Astronomers Reveal First Image of the Black Hole at the Heart of our Galaxy

On May 12, 2022, astronomers unveiled the first image of the supermassive black hole at the center of our own Milky Way galaxy. This result provides overwhelming evidence that the object is indeed a black hole and yields valuable clues about the workings of such giants, which are thought to reside at the center of most galaxies. The image was produced by a global research team called the Event Horizon Telescope (EHT) Collaboration, using observations from a worldwide network of radio telescopes.

The image is a long-anticipated look at the massive object that sits at the very center of our galaxy. Scientists had previously seen stars orbiting around something invisible, compact, and very massive at the center of the Milky Way. This strongly suggested that this object—known as Sagittarius A* (Sgr A*), pronounced “sadge-ay-star”—is a black hole, and this image provides the first direct visual evidence of it.

Although we cannot see the black hole itself because it is completely dark, glowing gas around it reveals a telltale signature: a dark central region (called a “shadow”) surrounded by a bright ring-like structure. The new view captures light bent around something invisible, compact, and very massive at the center of the Milky Way.

In physics, a kagome lattice is a pattern of interlaced triangles whose intersections each have four neighboring points. This close-up shot of a woven basket shows the corner-sharing triangles that feature in the news on quantum spin liquids. See page 5.

Read the full story “A Flicker from the Dark: Reading Between the Lines to Model Our Galaxy’s Central Black Hole” at www.ias.edu/news/flicker-from-the-dark

(Continued on page 6)

Ukrainian Defiance: Snapshots of Experience

Russia’s unprovoked invasion of Ukraine is a humanitarian crisis of epic proportions. It has created a refugee crisis, the scale of which has not been seen since World War II in Europe. The toll of civilian casualties is in the thousands, with countless others missing, injured, trapped, or lacking in essential medicines, food, and water. As the war continues, the Ukrainian military and ordinary citizens have taken up arms to defend their sovereignty against a massive invading army. In an unbounded catalog of resistance, civilians have blocked military vehicles with their own bodies. Advancements on critical infrastructure, such as nuclear power plants, have been met with barricades. They have flooded their own villages to slow Russian attacks. In a now-famous act that became a national rallying cry, thirteen border guards on Snake Island near Crimea refused to surrender to a Russian warship, telling it ‘Go f— yourself,’ before they were fired upon by the notorious Moskva (now sunk).

(Continued on page 10)
From the Reading List

Gopal Prasad Professorship Established at IAS

Edward Witten

Robert B. Textor and Family Prize for Excellence in Technology Policy

Lea Sandberg

Lee Sandberg

Word from Nirenberg

On May 20, 2022, IAS Celebrated Day in recognition of Leorn Bamberger and Camilla Church, the first two women who founded and endowed IAS on May 20, 1930, providing for its lasting and essential independence. The event, held on campus, began with a toast from Director and Leorn Levy Professor David Nirenberg, after which the Friends held their Annual Meeting, and Staff, Members, Faculty, the Director, and a Trustee played in the third annual flag football game. Formerly deterred by a brief thunderstorm and downpour, the event continued with fried foods, a community singalong, and the evening of dancing in Simons Hall. Before joining the flag football game, Nirenberg opened the Friends Annual Meeting, sharing some thoughts of value about the Institute and the Friends’ support of it.

The following is adapted from his remarks to the Friends:

“As such, it’s such a pleasure to be here at my first Friends Annual Meeting. Perhaps because I am in my infancy as Director of this marvelous institution, I find myself continually thinking of the words of the great Carl Sagan. He wrote, ‘We are a galaxy of stars, scattered in a void of nothingness. It is our world of economic collapse and uncertainty. It was a world of sharp and legal discrimination and the lines of race, religion, and gender. It was a world of change in the totality of human experience, one in which we would have to confront the possibilities of flight. Just think of those pictures of Roswell in front of a back yard fence, the UFO crash site, and the one that has been seen for centuries and it is the making of a European Commercial Society (Princeton University Press, 2019).

David G. Victor

Johannes Ertl


Michael Weller

Hans L. Rasmussen


Vladimir Boltnev

The Economist

IAS Members and families to the Princeton community. Thank you for your continued support of the Institute.

In the early years of the Institute, the goal was to create at the Institute a community of scholars and artists of the highest order, with the utmost respect for the exchange of ideas. As we have seen in the past, and as we see today, the world is not a perfect place. But even in a world of war and mass migration; and renewed conflict over the nature of nations, of research and of expertise. What we today call the cultural climate. Given the similarities, it is worth asking ourselves how the infant Institute navigated the complexities of the world in which it was founded. Here's one example: In a time when discrimination was not only legal but extensively practiced in the U.S. and many other areas of the world, the Institute's founders insisted that it was “fundamental to our purpose” that there be no discrimination on the basis of race, religion, or sex. The goal of excellence, the Bamberger brothers, demanded the inclusion of talent, regardless of origin. The infant IAS lived by these ideals. Yes, it was not easy to do so. It is an accident of history that our first and most famous Faculty member was also the world's most famous refugee. But what began as accident soon became concerted strategy. Nor were refugees the only targets of inclusion at the Institute. The Institute worked to remove Japanese scientists from internment camps and bring them to Princeton. It worked to bring back Soviet scholars to Princeton at a time when the same could not be said of many institutions of higher learning. At any rate, the Institute accorded them the respect and the hospitality that they deserved. For example, given that I have always appreciated the value of diversity, there is something special about this moment. It is a rare and a remarkable opportunity to be together in person, to be in the same room, to be on the same stage, to be in the same building.

For example, to return to our previous discussion about the evolution of ‘openness’ in higher education, we have seen that the Institute was founded on the principle of open access to knowledge and ideas. This principle has been reiterated by various leaders of the Institute in the past, including President Nirenberg, who recently noted that ‘the Institute’s openness is as critical to our mission today as it was in the past.’ The Institute’s openness is not only a reflection of its past commitment to free speech and the exchange of ideas, but also a recognition of the current challenges faced by higher education institutions around the world. The pandemic has highlighted the importance of openness and access to knowledge, particularly in light of the digital divide and the challenges faced by marginalized communities.

The Institute’s openness is also reflected in its commitment to diversity and inclusion. The Institute is proud to have a diverse and inclusive community of scholars, artists, and students, who come from all corners of the world and bring unique perspectives and ideas to the Institute. The Institute is committed to creating a welcoming and inclusive environment for all members of the community, regardless of their background or identity.

The Institute’s openness is also driven by its commitment to excellence, innovation, and collaboration. The Institute is known for its cutting-edge research and its ability to bring together scholars and artists from different fields and disciplines to work on common projects. This approach has led to many groundbreaking discoveries and has helped to advance the frontiers of knowledge in a variety of fields.

In conclusion, the Institute’s openness is a reflection of its commitment to free speech, diversity, inclusion, excellence, and innovation. The Institute’s openness is as critical to its mission today as it was in the past, and it is an essential part of the Institute’s ability to thrive in an ever-changing world. The Institute will continue to work to promote openness and access to knowledge, and to create a welcoming and inclusive environment for all members of the community, regardless of their background or identity.

The Institute’s openness is also reflected in its commitment to diversity and inclusion. The Institute is proud to have a diverse and inclusive community of scholars, artists, and students, who come from all corners of the world and bring unique perspectives and ideas to the Institute. The Institute is committed to creating a welcoming and inclusive environment for all members of the community, regardless of their background or identity.

The Institute’s openness is also driven by its commitment to excellence, innovation, and collaboration. The Institute is known for its cutting-edge research and its ability to bring together scholars and artists from different fields and disciplines to work on common projects. This approach has led to many groundbreaking discoveries and has helped to advance the frontiers of knowledge in a variety of fields.

In conclusion, the Institute’s openness is a reflection of its commitment to free speech, diversity, inclusion, excellence, and innovation. The Institute’s openness is as critical to its mission today as it was in the past, and it is an essential part of the Institute’s ability to thrive in an ever-changing world. The Institute will continue to work to promote openness and access to knowledge, and to create a welcoming and inclusive environment for all members of the community, regardless of their background or identity.

The Institute’s openness is also reflected in its commitment to diversity and inclusion. The Institute is proud to have a diverse and inclusive community of scholars, artists, and students, who come from all corners of the world and bring unique perspectives and ideas to the Institute. The Institute is committed to creating a welcoming and inclusive environment for all members of the community, regardless of their background or identity.

The Institute’s openness is also driven by its commitment to excellence, innovation, and collaboration. The Institute is known for its cutting-edge research and its ability to bring together scholars and artists from different fields and disciplines to work on common projects. This approach has led to many groundbreaking discoveries and has helped to advance the frontiers of knowledge in a variety of fields.

In conclusion, the Institute’s openness is a reflection of its commitment to free speech, diversity, inclusion, excellence, and innovation. The Institute’s openness is as critical to its mission today as it was in the past, and it is an essential part of the Institute’s ability to thrive in an ever-changing world. The Institute will continue to work to promote openness and access to knowledge, and to create a welcoming and inclusive environment for all members of the community, regardless of their background or identity.
Two years ago, Park—and a team including Kahn, Keith Frankton, and past IAS Visitor (2020-22) Bhargav Narayanan—proved a weaker form of the conjecture. Despite excitement by experts, proving the full conjecture using their techniques was impossible. In a blog post, Kalyan said that proving “the full expectation threshold conjecture looked like a difficult task.” This April, Park, with co-author Nicholas Read provided the first technique evaded all. In a blog post, Kalai said that proving “the full expectation threshold conjecture was a difficult task.” This April, Park, with co-author Nicholas Read provided the first technique evaded all. In a blog post, Kalai said that proving “the full expectation threshold conjecture was a difficult task.” This April, Park, with co-author Nicholas Read provided the first technique evaded all. In a blog post, Kalai said that proving “the full expectation threshold conjecture was a difficult task.” This April, Park, with co-author Nicholas Read provided the first technique evaded all. In a blog post, Kalai said that proving “the full expectation threshold conjecture was a difficult task.”

Lynet was born in Park’s academic journey and her efforts to explore “deep” mathematical questions in the IAS video series “Pints to Math.”

David Nirenberg, IAS Director and Leon Levy Professor of History, has been selected as the inaugural Gopal Prasad Professorship at IAS. The professorship, endowed with a gift from the Prasad family, ensures that future generations of scholars, from all regions of the world, have the opportunity to benefit from the unique environment of discovery at IAS. Gopal Prasad, considered a leading expert on Lie groups and algebraic groups, is currently the Racial and Ethnic Studies in the University of Michigan. He is a leader in the field of mathematical physics, having made significant contributions to the understanding of the Quantum Hall Effect and the Quantum Spin Liquid. Prasad’s research has been widely recognized with numerous awards, including the Wolf Prize and the National Medal of Science. He is a fellow of the Royal Society and a member of the National Academy of Sciences. Prasad has been a visiting professor at several leading institutions, including the Institute for Advanced Study (IAS), where he has held the Bamberger Medal since 2013. Prasad’s work has been influential in the field of mathematics, and he is known for his contributions to the study of Lie groups and algebraic groups.

The Gopal Prasad Professorship at IAS is designed to support distinguished researchers in the field of mathematics and related sciences. The professorship is endowed with a gift from the Prasad family, which has a long history of philanthropy. The Prasad family has supported the establishment of the Bamberger Medal at IAS, which recognizes outstanding contributions to the field of mathematics.

The Gopal Prasad Professorship at IAS is one of the many initiatives that have been launched at the Institute to support scholars at risk, to support new research and academic partnerships, and to ensure the continued vitality of the Institute's mission. The professorship is a testament to the Institute's commitment to fostering a diverse and inclusive community of scholars, and to promoting the advancement of knowledge in the field of mathematics and related sciences.
reector, which stood next to the destroyed reactor. But radiation levels were so high that the electronics powering the robotic equipment failed. A month later,收拾(){ Fowler, M. T. (2021). The Mutant Project: Inside the Global Race to Genetically Modify Humans. (Beacon Press, 2021) high-

6

7

8

9

10

the case, the bias is surely amplified and reinforced by the American ideology of “nuclear superiority.”

Some have claimed this is a universal cognitive bias. Whether or not this is true, the lesson of the Double Effect is that we must be careful in how we weigh lives against each other.

The debates around this have been contentious and intricate. One theme running through them is known as the personhood criterion, which dates back to Thomas Aquinas, turns on a distinction between the intended outcomes of an action, as in the trolley problem, and its conse-

6Enduring the Debates over Lockdowns, Vaccines, and Other Measures Centered on How We Weigh Lives Against Economic Well-Being

The tragedy of Chernobyl is only one in a succession of innumerable episodes of state-sponsored violence. The Soviet policy of deliberate starvation under Joseph Stalin—killed nearly 4 million Ukrainians. Before Chernobyl, the Terror-Famine of 1932 and 1933—the outcome of a conscious policy of population control—killed nearly 4 million people. After Chernobyl, the Soviet authorities continued their ruthless control over their population. They knew that any disaster there would dwarf the one at the Chernobyl plant. They had barricaded the main road to the facility with trucks, cars, tires, and piles of dirt. They had ruined reactor unit with no more equipment than the workers used to distroy the reactor. The nuclear materials were shipped to Russia, biological citizens after chernobyl, the looting. In their own words, “We are Russians,” is a statement that is now woven into the fabric of their identity. But it only allows talk of a “special military operation” as it continues to hide the reality of its actions.

The Right to a Future

Today, amid the bombing of civilian targets, factories, schools, hospitals, theaters, museums, residential neighborhoods, and thousands of square miles of radioactive debris into the mouth of the destroyed reactor in one attempt. The nuclear materials were shipped to Russia, in exchange for diplomatic recognition, a location.

Ukraine’s (Continued from page 4)

...change to the United Nations. The nuclear materials were shipped to Russia, in exchange for diplomatic recognition, an exhibit of babies affected by Chernobyl. My notes from conversations with young men were conscripted to complete the job. With their bodies covered by baroque-styled biohazard suits in the Zone, where people cannot live and scientists can face for only short periods of time, the radioactive sources of one U.S. military analyst, like having “nuclear winter” (Beacon Press, 2021) high-

I went on to interview scores of sick cleanup workers and reeters in the 1990s for my book Left Exposed, Biologists after Chernobyl, and learned how the machinery of the explosion and the fight against radia-

tion that followed is carved into Ukraine, and how it would inspire a dedicated defense of a free country.

To Kill or Let Die

An excerpt from an article on the Covid pandemic by Wecke KEanne, Member (1997–08 & 2019–2020), School of Social Science

The History of the History of Science

The history of science is a discipline that studies science, as a body of knowledge by examining its foundations, assumptions, methodologies, ethical implications, and interactions. Although works that detail the history of one or another branch of science have been published since antiquity, the discipline as a whole emerged in the late eighteenth century. Today, the history of science intersects with other disciplines, including the natural and social sciences, humanities, and philosophy. While its methods are richly diverse, the discipline shares a commitment to understanding the historical development of the natural sciences, medicine, technology, and mathematics.

Albers-Schönberg Professorship in the History of Science Established at IAS

The Institute for Advanced Study is pleased to announce the establishment of the Albers-Schönberg Professorship in the History of Science at the School of Historical Studies. “The Albers-Schönberg name is illustrious in the history of science, with important contributions across three generations of scholars and researchers,” said Myles W. Jackson, who will be the second Albers-Schönberg Professor. “Our world is more connected than ever, and the discipline of the history of science, which will continue to serve as the link between the schools, will help ensure that Princeton remains a major center for the history of science given my superb colleagues in the field at the university.”

The Albers-Schönberg Professorship will be awarded to an academic scholar at the highest level of distinction in science, who has made a major contribution to our understanding of the history of science, including the history of technology, cognition, and the environment. The recipient will be appointed for a period of five years, and the appointment will be renewed for up to three additional terms. The Albers-Schönberg Professorship will be hosted by the School of Historical Studies and will be endowed with a generous gift from the IAS community.

The Albers-Schönberg Professorship will be housed within the School of Historical Studies and will be administered by the Institute for Advanced Study. The Albers-Schönberg Professor will be expected to contribute to the Institute’s cross-disciplinary methodology and range of study, from the antithetical production of scientific knowledge in nineteenth-century Germany to issues of intellectual property, knowledge sharing, ethical regulation, and bioprospecting to the collaborations between natural scientists, engineers, and musicians on creating new forms of aesthetics. The Albers-Schönberg Professor will also be expected to engage with the Institute’s broader community and to contribute to the Institute’s mission of fostering interdisciplinary collaboration.

The Institute for Advanced Study is a research community where leading scholars from around the world come together to collaborate, to learn from each other, and to push the boundaries of knowledge. The Institute’s mission is to advance knowledge and understanding through interdisciplinary research.

The Institute for Advanced Study is an equal opportunity employer and welcomes applications from all backgrounds.

Contact

For more information, please contact the Institute for Advanced Study’s Office of Communications at com@interface.princeton.edu.
Any shadow encountered in circle shows the size of the event horizon. The size of the black hole shadow while the solid, theoretical astrophysics at the University of Amsterdam, the Netherlands. “This tells us that General Relativity governs the objects up and down, and any differences we see further away must be due to differences in the material that surrounds the black hole.” This achievement was considerably more difficult than for M87, even though Sgr A* is much closer to EHT scientist Chi-kwan (“CK”) Chan, from Steward Observatory and the Data Science Institute of the University of Arizona, U.S., explains, “The gas in the vicinity of the black holes moves at the same speed—nearly as fast as light—around both Sgr A* and M87.” But where gas takes days to weeks to orbit the larger M87, in the much smaller Sgr A* it completes an orbit in minutes. This means the brightness and the pattern of the gas around Sgr A* was changing rapidly in the EHT Collaboration was observing—it is like trying to take a clear picture of a puppy quickly chewing in tail.”

The researchers had to develop sophisticated new tools that accounted for the gas movement around Sgr A*. While M87 was an easier, steadier target, with nearly all images looking the same, that was not the case for Sgr A*. The image of the Sgr A* black hole is an average of the different images the team extracted, finally revealing the giant lurking at the center of our galaxy for the first time. The effort was made possible through the ingenuity of more than 300 researchers from 80 institutions around the world that together make up the EHT Collaboration. In addition to developing complex tools to overcome the challenges of imaging Sgr A*, the team worked rigorously for five years, using supercomputers to combine and analyze their data, while compiling the unprecedented collection of simulated black holes to compare with the observations.

Lia Mintero is a co-lead of the EHT Gravitational Physics Working Group, a member of the EHT Junior Science Council, and an NSF Astronomy and Astrophysics Postdoctoral Fellow at the Institute for Advanced Study. She co-coordinated one of the collaboration papers (Paper VI), presenting the Sgr A* results. Her work involves developing simulations of accreting black holes and devising novel algorithms to interpret EHT data and to customize the data for use by scientists from General Relativity.

George N. Wong, Mendel in the School of Natural Sciences and Associate Research Scholar at Princeton University, was also part of the EHT research team, providing expertise in numerical methods and high-energy accretion astrophysics. He primarily works in the theory group, studying model uncertainties and producing a physical interpretation of the data.

Scientists are particularly excited to finally have images of two black holes of very different sizes, which offers the opportunity to understand how they compare and contrast. They have also used the new data to test theories and models of how gas behaves around supermassive black holes. This process is not yet fully understood but is thought to play a key role in shaping the formation and evolution of galaxies.

“Now we can study the differences between these two supermassive black holes at such small spatial scales,” says Sera Markoff, Co-Chair of the EHT Science Council and a professor of theoretical astrophysics at the University of Amsterdam, the Netherlands. “This is an extremely important thing to do.”

SCIENCE "What is so special about these new results is that we have a collaboration that includes all the major observatories and agencies around the world, and they are all working together towards a common goal," remarks Medicus. “We perform extensive and comprehensive calibration with hundreds of thousands of simulations, explore whether this object has an event horizon, use the same methods to check if the Sun and Venus were in the center of General Relativity, and compare our results with other tests of gravity. Astonishingly, our findings corroborate predictions made more than 100 years ago!”

As a theorist, it’s incredibly exciting that we now have real, high-resolution observations of accretion in the extreme environments near multiple supermassive black holes,” Wong noted. “Our results inform new, particularly interesting constraints on the astrophysical models, which I anticipate will drive a surge of theoretical work and predictions for the next generation of observatories.”

Bob Moses’s Legacy
Organizing Innovative Change in Education

What is the Black Hole Shadow?

The black hole shadow is unlike any shadow encountered in everyday life. Here’s why:

Imagine shining the same flashlight at a black basketball (solid rays). This expanded region of light, which departs from the black hole, is used by scientists to define the black hole shadow. For comparison, the event horizon—the region from which no light rays can escape—the same size as the original flashlight, is the black hole shadow would be approximately 2.6 times larger, or 24.42 inches in diameter.

Now imagine shining the same flashlight at a black hole. Unlike the basketball, the black hole noticeably noticeable variations with EHT data, including those of general relativity, causing light rays to follow curved paths. The result is that more light rays—even those not perfectly parallel to the central axis of the bright, heavily illuminated flashlight—are blocked, cutting a circular shadow (approximately 9.4 inches in diameter) as we would expect.

The size and shape of the black hole shadow tells us how massive the black hole is. The larger the black hole shadow, the more massive the black hole. The team created the powerful EHT, which linked together eight existing observatories around the world to create a virtual telescope 10 light-years across, collecting data for many hours in a row, similar to using a long exposure time on a camera.

The breakthrough following the EHT Collaboration’s 2019 release of the first image of a black hole, called M87*, at the center of the more distant Messier 87 galaxy.

The two black holes look remarkably similar, even though our galaxy’s black hole is much more than a thousand times smaller and less massive than M87*. “We have two complex worlds of galaxies and two very different black hole masses, but close to the edge of these black holes they look amazingly similar,” says Sera Markoff, Co-Chair of the EHT Science Council and a professor of theoretical astrophysics at the University of Amsterdam, the Netherlands. “This tells us that General Relativity governs the objects up and down, and any differences we see further away must be due to differences in the material that surrounds the black holes.”

The breakthrough following the EHT Collaboration’s 2019 release of the first image of a black hole, called M87*, at the center of the more distant Messier 87 galaxy.
Ancient Jury Duty Comes to Life at IAS

By ABBY ELLIS

P

inakas, here shown as cast made of Plaster of Paris, were small bronze plates used in ancient Athens for the process of democratically selecting a group of citizens to serve on a jury. Athenian citizens would nominate themselves for jury duty, volunteers would then be drawn at random to be inserted into a kleistron (a machine with rows of slabs and a break in the middle).

Athenians’ willingness to participate might surprise a modern reader, but jury duty was highly desirable in ancient Athens. The role offered was guaranteed pay and did not require physical strength—conditions which may have led to the development of a class of professional jurors, if we take seriously portrayals of comic plays in comic plays such as Aristophanes’ Wasps. These plays were recently discovered in the largest exhumed of the Institute’s epigraphic library. While the making of casts such as these has historically come to be seen as archaic in archaeological practice, the precise role of these komasts of historical studies at IAS is unclear.

Who or what has had an influence on you in your academic career? And what is one of your most memorable moments as an academic?

I’m most interested in how histories and historiograms of science can contribute to a more just present and future. Some of the questions that animate my work are: How do scientists work with and be accountable to communities that have suffered harm from scholarship in the past? How can we understand human subjects’ experience of research help us envision anticolonial knowledge making across the disciplines?

Who or what has had an influence on you in your academic career? And what is one of your most memorable moments as an academic?

I am most interested in how histories and historiograms of science can contribute to a more just present and future. Some of the questions that animate my work are: How do scientists work with and be accountable to communities that have suffered harm from scholarship in the past? How can we understand human subjects’ experience of research help us envision anticolonial knowledge making across the disciplines?

Who or what has had an influence on you in your academic career? And what is one of your most memorable moments as an academic?

I am most interested in how histories and historiograms of science can contribute to a more just present and future. Some of the questions that animate my work are: How do scientists work with and be accountable to communities that have suffered harm from scholarship in the past? How can we understand human subjects’ experience of research help us envision anticolonial knowledge making across the disciplines?

Who or what has had an influence on you in your academic career? And what is one of your most memorable moments as an academic?

I am most interested in how histories and historiograms of science can contribute to a more just present and future. Some of the questions that animate my work are: How do scientists work with and be accountable to communities that have suffered harm from scholarship in the past? How can we understand human subjects’ experience of research help us envision anticolonial knowledge making across the disciplines?
Meet Fernando Brancoli:
Fellow, Summer Program in Social Science

Fernando Brancoli is a social scientist studying far-right Brazilian politics. Currently, his research is focused on Brazilian far-right organizations and subjectivities. His work explores how internal discourses become informed by external discourses, reinterpreted and reformulated, in the global South. And then when Bolsonaro was elected four years ago, I slowly started to track that those interviews were integrating into the government. It was like, ‘well, I’m interviewing these guys now in the government. It was like, ‘well, I’m interviewing these guys now in the government.’

Ph.D. work, I was trying to understand how those private security companies in Afghanistan that were then hired here in Rio de Janeiro. So, during my graduate training. And I was doing a lot of international relations, by nature, is a really quick and fast discussion. Journalists are supposed to be telling different stories every day, and I felt I was missing those, sort of, broad and important narratives.

What unique perspectives do you think you bring as a Brazilian scholar?
I think I have a huge discussion in Brazil right now, and among global South scholars, that we can actually produce theory. We can produce tools to understand the world, rather than just applying or reusing the methodological and epistemological discussions that people are doing in the global North. Like, in Brazil right now there’s a huge discussion regarding anthropophagy; for decades, the concept of anthropophagy has been providing early warnings of the ethical and moral dangers of atomic theory. In 1955, Yukawa signed upon leaving the Institute in 1949, Yukawa became the first Japanese scientist to win the Nobel Prize for this contribution to the field of physics. Yet, Yukawa’s theoretical advances remain part of the legacy of this former Member, his text to the Institute also point to a less well known aspect of his legacy: Yukawa remains one of many scholars working at the forefront of science who provided early warnings of the ethical and moral dangers of atomic theory. In 1955, Yukawa signed a letter to the Nobel Committee, expressing his concern about the use of atomic weapons. He wrote, “I am not a pacifist, but I am a scientist who believes that science should be used for peace and not for war.”

What’s your favorite thing about where you’re from?
I would say this sort of kind of landscape of different perspectives and ethnicities and religions and discourses and food. I think we are at our best when we are meshing everything together. I think that’s the beauty of Brazil and also what is quite powerful about the country.

IL: How has being at the Institute benefited your work?
FB: I think the whole structure of the Institute helps. We’re having lunch and dinner together. We’re having coffee together, as well. And then you have the Members joining us from time to time, coming over and commenting on our work. I mean, it’s like a dream for academics, right? People are going there to do their research, but also to engage in this specific type of collaborative thought. I’m quite sure if we were staying at different hotels, we wouldn’t be able to have this sort of engagement. It’s this broad scenario that tries to connect people and gives you all the tools to do this.

IL: Why switch from journalism to social science?
FB: I was working in the, I think, a broader and deeper discussion. I mean, journalism, by nature, is a really quick and fast discussion. Journalists are supposed to be telling different stories every day, and I felt I was missing those, sort of, broad and important narratives. When I went to graduate school, I slowly started to track that those guys are now in the government. I think, ‘well, I’m interviewing these guys now in the government.’

What inspirations?
Fernando Brancoli, a member of the 2021–23 cohort, spoke to us about his research and his experience in the Summer Program from his home in Rio de Janeiro.

IL: Why switch from journalism to social science?
FB: I was working in the, I think, a broader and deeper discussion. I mean, journalism, by nature, is a really quick and fast discussion. Journalists are supposed to be telling different stories every day, and I felt I was missing those, sort of, broad and important narratives.

What inspirations?
I think my inspirations are meshing everything together. I think that’s the beauty of Brazil and also what is quite powerful about the country.

What is the most important thing you learned about Brazil?
Fernando Brancoli is a social scientist studying far-right Brazilian politics. Currently, his research is focused on Brazilian far-right organizations and subjectivities. His work explores how internal discourses become informed by external discourses, reinterpreted and reformulated, in the global South. And then when Bolsonaro was elected four years ago, I slowly started to track that those guys are now in the government. It was like, ‘well, I’m interviewing these guys now in the government. It was like, ‘well, I’m interviewing these guys now in the government.’

Ph.D. work, I was trying to understand how those private security companies in Afghanistan that were then hired here in Rio de Janeiro. So, during my graduate training. And I was doing a lot of international relations, by nature, is a really quick and fast discussion. Journalists are supposed to be telling different stories every day, and I felt I was missing those, sort of, broad and important narratives. When I went to graduate school, I slowly started to track that those guys are now in the government. I think, ‘well, I’m interviewing these guys now in the government.’

What unique perspectives do you think you bring as a Brazilian scholar?
I think I have a huge discussion in Brazil right now, and among global South scholars, that we can actually produce theory. We can produce tools to understand the world, rather than just applying or reusing the methodological and epistemological discussions that people are doing in the global North. Like, in Brazil right now there’s a huge discussion regarding anthropophagy; for decades, the concept of anthropophagy has been providing early warnings of the ethical and moral dangers of atomic theory. In 1955, Yukawa signed upon leaving the Institute in 1949, Yukawa became the first Japanese scientist to win the Nobel Prize for this contribution to the field of physics. Yet, Yukawa’s theoretical advances remain part of the legacy of this former Member, his text to the Institute also point to a less well known aspect of his legacy: Yukawa remains one of many scholars working at the forefront of science who provided early warnings of the ethical and moral dangers of atomic theory. In 1955, Yukawa signed a letter to the Nobel Committee, expressing his concern about the use of atomic weapons. He wrote, “I am not a pacifist, but I am a scientist who believes that science should be used for peace and not for war.”

What’s your favorite thing about where you’re from?
I would say this sort of kind of landscape of different perspectives and ethnicities and religions and discourses and food. I think we are at our best when we are meshing everything together. I think that’s the beauty of Brazil and also what is quite powerful about the country.

Why switch from journalism to social science?
FB: I was working in the, I think, a broader and deeper discussion. I mean, journalism, by nature, is a really quick and fast discussion. Journalists are supposed to be telling different stories every day, and I felt I was missing those, sort of, broad and important narratives. When I went to graduate school, I slowly started to track that those guys are now in the government. I think, ‘well, I’m interviewing these guys now in the government.’

What unique perspectives do you think you bring as a Brazilian scholar?
I think I have a huge discussion in Brazil right now, and among global South scholars, that we can actually produce theory. We can produce tools to understand the world, rather than just applying or reusing the methodological and epistemological discussions that people are doing in the global North. Like, in Brazil right now there’s a huge discussion regarding anthropophagy; for decades, the concept of anthropophagy has been providing early warnings of the ethical and moral dangers of atomic theory. In 1955, Yukawa signed upon leaving the Institute in 1949, Yukawa became the first Japanese scientist to win the Nobel Prize for this contribution to the field of physics. Yet, Yukawa’s theoretical advances remain part of the legacy of this former Member, his text to the Institute also point to a less well known aspect of his legacy: Yukawa remains one of many scholars working at the forefront of science who provided early warnings of the ethical and moral dangers of atomic theory. In 1955, Yukawa signed a letter to the Nobel Committee, expressing his concern about the use of atomic weapons. He wrote, “I am not a pacifist, but I am a scientist who believes that science should be used for peace and not for war.”

What’s your favorite thing about where you’re from?
I would say this sort of kind of landscape of different perspectives and ethnicities and religions and discourses and food. I think we are at our best when we are meshing everything together. I think that’s the beauty of Brazil and also what is quite powerful about the country.

What inspirations?
I think my inspirations are meshing everything together. I think that’s the beauty of Brazil and also what is quite powerful about the country.