlen) \\$ 0 TT 147 3 14a×4e (3) $\langle x|\pi|y\rangle \rangle o$ If FF then Ttil4>=14> same the for Tti If <x/hi/by <0 then <x/ti/by>>0

Implications of Claim (Simulating Adiabatic Computation
If there is an adiabatic path H(s) s:0->1
Idea:
D Easy to find
$$2 \times | Y|_{(0)} > 10 \times | Y|_{(0)} > 30 \times 100 \times$$

Implications of Claim (Simulating Adiabatic Computation If there is an ediabatic path H(s) s:0->1 () Easy to find 2x | 407 | 407 | 407 goodstore of Hlo).Idea: Without stognastic condition, universal for QC. For J=0,..., T-1, Use steady state of (2) H(s) is Shop. FF w/ unique ground H(J/T) as a State f gap $\geq 1/poly(n)$. Warm start for H(T+1/T). (3) Path is smooth () dH(s)/ds) (4 poly(n) Then a classical algorithm can approximately Sample from $TT(x) = 24(1)|x|^2$

Adiabatic Evolution with general local H is equivalent to the quantum circuit model

Complexity of LH for Stog-FF Hamiltonians Given a stoquastic LH determine if: · 3 14> H(4>=0 (a = 1/poly) or • $\forall | 4 \rangle \quad \langle 4 | 4 | 4 \rangle \geq a$. This will be at least NP-hard because Boolean satisficability is a special case. How to · Verifier can send as a witness XEX0,13h Verify?? 2x147 > [2(2-poly(n))]

Verification Procedure:

How big does T have to be
=> No instance
$$J_0(H) > E$$
.
 $B = (I - \frac{H}{2m}) \Rightarrow eigenvalue of F$
 $E = (I - \frac{E}{2m})$
Prob Stay
 $F_{1,1} = \frac{1}{X_{1,1} \times 1} = \frac{1}$