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Let E be a local field and let G/E be a reductive group. For simplicity, we assume G
to be split. The local Langlands correspondence aims to parametrize the irreducible smooth
representations of G(E) in terms of the so-called Langlands parameters (L-parameters), that is,
continuous homomorphisms

φ : WE → Ĝ(C),

from the Weil group WE of E to complex points of the Langlands dual group Ĝ. When E
is nonarchimedean with a finite residue field Fq of characteristic p, which is the focus of this
seminar, the Weil group is the dense subgroup of the absolute Galois group Gal(E/E), given by
the preimage of Z ⊂ Gal(Fq/Fq), generated by the q-Frobenius.

Inspired by V. Drinfeld, L. Lafforgue and V. Lafforgue’s work on global Langlands correspon-
dence over function fields, the very rough idea of Fargues-Scholze’s geometrization is to realize
the Weil group of E as the étale fundamental group of a “curve”, and consider moduli spaces of
modifications of G-bundles on it, with various level structures. The étale cohomology of these
spaces will provide smooth representations of G(E) and will also be equipped with Weil group
actions. It turns out that the collection of these data pins down the desired parametrization.
To realize this idea for p-adic E’s, they have worked in the framework of stacks on the v-site
of perfectoid spaces in characteristic p, where the tilting equivalence helps one to pass freely
between characteristic 0 and p.

More precisely, given an Fp-perfectoid space S, one can define an E-adic space XS , called the
relative Fargues-Fontaine curve over S. Sending S to the groupoid of G-bundles on XS defines
the stack of G-bundles BunG. When S is a geometric point, the étale fundamental group of XS

agrees with the absolute Galois group Gal(E/E). This case is extensively studied by Fargues-
Fontaine [3] and has important applications to p-adic Hodge theory. To make the Weil group
appear, one considers the “mirror curve” Div1 = SpdĔ/φZ1, whose S-points are in bijection
with degree 1 closed Cartier divisors on XS . One has π1(Div1) = WE

2.

Next, one defines the global (resp. local) Hecke stacks by parametrizing modifications of
G-bundles on XS (resp. on its completion at a Cartier divisor). Namely, for a finite set I,
the global Hecke stack HckI

G sends S to the groupoid of pairs (S → (Div1)I , E1 99K E2), for a
selection of degree 1 closed Cartier divisors labelled by I, and a meromorphic isomorphism of
G-bundles on XS , undefined at the union DS of these divisors. The local Hecke stack HckG is
defined in the same way, except that E1, E2 are G-bundles on the completion of XS along DS .
There is a natural restriction map HckI

G → HckI
G.

1Here Ĕ is a complete maximal unramified extension of E, SpdĔ is the sheaf that sends an Fp-perfectoid space
S to the set of untilts of S over SpaĔ; and φ is a geometric Frobenius that acts on the test objects.

2in the sense that LocΛ(Div1) ∼= RepΛ(WE)
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The relation between these objects is described by the following diagram.

HckI
G HckI

G

BunG BunG × (Div1)I

h1 h2

q

Here the maps h1, h2 are obtained by projecting to E1, E2, and the structure map to (Div1)I . For
a suitable coefficient ring Λ, algebraic Λ-representations of copies of the Langlands dual group
ĜI appear as flat (over Λ) perverse universal locally acyclic (over (Div1)I) sheaves on HckI

G,
via the geometric Satake equivalence. For an algebraic Λ-representation V of ĜI , denote the
corresponding Satake sheaf on HckI

G by SV . We can define a Hecke operator on D(BunG,Λ) by
the formula

TV : A 7→ Rh2,∗(h
∗
1A⊗L

Λ q∗SV ).

It lands in D(BunG×[∗/W I
E ],Λ), which identifies with D(BunG,Λ)BW I

E via v-hyperdescent using
the formalism of condensed mathematics. Moreover, these Hecke operators commute and tensor
product of ĜI -representations corresponds to composition of Hecke operators. Varying V , this
defines an exact monoidal functor

RepΛ(ĜI) → EndΛ(D(BunG,Λ)ω)BW I
E .

It turns out that the collection of these functors, natural in I, pins down the desired correspon-
dence uniquely (up to semisimplification of the L-parameters) via “excursion”: An excursion
data is a tuple (I, V, α, β, (γi)i∈I) consisting of a finite set I, V ∈ RepΛ(ĜI), α : 1 → V |

Ĝ
,

β : V |
Ĝ

→ 1 and γi ∈ WE , i ∈ I. If Λ = L is an algebraically closed field over Zℓ[
√
q]

(ℓ ̸= p) then for any Schur irreducible object A ∈ D(BunG, L), i.e. End(A) = L, there is a
unique semisimple L-parameter φA : WE → Ĝ(L) such that for all excursion data as above the
endomorphism

A = T1(A)
α−→ TV (A)

(γi)i∈I−−−−→ TV (A)
β−→ T1(A) = A

is given by the scalar

L
α−→ V

(φA(γi)i∈I)−−−−−−−→ V
β−→ L.

The above finishes the construction of L-parameters. But the geometric setup also leads
Fargues–Scholze to a categorical version of the local Langlands conjecture [4, p. X.3.5], which
deserves further exploration.

In [4], Λ is allowed to be the ring of integers in a finite extension of Qℓ[
√
q]. For simplicity,

we will focus on the case that Λ is a torsion Zℓ[
√
q]-algebra.

The main reference is [4]. Complimentary materials include [12], Scholze’s lectures on Ge-
ometrization of the local Langlands correspondence, lecture notes and videos available here,
2022 IHES summer school lectures on “The Langlands program and the moduli of bundles on
the curve” by Fargues–Scholze, videos available on Youtube, Fargues’ lecture series in Beijing,
Bonn and Columbia, lecture notes available here, Hansen’s Beijing notes on the categorical local
Langlands conjecture, available here.

Preliminary meeting: 1/25/2024
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https://people.mpim-bonn.mpg.de/scholze/Geometrization/
https://webusers.imj-prg.fr/~laurent.fargues/Notes_Cours.html
http://www.davidrenshawhansen.net/Beijing.pdf


Talks

All unspecified references are [4].

Talk 1: The geometry of the classical BunG (Kȩstutis Česnavičius), 2/1

The Harder–Narasimhan stratification, Beauville-Laszlo uniformizaton, relation to the affine
Grassmannian. References: [5, Sec. 5.3-5.5], [7], [13].

Talk 2 : The Fargues-Fontaine curve (Guido Bosco), 2/8

Define the relative curve YS and sketch the proof of Proposition II.1.1, 1.2, 1.4. Prove the
properties of YS when S is a geometric point, c.f. Theorem II.0.1. Define the (relative) Fargues-
Fontaine curve XS as in Definition II.1.15, Proposition II.1.16. State its diamond equation as
in Proposition II.1.17. Define the “mirror curve” Div1, see Definition II.1.19 and below.

Talk 3: Vector bundles on the Fargues-Fontaine curve I (Tasos Moulinos),
2/15

Discuss the map Isock → Bun(XS) and its properties and thus define the vector bundles O(λ),
for λ ∈ Q. Explain the relation to Lubin-Tate theory as in Proposition II.2.2 and establish
the fundamental short exact sequence Proposition II.2.3. Sketch the proof of ampleness of O(1)
(Theorem II.2.6). Construct the algebraic Fargues-Fontaine curve and prove the GAGA theorem
(Proposition II.2.7). State Proposition II.2.9.

Talk 4: Banach-Colmez spaces (Bogdan Zavyalov), 2/22

Define Banach-Colmez spaces: present the original definition of Colmez [2, Section 5.2.2] and
list the properties as in [2, Proposition 5.16]; state the characterization of Le Bras as v-sheaves
and as the category Coh− [9, Proposition 7.11, Theorem 7.1]. State the fully faithfullness result
of Anschütz-Le Bras [1, Corollary 3.10] and list the basic nontrivial Ext-groups [1, Theorem
3.8]. Define the Banach-Colmez space associated to a morphism of vector bundles as in II.2
Page 59. Sketch the proof of Corollary II.2.4. Discuss the structure of absolute Banach-Colmez
spaces as in Proposition II.2.5. State properties of (projectivized) relative Banach-Colmez spaces
(Proposition II.2.16). Give examples II.3.12-13.

Talk 5: Vector bundles on the Fargues-Fontaine curve II (Kalyani Kansal),
2/26 (Monday)

Recall the Harder-Narasimhan theory on the Fargues-Fontaine curve and prove the classification
of vector bundles (Section II.2.4: Proposition II.2.10-Lemma II.2.15). Prove Theorem II.2.19,
Corollary II.2.20. Discuss Proposition II.3.1 and its variants. State the vanishing result in Propo-
sition II.3.4, the relation to Divd in Proposition II.3.6 and the structure of general punctured
Banach-Colmez space in Proposition II.3.7. Include as many proofs as time permits.

Talk 6: The topological space |BunG| (Zeyu Liu), 2/29

Give the definitions of G-bundles from Definition III.1.1 (see also [12, Appendix to Lecture 19]).
Define BunG. Define the Kottwitz set B(G), its Newton and Kottwitz points. Thus define
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the topological space |B(G)| and basic elements in B(G), c.f. [10], [8]. Give the example of
GLn. Define G-isocrystals and recall the map IsocG → BunG. Prove Theorem III.2.2, 2.3, 2.7.
State the theorem of Viehmann/Gleason-Ivanov [14, Theorem 1.1], [6, Theorem 10.8]. Combine
Theorem III.2.3 and 2.7 to prove Theorem III.2.4.

Talk 7: Mixed characteristic affine Grassmannian (Sally Gilles), 3/21

Define B+
dR-affine Grassmannian and its Schubert cells as in [12, Lecture 19]; recall their basic

properties. Define Beilinson-Drinfeld type affine Grassmannian over Zp and explain briefly its
relation to the Witt vector affine Grassmannian as in [12, Section 20.3]. Construct the Beauville-
Laszlo morphism, prove Proposition III.3.1. State Lemma III.3.5. See also [11, Lecture 12].
Define moduli spaces of shtukas as in [12, Lecture 23] and explain how they arise as fibers of
the Beauville-Laszlo map [11, Lecture 13].

Talk 8: The (non-)semistable locus of BunG (Juan Esteban Rodriguez Ca-
margo), 4/1

Explain pure inner twist as in Section III.4.1, prove Proposition III.4.2 and thus deduce Corollary
III.4.3. Give the example of GLn (III.4.4). Prove Theorem III.4.5. Describe the structure of G̃b

as in Proposition III.5.1 and sketch the proof. Prove Proposition III.5.3.

Talk 9: Universal locally acyclic sheaves (Longke Tang), 4/4

Review the notions of Artin v-stacks and cohomologically smooth maps between them (Definition
IV.1.1, 1.11). Apply this to BunG: prove Theorem IV.1.19; state Proposition IV.1.22, Corollary
IV.1.23. Introduce universal local acyclicity as in Definition IV.2.1 (c.f. 2.22, 2.31) and review
relevant properties. Discuss Proposition IV.2.15, IV.2.19. Explain the relation to dualizability
as in Theorem IV.2.23. State Corollary IV.2.25, Proposition IV.2.26, and the characterization
of ℓ-cohomological smoothness in Proposition IV.2.33. See also [11, Lecture 18].

Talk 10: Étale sheaves on BunG I (Alexander Petrov), 4/11

State V.0.1(i). Discuss Dét for classifying stacks of locally pro-p groups as in Theorem V.1.1,
Corollary V.1.4. Prove Proposition V.2.1, V.2.2. Construct the local charts Mb as in Section V.3
and give Example V.3.1. Explain their properties as in Proposition V.3.5, 3.6. Show that they
give cohomologically smooth charts of BunG as in Theorem V.3.7 (assuming Theorem IV.4.2).

Talk 11: Étale sheaves on BunG II (Sean Howe), 4/18

Use the charts M̃b’s to construct compact generators in Dét(BunG,Λ) (see proof of Theorem
V.4.1) and prove Theorem V.4.1. Explain Remark V.4.5 and the example below. Discuss
Verdier duality and ULA sheaves on BunG: state Theorems V.6.1, V.6.2, and sketch the proof
of Theorem V.7.1. See also [11, Lecture 20].

Talk 12: The Hecke action (Dmitry Kubrak), 4/25

Define the local Hecke stacks (Definition VI.1.6), the Satake category (Definition VI.7.8), and
state the Geometric Satake Theorem IV.0.2. (It would be nice if key ingredients of the proof
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could be mentioned). Define the Hecke operators as in Section IX.2 (ignore the formalism of Dlis

and focus on torsion coprime-to-p coefficients), state Theorem IX.0.1. Comment on the relation
to cohomology of local Shimura varieties: state Theorem IX.3.1 and sketch its proof. Define the
geometric/spectral Bernstein center and explain briefly the idea of constructing L-parameters
from Corollary IX.0.3.
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