Hamiltonian Complexity, Part III
the Commuting local Hamiltonian Problem.

August 3, 2023

Ontline
I: Intlo, Motivation, Survey.
II: Statement of the Stuctural Lemme.
III): 2-Local CLH.

IV: 4-Local 2D CLHt on qubits.
I: Structual Lemma Proof Sketoh.

1) Commuting Local Hamiltonians system of $n d$-dimensioned particles.

$$
H=\sum_{a} H_{a} \quad H_{a} \text { is } k \text {-local }
$$

Local terms are pairwise commuting:

$$
\forall a, b . \quad H_{a} H_{b}=H_{b} H_{a}
$$

If H is a commuting LH (CLHF) then all the H_{a} 's can be diagonalized in a single basis.

$$
\begin{aligned}
H=\sum_{i} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \Rightarrow \quad H_{a}\left|\phi_{i}\right\rangle & =\lambda_{a, i}\left|\phi_{1}\right\rangle \\
\lambda_{i} & =\sum_{a} \lambda_{a, i}
\end{aligned}
$$

For the proposes of NP + above, it suffices to consider the case where terms are projectors.
$\exists|\phi\rangle$ such that $\langle\phi| H|\phi\rangle \leqslant T$
$\Leftrightarrow \exists \lambda_{1} \cdots \lambda_{r}$ and $|\phi\rangle$ such that $\frac{\sum}{a} \lambda_{a} \leqslant T$
and $H_{a}|\phi\rangle=\lambda_{a}|\phi\rangle \quad \forall a$.
$\Leftrightarrow \exists \lambda_{1} \cdots \lambda_{r}$ and $|\phi\rangle$ such that $\sum_{a} \lambda_{a} \leqslant T$
A "solution"
is a frustration-frue and $\pi_{a}|\phi\rangle=0$
ground state. where $\pi_{a}=I-P_{a}$
$\int P a$ projector ono λ_{a} eigenspace of Ha .

Reasons to be interested in CLH:

- Intermediate class between class between classical and quantum.
- Eigenstate (up to degeneracies) can be described by eigenvalues far each term.
- Eigenstates can be highly entangled.
- Stabilizer codes are ground states of commuting Hams.
- Test ground for proving difficult claims (e.g. qPCP)
- Easier case for studying gapped Hamiltonians can ground states be efficiently mpresented or constructed?

Speial lases khown to be in NP

- 2-Local [Bravyi-Vyalyi]
- 3-Local, Qubits+Qutrits [Aharonov-Eldar] τ_{\square} "Ncarly Enclidean"
- 2D-quitits [Schnch] (non-constlective)
[Aharonor, Kenneth, Vigdarovich] (constuctive).
- 2D-quatrits [I., Jiang]
tactorized: every torm is
- Factorized - quabits [BV] a product of operaters on
- Factorized-2D [I., Jiang] indivichal particles.
\Rightarrow Is general CLI in NP? QChAT? or QMA - hand?
II) The Structural Lemma [BV] arxis: 0308021.

then: $\quad H_{y}=\biguplus_{\alpha} H_{y \alpha}$
(1) $A+B$ are invariant on each $H_{y \alpha}$
(2) $H_{y_{\alpha}}=H_{y_{k, A}} \otimes H_{y_{\alpha} B}$

Al y acts on $H x \otimes H y_{y_{\alpha}, A} \quad$ Bl y $y_{y_{\alpha}}$ acts on $\forall y_{y_{\alpha, B}} \otimes H_{z}$

The Structural Lemma $[B V]$

$$
\begin{equation*}
H_{y}=\oplus_{\alpha} H_{y \alpha} \tag{x}
\end{equation*}
$$

(1) $A+B$ are invariant on each $H_{y \alpha}$

$$
A=\{[\square_{\square}^{\square} \overbrace{\square} \overbrace{\square}^{H_{n_{x}} \otimes H_{x}}]
$$

$$
\begin{aligned}
& A=\sum_{\alpha} P_{y / \alpha} A P_{\stackrel{v, \alpha}{ }}^{\leftrightarrows} P_{\text {projector onto }} \\
& \text { (same for } B \text {). }
\end{aligned}
$$

(same for B).

$$
W_{1, \alpha} \text {. }
$$

\Rightarrow If a solution exists, then the is a solution entinly within one $H_{y, \alpha}$.

The Structural Lemma $[B V]$

(2) $H_{y_{\alpha}}=H_{y_{\alpha A} A} \otimes H_{y_{K} B}$

Al y acts on $H x \otimes H y_{y_{\alpha}, A} \quad B l_{y_{x}}$ acts on $H y_{y_{\alpha}, B} \otimes H_{z}$

Structural Lemma Holds for more than 2 Commuting terms:

W.

$$
Y=\underset{\alpha}{\mp} V_{\alpha} .
$$

- A, B, C all invariant on Y_{α}
- Within Y_{α} : tensor product structure.

Structural Lemma Implications

For a 2-local commuting Hamiltonian

NP withes consists of the description of a "slice" of each particle
Solution within the slices has a tenser-product structure

Particles

Particles
Witness: which slice to take for each particle

Particles
Witness: which slice to take for each particle Looking at the chosen slices:
Solution is tensor product of states that span pairs of particles.

CLH on 2D lattice (4-local)

particles at grid vertices terms are vertices on a face.

$$
\equiv
$$

particles on edges star a plaquette terms.

CLH on 2D lattice (4-local)

particles at grid vertices terms are vertices on a face.

particles on edges star a plaquette terms.

CLH on 2D lattice (4-local)

particles at grid vertices terms are vertices on a face.

particles on edges star a plaquette terms.

CLH on a 2D lattice

The ground states of these Hamiltowians will not have a "local" structure as in the 2 -local case
\Rightarrow Tonic code is a special case.
Red terms: $x \times x \times$

CLH on a $2 D$ lattice
The ground states of
 these Hamiltomians will not have a "local" structure as in the 2 -local case
\Rightarrow Topic code is a special case.
$\left.\begin{array}{l}\text { Red terms: } x \times \times \times \\ \text { Bhe terms: } 2 z \geq z\end{array}\right\} \Rightarrow$ ground state will have global entanglement.

CLH on a 2D lattice

we will consider geveral commuting 4-local Hamiltomans on a 2D eattice of qubits.

CLH on a 2D lattice
we will consider general
 commuting 4-local Hamiltomans on a 2D lattice of quarits.

Checker board Pattern:
Blue faces
Red faces.
Will show CLH for this case is in NP [Schuch] aXis: 1105.2843

CLH on a 2D lattice of Quits

$$
H=\sum_{i} h_{i}=\sum_{i}\left(I-P_{i}\right)
$$

$t_{\text {projector onto ground space }}$ for term hi.

Let $B=$ set of blue faces.
$R=$ set of red faces.

$$
\begin{array}{ll}
P_{B}=\prod_{i \in B} P_{i} \quad P_{R}=\prod_{i \in R} P_{i} \quad \text { This will be a } \\
& \text { Want to show: } \quad \operatorname{Tr}\left(P_{B} P_{R}\right)>0
\end{array}
$$

Blue faces overlap on a single quit:

Can apply structural lemma

$$
H_{q}=\underset{\alpha}{(t)} H_{q, \alpha}
$$

$P_{i}+P_{j}$ are invariant on each $H_{q, \alpha}$
Let $P_{q, \alpha}$ be the projector onto $H_{4, \alpha}$

$$
P_{i}=\sum_{\alpha} P_{q, \alpha} P_{i} P_{q, \alpha} \quad \text { (save for } P_{j} \text {) }
$$

q_{1}		q_{2}
	y	
q_{4}		q_{3}

Let $\vec{\alpha}=$ vercher of indices for all the qubits.

$$
P_{i}^{\vec{\alpha}}=\prod_{k} P_{\alpha_{k}, q_{k}} P_{i} P_{\alpha_{k} q_{k}}
$$

$$
P_{\text {Blue }}^{\vec{\alpha}}=\prod_{i \in B} P_{i}^{\vec{\alpha}} \quad P_{\text {Blue }}=\sum_{\vec{\alpha}} P_{\text {Baa }}^{\vec{\alpha}}
$$

Save will hold for the red terms: except that it will be a different direct sum for each quit: $\vec{\beta}$

Want to show

$$
\sum_{\vec{\alpha} \vec{\beta}}^{1} \operatorname{Tr} \underbrace{\left.\left(\prod_{i \in B} P_{i}^{\vec{\alpha}}\right)\left(\prod_{i \in R}^{\prod} P_{i}^{\vec{p}}\right)\right]}_{\text {each indivichal term is } \geq 0}>0
$$

NP prover gives $\vec{\alpha}$ and $\vec{\beta}$ for which trace >0
This wishes doesn't necessarily say much about the ground state.

Example: Toric Code
Blue terms: $X X X X$
Red terms: $z Z Z Z$

$$
q \Theta^{\top}
$$

$$
\begin{aligned}
& \stackrel{\alpha}{\alpha}=\{+,-\}^{N} \\
& \stackrel{\beta}{\beta}=\{0,1\}^{N}
\end{aligned}
$$

$P_{i}+P_{j}$ invariant on H_{q+} $\mathrm{Hq}-$

$$
\alpha_{q}=t \cdot o r-
$$

Similarly: for red terms

$$
\beta_{q}=0 \text { or } 1 \text {. }
$$

$$
=2^{-N}>0
$$

Back to Genera 4-local quit CLH in 2D:

There are two ways for Hg_{g} to be divided:

$$
\begin{aligned}
& (1,1) \text { - way: } \\
& H_{q}=\frac{H_{q, 1}}{\operatorname{dim} 1} \oplus \frac{H_{q, 2}}{\operatorname{dim} 1}
\end{aligned}
$$

(2) - way:

Hivial partition.
$P_{i}+P_{j}$ operate on disjoint portions of the space
\Rightarrow only one acts hon-trividly on q.

P_{1}	P_{1}^{\prime}
P_{2}^{\prime}	P_{2}

if either $\left(P_{1}, P_{2}\right)$ or $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ commute in a $(1,1)$-way then we can trace out quit q.

Why?

Need to show:

$$
\operatorname{Tr}\left[\left(\prod_{i \in B} p_{i} \vec{\alpha}\right)\left(\prod_{i \in R} p_{i}^{\vec{\beta}}\right)\right]>0
$$

$P_{1} P_{2} P_{1}^{\prime} \quad P_{2}^{\prime}$ only terms operating on q.
Also: $\quad P_{q-\alpha}$ ard $\quad P_{q, p}$.

Need to show:

$$
\operatorname{Tr}\left[\left(\prod_{i \in B} p_{i}^{\vec{\alpha}}\right)\left(\prod_{i \in R} p_{i}^{\vec{\beta}}\right)\right]>0
$$

$P_{1} P_{2} P_{1}^{\prime} P_{2}^{\prime}$ only terms operating on q.
Also: $\quad P_{q, \alpha}$ and $P_{q, p}$.
Case 1: $\quad\left(P_{1} P_{2}\right)$ and $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ are both $(1,1)$ then $P_{q_{1} \alpha}=|\phi\rangle\left\langle\left.\phi\right|_{q} . \quad P_{q_{1}, \beta}=\mid \psi\right\rangle\left\langle\left.\psi\right|_{g}\right.$.

$$
\begin{array}{lll}
P_{q, \alpha} P_{1} P_{q, \alpha}= & |\phi\rangle\langle\phi| \otimes\langle\phi| P_{1}|\phi\rangle & \text { (same for } P_{2} \text {) } \\
P_{q, p} P_{1}^{\prime} P_{q, \alpha}=|\psi\rangle\langle\psi| \otimes\langle\psi| P_{1}^{\prime}|\psi\rangle & \text { (same for } P_{2}^{\prime} \text {). }
\end{array}
$$

$\operatorname{Tr}[|\phi\rangle\langle\phi \mid \psi\rangle\langle\psi|] \operatorname{Tr}[$ does not touch q.
Need to show:

$$
\int \operatorname{Tr}\left[\left(\prod_{i \in B} p_{i}^{\vec{\alpha}}\right)\left(\prod_{i \in R} p_{i}^{\vec{\beta}}\right)\right]>0
$$

$P_{1} P_{2} P_{1}^{\prime} P_{2}^{\prime}$ only terms operating on q.
Also: $\quad P_{q, \alpha}$ ard $P_{q, p}$.
Case 1: $\quad\left(P_{1} P_{2}\right)$ and $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ are both $(1,1)$ then $P_{q, \alpha}=|\phi\rangle\left\langle\left.\phi\right|_{q} . \quad P_{q, \beta}=\mid \psi\right\rangle\left\langle\left.\psi\right|_{q}\right.$.

$$
\begin{aligned}
& P_{q, \alpha} P_{1} P_{q, \alpha}=|\phi\rangle\langle\phi| \otimes\langle\phi| P_{1}|\phi\rangle \text { (same for } P_{2} \text {) } \\
& P_{q, \beta} P_{1}^{\prime} P_{q, \alpha}=|\psi\rangle\langle\psi| \otimes\langle\psi| P_{1}^{\prime}|\psi\rangle \text { (same for } P_{2}^{\prime} \text {). }
\end{aligned}
$$

Need to show:

$$
\operatorname{Tr}\left[\left(\prod_{i \in B} p_{i}^{\vec{\alpha}}\right)\left(\prod_{i \in R} p_{i}^{\vec{\beta}}\right)\right]>0
$$

$P_{1} P_{2} P_{1}^{\prime} P_{2}^{\prime}$ only terms operating on q.
Also: $\quad P_{q, \alpha}$ ard $P_{q, p}$.
Case 2: $\left(P_{1}, P_{2}\right)$ is $(1,1) \quad\left(P_{1}^{\prime}, P_{2}^{\prime}.\right)$ is (2)
$\Rightarrow p_{2}^{\prime}$ is identity on q.

$$
\operatorname{Tr}\left[\quad P_{q, \alpha} P_{1} P_{q, \alpha} \cdots P_{q, \alpha} P_{2} P_{q, \alpha} \ldots P_{1}^{\prime} \ldots-\right]
$$

(all other terms Identity on q)

Need to show:

$$
\operatorname{Tr}\left[\left(\prod_{i \in B} p_{i}^{\vec{\alpha}}\right)\left(\prod_{i \in R} p_{i}^{\vec{\beta}}\right)\right]>0
$$

$P_{1} P_{2} P_{1}^{\prime} P_{2}^{\prime}$ only terms operating on q.
Also: $\quad P_{q, \alpha}$ ard $P_{q, p}$.
Case 2: $\quad\left(p_{1}, p_{2}\right)$ is $(1,1) \quad\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$ is (2)
$\Rightarrow p_{2}^{\prime}$ is identity on q.

$$
\operatorname{Tr}\left[\quad P_{q, \alpha} P_{1} P_{f, \alpha} \cdots P_{q, \alpha} P_{2} P_{q, \alpha} \cdots P_{q, \alpha} P_{1}^{\prime} P_{q, \alpha}:-\right]
$$

(all other terms Identity on q) $|\phi\rangle<\phi \mid \otimes[$ Id on q. $]$

After tracing those out, only left with:

p_{1}	p_{2}^{\prime}
p_{1}^{\prime}	p_{2}

$$
\left.\begin{array}{l}
\left(p_{1}, p_{2}\right) \\
\left(p_{1}^{\prime}, p_{2}^{\prime}\right)
\end{array}\right\} \begin{aligned}
& \text { both pairs } \\
& \text { commute in } \\
& (2)-\text { way. } .
\end{aligned}
$$

Put a dot o in the Corner if term acts hon-thivially on that gubit.
Other wise put an x
two terms "overlap" if they
 act won-thivilly on the same quart.
\Rightarrow Overlapping terms form chains (no branching)

Cannot have stmetures like:

Case analysis, using the fact that the following two structures con't happen:

If two terms overlap on a single quit, they cannot both have a dot at. - that quail.

Now just need to determine thace of protects of terms forming chains or cycles:

1) Structural Lemma Proof Sketch

A C* -Algebra is a Banach algebra with *-op.
For us: $A \leq \mathcal{L}(H)$
closed under, $+, \cdot, *$, Scalar mut. contains I.
The center of $A C(A)$ is the set of all $X \in A$ that with everything in A.

If $C(A)=\{C I: c \in \mathbb{\}}$ (i.e. A has a "trivial" center) then $A=\mathcal{L}\left(H_{a}\right) \otimes I_{H_{b}} \quad H=H_{a} \otimes H_{b}$.

Structural Lemma Proof Sketch
Lemma : If $\exists M \in C(A)$ such that $M \nsim I$
then $M=\sum \lambda_{i} \pi_{i} \quad \pi_{i}$ projects on to H_{i}.
$\tau_{\text {projector onto eigenspaces of } \mu \text {. }}$.
and for $N \in A \quad N$ is invariant on π_{i}.
Proof idea: heed to show $\pi_{i} \in C(A)$.
if $M \in C(A)$ then $p(A) \in C(A)$ for polynomial P. find $P_{i}(x)$ such that $P_{i}\left(\lambda_{i}\right)=1$.

$$
\begin{aligned}
& P_{i}\left(\lambda_{i}\right)=1 . \\
& p_{i}\left(x_{j}\right)=0 \quad j \neq i
\end{aligned} \quad \Rightarrow p_{i}(M)=\pi_{i}
$$

Structural Lemma Proof Sketch
Idea: Find $\mu \in C(A) \quad \mu \notin I$ use M to divide up $K=\oplus H_{i}$.
if $\left.A\right|_{\mathcal{H}_{i}}$ does not have a trivial center, repeat on $A / w_{i} \subseteq f\left(1 z_{i}\right)$.
\Rightarrow end up with: $H=\oplus H_{i}$.
$A A_{i}=\mathcal{L}\left(\mathcal{H}_{i a}\right) \otimes H_{i b}$ or every $N \not A$ in variant on H_{i}. $H_{i}=H_{i c} \otimes H_{i b}$. Alts, has a trivial center.

Structural Lemme Proof Sketch
A (x) (z) B

$$
\begin{array}{ll}
A=\sum_{\alpha \beta}^{\sum} \underbrace{|\alpha\rangle\langle p|}_{x} \otimes \underbrace{A_{\alpha p}}_{y} \otimes \underbrace{I}_{z} & \sum_{\gamma \delta} \underbrace{I}_{x} \otimes \underbrace{B_{\gamma \delta} \otimes}_{y} \underbrace{|\gamma\rangle\langle\delta|}_{z} \\
C^{*} \text {-algebras: } \tilde{A}=\left\{A_{\alpha \beta}\right\} & \tilde{B}=\left\{B_{\gamma \delta}\right\}
\end{array}
$$

If $A+B$ commute then \tilde{A} and \tilde{B} commute.

Structural Lemme Proof Sketch
A (x) (y) (z) B Use $\tilde{A} t$ divide Y :

$$
A=\sum_{\alpha \beta}|\alpha\rangle\langle\beta| \otimes \underbrace{|\alpha|}_{x} \underbrace{A_{\alpha p}}_{y} \otimes \underbrace{I}_{z}
$$

$$
y=\oplus y_{i}
$$

\tilde{A} invariant on y_{i}.
$\left.\tilde{A}\right|_{y_{i}}$ is $y\left(y_{i a}\right) \oplus I_{y_{i,}}$.
C*-algebras: $\tilde{A}=\left\{A_{\alpha \beta}\right\}$
Since \vec{B} commutes with \tilde{A} : \vec{B} is invariant on each Y_{i}.

$$
\text { - } \tilde{B} \mid y_{i} \subseteq I_{y_{i a}} \otimes \mathcal{I}\left(y_{i b}\right) .
$$

