Hamiltonian Complexity, Part IV

due to Commuting Local Hamiltonian Problem.

August 3, 2023
Outline

I: Intro, Motivation, Survey.
II: Statement of the Structural Lemma.
III: 2- Local CLH.
IV: 4- Local 2D CLH on qubits.
V: Structural Lemma Proof Sketch.
Commuting local Hamiltonians system of n d-dimensional particles.

$$H = \sum_a H_a \quad H_a \text{ is } k\text{-local}$$

Local terms are pairwise commuting:

$$\forall a, b. \quad H_a H_b = H_b H_a.$$

If H is a commuting LH (CLH) then all the H_a's can be diagonalized in a single basis.

$$H = \sum \lambda_i |\phi_i\rangle \langle \phi_i| \quad \Rightarrow \quad H_a |\phi_i\rangle = \lambda_{a,i} |\phi_i\rangle$$

$$\lambda_i = \frac{1}{n} \lambda_{a,i}$$
For the purposes of NP + above, it suffices to consider the case where terms are projectors.

\[\exists \phi \text{ such that } \langle \phi | H | \phi \rangle \leq T \]

\[\iff \exists \lambda_1 \ldots \lambda_r \text{ and } | \phi \rangle \text{ such that } \sum_a \lambda_a \leq T \]

and \(H_a | \phi \rangle = \eta_a | \phi \rangle \forall a \).

\[\iff \exists \lambda_1 \ldots \lambda_r \text{ and } | \phi \rangle \text{ such that } \sum_a \lambda_a \leq T \]

and \(T \eta_a | \phi \rangle = 0 \)

where \(T \eta_a = 1 - P_a \)

A "solution" is a frustration-free ground state.

\(P_a \) projector onto \(\eta_a \)-eigenstate of \(H_a \).
Reasons to be interested in CLH:

- Intermediate class between classical and quantum.
 - Eigenstates (up to degeneracies) can be described by eigenvalues for each term.
 - Eigenstates can be highly entangled.
- Stabilizer codes are ground states of commuting Hams.
- Test ground for proving difficult claims (e.g. qPCP)
- Easier case for studying gapped Hamiltonians
 - Can ground states be efficiently represented or constructed?
Special Cases Known to be in NP

- 2-Local [Bravyi-Vyalyi]
- 3-Local, Qubits + Qubits [Aharonov-Eldar] \(\xrightarrow{\text{"Nearly Euclidean"}} \)
- 2D - qubits [Schnh] (non-constructive)
 [Aharonov, Kenneth, Vigdorovich] (constructive).
- 2D - qubits [I., Jiang] Factorized: every term is a product of operators on individual particles.
- Factorized - qubits [BV]
- Factorized - 2D [I., Jiang]

Is general CHSH in NP? QCHA? or QHA-hard?
II) The Structural Lemma

A acts on $H_x \otimes H_y$

B acts on $H_y \otimes H_z$.

A and B commute.

then:

$H_y = \bigoplus_{\alpha} H_{y \alpha}$

1. $A + B$ are invariant on each $H_{y \alpha}$

2. $H_{y \alpha} = H_{y \alpha}^A \otimes H_{y \alpha}^B$

$A|_{H_{y \alpha}}$ acts on $H_x \otimes H_{y \alpha}$, A

$B|_{H_{y \alpha}}$ acts on $H_{y \alpha}^B \otimes H_z$
The Structural Lemma

\[H_y = \bigoplus \alpha H_{y\alpha} \]

1. \(A + B \) are invariant on each \(H_{y\alpha} \)

\[A = \frac{1}{\alpha} P_{y,\alpha} A P_{y,\alpha} \quad \Rightarrow \text{Projector onto } H_{y,\alpha}. \]

\[\Rightarrow \text{If a solution exists, then there is a solution entirely within one } H_{y,\alpha}. \]
The Structural Lemma

$A \Rightarrow B$

2. $H_x = H_y \otimes H_z$

$A|y_x$ acts on $H_x \otimes H_y, A$

$B|y_x$ acts on $H_y, B \otimes H_z$

$A|y_x^A$

$B|y_x^B$
Structural Lemma Holds for more than 2

Commuting terms:

\[y = \bigoplus_{\alpha} Y_\alpha. \]

- \(Y, B, C \) all invariant on \(Y_\alpha \)
- Within \(Y_\alpha \) : tensor product structure.
Structural Lemma Implications

For a 2-local commuting Hamiltonian

NP witness consists of the description of a "slice" of each particle.

Solution within the slices has a tensor-product structure.
Particles
Particles

Witness: which slice to take for each particle
Particles

Witness: which slice to take for each particle

Looking at the chosen slices:

Solution is tensor product of states that span pairs of particles.
CLH on 2D lattice (4-local)

Particles at grid vertices
Terms are vertices on a face.

Particles on edges
Star & plaquette terms.
CLH on 2D lattice (4-local)

Particles at grid vertices
Terms are vertices on a face.

Particles on edges
Star & plaquette terms.
CLH on 2D lattice (4-local)

Particles at grid vertices
Terms are vertices on a face.

Particles on edges
Star & plaquette terms.
CLH on a 2D lattice

The ground states of these Hamiltonians will not have a "local" structure as in the 2-local case.

\[\Rightarrow \text{Toric code is a special case.} \]

Red terms: \(XXX\)
CLH on a 2D lattice

The ground states of these Hamiltonians will not have a "local" structure as in the 2-local case.

⇒ Toric code is a special case.

Red terms: \(XXX\)
Blue terms: \(ZZZZ\)

\(\Rightarrow\) ground state will have global entanglement.
we will consider general commuting 4-local Hamiltonians on a 2D lattice of qubits.
CLH on a 2D lattice

we will consider general commuting 4-local Hamiltonians on a 2D lattice of qubits.

Checkerboard Pattern:
- Blue faces
- Red faces

Will show CLH for this case is in NP [Schuch]

arXiv: 1105.2843
CLH on a 2D lattice of Qubits

\[H = \sum_i \lambda_i \ell_i = \sum_i (\ell_i - \Pi_i) \]

\(\ell \) projector onto ground space for term \(\ell_i \).

Let

- \(B = \) set of blue faces.
- \(R = \) set of red faces.

\[P_B = \prod_{i \in B} \Pi_i \quad P_R = \prod_{i \in R} \Pi_i \]

This will be non-constructive!

Want to show: \(\text{Tr} (P_B P_R) > 0 \)
Blue faces overlap on a single qubit:

Can apply structural lemma

\[H_q = \bigoplus H_{q,i} \]

\(P_i + P_j \) are invariant on each \(H_{q,i} \)

Let \(P_{q,i} \) be the projector onto \(H_{q,i} \)

\[P_i = \sum_{\alpha} P_{q,i} \alpha P_i P_{q,i} \alpha \quad (\text{same for } P_j) \]
Let \(\vec{\alpha} \) = vector of indices for all the qubits.

\[P_{\vec{\alpha}}^{i} = \prod_{k} P_{\alpha_{k}} \text{if } \vec{\alpha} \text{ is a } \vec{\beta} \]

\[P_{\text{Blue}} = \prod_{i \in B} P_{i}^{\vec{\alpha}} \quad P_{\text{Blue}} = \sum_{\vec{\alpha}} P_{\vec{\alpha}}^{\frac{1}{2}} P_{\text{Blue}}^{\frac{1}{2}} \]

Same will hold for the red terms:
except that it will be a different direct sum for each qubit: \(\vec{\beta} \)
Want to show

$$\sum_{\alpha, \beta} \text{Tr} \left[\left(\prod_{i \in B} \hat{P}_i^{\alpha} \right) \left(\prod_{i \in R} \hat{P}_i^{\beta} \right) \right] > 0$$

each individual term is ≥ 0

NP prover gives \hat{x} and \hat{p} for which trace > 0

This witness doesn't necessarily say much about the ground state.
Example: Toric Code

Blue terms: XXXX
Red terms: ZZZZ

\[\mathcal{L} = \zeta +, - 3^N \]
\[s \beta = 3^0, 1 3^N \]
\[\hat{\mathcal{L}} = (+, +, \ldots, +) \hat{\beta} = (0, 0, \ldots, 0) \]

\[\text{Tr} \left[1^N \langle + | \otimes N | 0^N \rangle \otimes N \right] = 2^{-N} > 0 \]

\[\alpha_q = \pm \alpha \]

\[P_i + P_j \text{ invariant on } \mathcal{H}_q^+ \]
\[\mathcal{H}_q^- \]

Similarly: for red terms
\[f_q = 0 \text{ or } \pm 1. \]
Back to Geneve: 4-local qubit CTH in 2D:

There are two ways for H_q to be divided:

1. $(1,1)$ - way:

$H_q = H_{q,1} \oplus H_{q,2}$

$\dim 1 \quad \dim 1$

$\hat{2}$ will project on to 1-dim space

2. (2) - way:

Trivial partition.

P_i & P_j operate on disjoint portions of the space

\Rightarrow only one acts non-trivially on q.
if either \((P_1, P_2)\) or \((P_1', P_2')\) commute in a \((1,1)\)-way then we can trace out qubit \(q\).

Why?

Need to show:

\[
\text{Tr} \left[\left(\prod_{i \in B} P_i^{\alpha} \right) \left(\prod_{i \in R} P_i^{\beta} \right) \right] > 0
\]

\(P_1, P_2, P_1', P_2'\) only terms operating on \(q\).

Also: \(P_{q,\alpha}\) and \(P_{q,\beta}\).
Need to show:

\[
\text{Tr} \left[\left(\prod_{i \in B} P_i^2 \right) \left(\prod_{i \in R} P_i^2 \right) \right] > 0
\]

\[P_1, P_2, P_1', P_2'\] only terms operating on \(\mathfrak{g}\).

Also: \(P_{q,1}\) and \(P_{q,1}'\).

Case 1: \((P_1, P_2)\) and \((P_1', P_2')\) are both \((1,1)\)

then \(P_{q,1} = |\phi\rangle \langle \phi|_{\mathfrak{g}}\), \(P_{q,1}' = |\psi\rangle \langle \psi|_{\mathfrak{g}}\).

\[P_{q,1} P_1 P_{q,1} = |\phi\rangle \langle \phi| \otimes |\phi\rangle \langle P_1 | \langle \phi\rangle \] (same for \(P_2\))

\[P_{q,1}' P_1' P_{q,1}' = |\psi\rangle \langle \psi| \otimes |\psi\rangle \langle P_1' | \langle \psi\rangle \] (same for \(P_2'\)).
Need to show:

\[
\text{Tr} \left[\prod_{i \in B} P_i^{\alpha} \right] \left(\prod_{i \in R} P_i^{\beta} \right) > 0
\]

\(P_1, P_2, P_1', P_2' \) only terms operating on \(q \).

Also:

\(P_{q,1,\alpha} \) and \(P_{q,1,\beta} \).

Case 1:

\((P_1, P_2) \) and \((P_1', P_2') \) are both \((1,1)\)

then \(P_{q,1,\alpha} = 1\phi < \phi | q \) \hspace{1cm} P_{q,1,\beta} = 1\psi < \psi | q \).

\(P_{q,1,\alpha} \) and \(P_{q,1,\beta} = 1\phi < \phi | q \) \hspace{1cm} \phi | P_1 | \phi \) \hspace{1cm} (Same for \(P_2 \)).

\(P_{q,1,\alpha} \) and \(P_{q,1,\beta} = 1\psi < \psi | q \) \hspace{1cm} \psi | P_1' | \psi \) \hspace{1cm} (Same for \(P_2' \)).
Need to show:

\[\text{Tr} \left[\left(\prod_{i \in B} P_i^2 \right) \left(\prod_{i \in R} P_i^3 \right) \right] > 0 \]

\(P_1, P_2, P_1', P_2' \) only terms operating on \(q \).

Also: \(P_{q,1,\alpha} \text{ and } P_{q,1,\beta} \).

Case 2: \((P_1, P_2) \text{ is } (1,1) \) \((P_1', P_2') \text{ is } (2) \)

\[\Rightarrow P_2' \text{ is identity on } q. \]

\[\text{Tr} \left[P_{q,1,\alpha} P_1 P_{q,1,\alpha} \cdots P_{q,1,\beta} P_2 P_{q,1,\beta} \cdots P_1' \cdots \right] \]

(all other terms Identity on \(q \))
Need to show:

\[
\text{Tr} \left[\left(\prod_{i \in B} P_i^2 \right) \left(\prod_{i \in R} P_i^3 \right) \right] > 0
\]

\[P_1, P_2, P_1', P_2' \text{ only terms operating on } g. \]

Also: \(P_{g,1,0} \) and \(P_{g,1,p} \).

Case 2: \((P_1, P_2) \) is \((1,1)\) \hspace{1cm} \((P_1', P_2') \) is \((2)\)

\[\Rightarrow P_2' \text{ is identity on } g. \]

\[
\text{Tr} \left[P_{g,1a} P_1 P_{g,1a} \cdots P_{g,1a} P_2 P_{g,1a} \cdots P_{g,1a} P_1' P_{g,1a} \cdots \right]
\]

(all other terms Identity on \(g \))

\[|\psi\rangle \langle \psi| \otimes [\text{Id on } g] \]

After tracing those out, only left with:

\[
\begin{array}{c|c}
P_1 & P_2' \\
\hline
P_1' & P_2 \\
\end{array}
\]

\[(P_1, P_2) \xrightarrow{q} (P_1', P_2') \]

both pairs commute in \((2)\)-way.
Put a dot • in the corner if term acts non-trivially on that qubit. Otherwise put an ×

two terms "overlap" if they act non-trivially on the same qubit.

⇒ Overlapping terms form chains (no branching)
Cannot have structures like:

Case analysis, using the fact that the following two structures can't happen:

If two terms overlap on a single qubit, they cannot both have a dot at that qubit.
Now just need to determine trace of products of terms forming chains or cycles:

\[\text{Tr}(P_1 P_2 \cdots P_8) \]
II) Structural Lemma Proof Sketch

A C*-Algebra is a Banach algebra with *-op.

For us: $A \subseteq \mathcal{L}(\mathcal{H})$

closed under, $+, \cdot, \ast$, scalar mult.
contains I.

The \textbf{center of A, $C(A)$}, is the set of all $x \in A$ that
with everything in A.

If $C(A) = \emptyset$ i.e. A has a "trivial" center
then $A = \mathcal{L}(\mathcal{H}_a) \otimes \mathcal{L}(\mathcal{H}_b)$ $\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$.
Structural Lemma Proof Sketch

Lemma: If \(\exists M \in C(A) \) such that \(M \neq I \) then \(M = \sum \lambda_i T_i \) where \(\lambda_i \) projects on to \(T_i \). Projector onto eigenspaces of \(M \).

and for \(N \in A \) \(N \) is invariant on \(T_i \).

Proof idea: need to show \(T_i \in C(A) \).

If \(M \in C(A) \) then \(p(M) \in C(A) \) for polynomial \(p \).

Find \(p_i(x) \) such that \(p_i(\lambda_i) = 1 \).

\(p_i(x_j) = 0 \quad j \neq i \) \(\Rightarrow p_i(M) = T_i \)
Structural Lemma Proof Sketch

Idea: Find $M \in C(A)$ $M \neq I$

use M to divide up $\mathcal{H} = \bigoplus \mathcal{H}_i$.

if $A|\mathcal{H}_i$ does not have a trivial center, repeat on $A|\mathcal{H}_i \leq \mathcal{A}(\mathcal{H}_i)$.

\Rightarrow end up with: $\mathcal{H} = \bigoplus \mathcal{H}_i$.

$A|\mathcal{H}_i = \mathcal{L}(\mathcal{H}_i) \otimes \mathcal{H}_i^b$.

$\mathcal{H}_i = \mathcal{H}_i^a \otimes \mathcal{H}_i^b$.

every $N+1$ in variant on \mathcal{H}_i.

$A|\mathcal{H}_i$ has a trivial center.
Structural Lemma Proof Sketch

If $A + B$ commute then \hat{A} and \hat{B} commute.
Structural Lemma Proof

Sketch

Use \hat{A} to divide Y:

$$Y = \oplus Y_i$$

\hat{A} invariant on Y_i.

$\hat{A}|_{Y_i}$ is $\text{L}(Yia) \otimes I_{V_Y}$.

C*-algebras: $\hat{A} = \sum A_{\alpha\beta}$

Since B commutes with A:

- B is invariant on each Y_i.
- $B|_{Y_i} \leq I_{V_{Y_i}} \otimes \text{L}(Yib)$.

$$A = \sum_{\alpha\beta} |x\rangle \langle y| \otimes A_{\alpha\beta} \otimes I$$

$$A = \chi A_{\alpha\beta}$$

B commutes with A_α.

$$A = \sum_{\alpha\beta} |x\rangle \langle y| \otimes A_{\alpha\beta} \otimes I$$

B is invariant on each Y_i.

$$B|_{Y_i} \leq I_{V_{Y_i}} \otimes \text{L}(Yib)$$