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Part I: Background



Group cohomology

Take G to be a topological group. A G-module is any discrete
abelian group M endowed with a continuous action of G .
Given i ≥ 0, the group H i (G ,M) is the quotient of the group of
continuous i-cocycles by the group of continuous i-coboundaries.
For i = 1, a continuous 1-cocycle is a continous map φ : G → M
satisfying

φ(στ) = σφ(τ) + φ(σ) for all σ, τ ∈ G ,

and 1-coboundaries are cocycles of the form σ 7→ σm−m for some
constant m in M.



Group cohomology

If M has trivial G action, we always have

H1(G ,M) = Homcnts(G ,M).

We also find that H0(G ,M) equals the set of m in M invariant
under the action of G .
Given an exact sequence 0→ M1 → M → M2 → 0 of G modules,
we have a long exact sequence

0→ H0(G ,M1)→ H0(G ,M)→ H0(G ,M2)
→ H1(G ,M1)→ H1(G ,M)→ H1(G ,M2)
→ H2(G ,M1)→ H2(G ,M)→ H2(G ,M2)→ . . .



Conventions for fields and places

I F will be a global field: a finite extension of the rationals, or a
characteristic p analogue.

I F s will be a separable closure of F , and we will define

GF = Gal(F s/F ).

We will use this notation for other fields as well.
I For each place v of F , we will use the notation Fv for the

completion of F at v , and we will fix an embedding of F s into
F s

v . Writing Gv = GFv , this defines an embedding of Gv in GF .



Shafarevich-Tate groups

Given a GF -module M, we define

X1(M) = ker
(

H1(GF , M)→
∏

v of F
H1(Gv , M)

)
.

Interpretations:
I X1(M) is the set of global cocycle classes that everywhere

locally look like coboundaries.
I X1(M) is the set of étale classes in

H1
ét(Spec F ,M)

that vanish under the pullback Spec Fv → Spec F for each v .



An application of the long exact sequence

Given an abelian variety A/F , the F s points of A form a GF
module we will refer to as A.
Choose n > 0, and take A[n] to be the submodule of A killed by
multiplication by n. The long exact sequence for

0→ A[n]→ A ·n−−→ A→ 0

takes the form

H0(GF ,A) ·n−−→ H0(GF ,A) δ−→ H1(GF ,A[n])→
H1(GF ,A) ·n−−→ H1(GF ,A)

or

0→ A(F )/nA(F ) δ−→ H1(GF ,A[n])→ H1(GF ,A)[n]→ 0.



Local conditions and Selmer groups
Fixing a completion Fv , we have a diagram

0 A(F )/nA(F ) H1(GF ,A[n]) H1(GF ,A)[n] 0

0 A(Fv )/nA(Fv ) H1(Gv ,A[n]) H1(Gv ,A)[n] 0

δ

δv

Defining

SelnA = ker
(

H1(GF ,A[n])→
∏
v

H1(Gv ,A[n])
/

im δv

)
,

we have an exact sequence

0→ A(F )/nA(F ) δ−→ SelnA→X1(A)[n]→ 0.



Some old conjectures

Conjecture (Shafarevich-Tate)
X1(A) is always finite.
Still open: We at least know that

(
X1(A)/X1(A)div

)
[p∞] is finite

for each prime p.

Conjecture
If A is an elliptic curve,

(
X1(A)/X1(A)div

)
[p∞] has square order.

This was verified by Cassels in the early 1960s.



Cassels’ theorem

Theorem (Cassels, ’62)
If A is an elliptic curve over a number field, there is an alternating
pairing

CP: X1(A)⊗X1(A)→ Q/Z

with kernel X1(A)div.
Alternating means CP(φ, φ) = 0 for all φ ∈X1(A).
Since there is a perfect alternating pairing defined on the finite
group

(
X1(A)/X1(A)div

)
[p∞], it must have square order by basic

algebra.



The Cassels-Tate pairing

Theorem (Tate, ’63)
Take A/F to be an abelian variety over a global field, and take A∨
to be the dual variety. Given a prime ` not equal to the
characteristic of F , there is a bilinear pairing

CTP: X1(A)[`∞] ⊗ X1(A∨)[`∞]→ Q/Z

with kernels X1(A)[`∞]div and X1(A∨)[`∞]div.



A pairing on Selmer groups

Given n, b > 1 indivisible by the characteristic of F , we have maps
SelnA→X1(A) and SelbA∨ →X1(A∨).
Composing with the Cassels-Tate pairing then defines a bilinear
pairing

CTP: SelnA ⊗ SelbA∨ → Q/Z.

The left kernel is b · SelnbA and the right kernel is n · SelnbA∨.
This pairing can be defined from the exact sequence

0→ A[b]→ A[nb]→ A[n]→ 0

together with the local conditions. It gives the obstruction of
lifting a Selmer element in A[n] to a Selmer element in A[nb].



Part II: Generalities



Selmer groups

Take F to be a global field, and take M to be a finite GF -module.
We assume that the characteristic of F does not divide the order
of M.
For each place v of F , choose a subgroup Lv of H1(Gv ,M). We
assume Lv is the set of unramified classes at all but finitely many
places.
The Selmer group associated to (M, (Lv )v ) is then defined by

Sel(M, (Lv )v ) = ker
(

H1(GF ,M)→
∏

v of F
H1(Gv ,M)

/
Lv

)
.



The category of Selmerable modules
Note that M 7→X1(M) defines a functor. We want Sel to be a
functor too.

Definition
Given F , take SModF to be the category
I with objects (M, (Lv )v ) as before, and
I with morphisms (M, (Lv )v )→ (M ′, (L′v )v ) given by any

GF -equivariant homomorphism f : M → M ′ satisfying

f (Lv ) ⊆ L′v for all v of F .

We will denote this morphism by f .

Given this morphism f , we see that f induces a morphism

f : Sel(M, (Lv )v )→ Sel(M ′, (L′v )v ).

Sel is a functor from SModF to FinAb.



The dual module

Given (M, (Lv )v ) in SModF , define

M∨ = Hom(M, (F s)×)

Local Tate duality gives a bilinear pairing

H1(Gv ,M)⊗ H1(Gv ,M∨)→ Q/Z.

Taking L⊥v to be the orthogonal complement to Lv with respect to
this pairing, we define

(M, (Lv )v )∨ =
(

M∨,
(
L⊥v
)

v

)
.

This defines a contravariant functor ∨ : SModF → SModF , and
∨ ◦ ∨ is naturally isomorphic to the identity functor on SModF .



The dual module for abelian varieties.
Take A/F to be an abelian variety, and choose an integer n. We
have a canonical isomorphism

ι : A∨[n] ∼−−→ A[n]∨

For v a place of F , we have natural connecting maps

δA, v : A(Fv )/nA(Fv ) → H1(Gv ,A[n]) and
δA∨, v : A∨(Fv )/nA∨(Fv )→ H1(Gv ,A∨[n]).

Then

SelnA = Sel(A[n], (im δA, v )v ) and
SelnA∨ = Sel(A∨[n], (im δA∨, v )v ),

and the canonical isomorphism above gives an isomorphism(
A∨[n], (im δA∨, v )v

) ι−−→
(
A[n], (im δA, v )v

)∨
in SModF .



Lifting

Question
Given a morphism π : (M, (Lv )v ) → (M2, (L2v )v ) in SModF
corresponding to a surjective GF homomorphism, and given φ in
Sel M2, what prevents φ from lying in π(Sel M)?
First issue: the image of φ in some L2v may be outside π(Lv ).

Definition
We call a diagram

E =
[
0→ (M1, (L1v )v ) ι−→ (M, (Lv )v ) π−−→ (M2, (L2v )v )→ 0

]
in SModF exact if it gives an exact sequence of GF -modules and

L1v = ι−1(Lv ) and L2v = π(Lv )

for all v .
We sometimes refer to the object (M, (Lv )v ) as M.



The general Cassels-Tate pairing

Theorem (Tate)
Given an exact sequence

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]

in SModF , there is a natural bilinear pairing

CTPE : Sel M2 ⊗ Sel M∨1 → Q/Z

with left kernel π(Sel M).
This was not the generality Tate was working at, but his
construction requires no modification for this case.

Question
What’s the right kernel of this pairing?



Dual exact sequence

Given an exact sequence

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]

in SModF , the dual diagram

E∨ =
[

0→ M∨2
π∨−−→ M∨ ι∨−−→ M∨1 → 0

]
in SModF is also exact.
The Cassels-Tate pairing for E∨ is then of the form

CTPE∨ : Sel M∨1 ⊗ Sel M∨∨2 → Q/Z.

This pairing has left kernel ι∨(Sel M∨).



The Cassels-Tate pairing

Theorem (Morgan-S.)
Given exact sequences

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]

and

E∨ =
[
0→ M∨2

π∨−−→ M∨ ι∨−−→ M∨1 → 0
]

in SModF , we have a natural bilinear pairing

CTPE : Sel M2 ⊗ Sel M∨1 → Q/Z

with left and right kernels

π(Sel M) and ι∨(Sel M∨),

respectively.



The duality identity

Given E and E∨ as above, we have pairings

CTPE : Sel M2 ⊗ Sel M∨1 → Q/Z and
CTPE∨ : Sel M∨1 ⊗ Sel M∨∨2 → Q/Z

Theorem (Morgan-S.)
Given

φ ∈ Sel M2 ∼= Sel M∨∨2 and ψ ∈ Sel M∨1 ,

we have
CTPE∨(ψ, φ) = CTPE (φ, ψ).

As a consequence, the right kernel of CTPE is the left kernel of
CTPE∨ .



The Cassels-Tate pairing

The exact sequence

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]
,

in SModF functorially yields an exact sequence

Sel M1 Sel M Sel M2

(Sel M∨1 )∗ (Sel M∨)∗ (Sel M∨2 )∗

ι π CTPE

(ι∨)∗ (π∨)∗

of finite abelian groups.



Part III: Properties



Naturality

Proposition (Morgan-S.)
Given a commutative diagram

Ea =
[

0 M1a Ma M2a 0
]

Eb =
[

0 M1b Mb M2b 0
]
,

f1

ιa

f

πa

f2

ιb πb

in SModF with exact rows, and given φ in Sel M2a and ψ in
Sel M∨1b, we have

CTPEa

(
φ, f ∨1 (ψ)

)
= CTPEb (f2(φ), ψ) .



Baer sums
In any abelian category, given exact sequences

Ea = [0→ A1 → Aa → A2 → 0] and
Eb = [0→ A1 → Ab → A2 → 0],

there is a natural choice of an exact “sum”

Ea + Eb = [0→ A1 → Aab → A2 → 0]

for these sequences. This makes the set of extensions of A2 by A1
into an abelian group whose operation is known as the Baer sum.

Example
The sum of 0→ 1

4Z/Z→
1

16Z/Z→
1
4Z/Z→ 0 with itself has the

form

0→ 1
4Z/Z −−→

1
8Z/Z ⊕

1
2Z/Z −−→

1
4Z/Z→ 0.



Baer sums
SModF is not an abelian category, since morphisms
(M, (Lv )v )→ (M ′, (L′v )v ) corresponding to a GF -isomorphism are
monic and epic but perhaps not invertible.
However, it is quasi-abelian. Among other things, this means that
Baer sums are well defined, and we have the following:

Proposition (Morgan-S.)
Given exact sequences

Ea = [0→ M1 → Ma → M2 → 0] and
Eb = [0→ M1 → Mb → M2 → 0]

in SModF , we have

CTPEa+Eb (φ, ψ) = CTPEa (φ, ψ) + CTPEb (φ, ψ)

for all φ in Sel M2 and ψ in Sel M∨1 .



Naturality + Duality identity
Given a commutative diagram

E =
[

0 M1 M M2 0
]

E∨ =
[

0 M∨2 M∨ M∨1 0
]f1

ι

f

π

f2

π∨ ι∨

with exact rows, and given φ, ψ ∈ Sel M2, we have

CTPE (φ, f2(ψ)) = CTPE∨(f2(ψ), φ) by duality identity
= CTPE (ψ, f ∨1 (φ)) by naturality.

If f ∨ = f , then f2 = f ∨1 , so the pairing

CTPE (–, f2(–)) : Sel M2 ⊗ Sel M2 → Q/Z

is symmetric.



Naturality + Duality identity

Still given the morphism of exact sequences

E =
[

0 M1 M M2 0
]

E∨ =
[

0 M∨2 M∨ M∨1 0
]
,

f1

ι

f

π

f2

π∨ ι∨

suppose f ∨ = −f . Then f2 = −f ∨1 , and the pairing

CTPE (–, f2(–)) : Sel M2 ⊗ Sel M2 → Q/Z

is antisymmetric.



Antisymmetry
Suppose A/F is a princiaplly polarized abelian variety over a global
field. Given a positive integer n indivisible by the characteristic of
F , the Weil pairing

A[n2]⊗ A[n2] −−→ (F s)×

is an alternating perfect pairing. Taking f to be the corresponding
map from A[n2] to A[n2]∨, we have a morphism of exact sequences

0 A[n] A[n2] A[n] 0

0 A[n]∨ A[n2]∨ A[n]∨ 0,

f1 f f2

with f ∨ = −f .
We then can recover the fact that the original pairing

CTP(–, f2(–)) : Seln A ⊗ Seln A→ Q/Z

is antisymmetric.



Theta groups

Definition
Given M in SModF , a theta group for M is a potentially
non-abelian group H acted on continuously by GF that fits in a
GF -equivariant central extension

0→ (F s)× → H→ M → 0.

The commutator pairing on H defines an alternating pairing

M ⊗M → (F s)×,

which by tensor-hom adjunction gives a map fH : M → M∨.



Theta groups for abelian varieties

Given a principally polarized abelian variety A/F and a positive
integer n indivisible by char F , there is a canonical choice of theta
group

0→ (F s)× → Hn
pn−→ A[n]→ 0.

Take H1 = p−1
n2 (A[n]), and consider the sequence

0→ (F s)× → H1 → A[n]→ 0.

This sequence corresponds to a class

ψtht ∈ Ext1
GF (A[n], (F s)×) = H1(GF ,A[n]∨).



The Poonen-Stoll result

Theorem (Poonen-Stoll)
Given A/F and n, the element ψtht defined above lies in
X∨(A)[2], and the pairing

CTP(–, f2(–)) : Seln A ⊗ Seln A→ Q/Z

satisfies
CTP(φ, f2(φ)) = CTP(φ, ψtht)

for all φ ∈ Seln A.
The proof uses the geometric definition of the Cassels-Tate pairing.



Generalizing Poonen-Stoll: setup
Suppose we have a theta group

0→ (F s)× → H p−→ M → 0 (1)

and a morphism of exact sequences

E =
[

0 M1 M M2 0
]

E∨ =
[

0 M∨2 M∨ M∨1 0
]f1

ι

f =fH

π

f2

π∨ ι∨

in SModF . Writing the local conditions for M as (Lv )v , we assume
that the connecting map

δv : H1(Gv ,M)→ H2(Gv , (F s))×

corresponding to (1) satisfies δv (Lv ) = 0.
Write ψtht for the class in H1(GF ,M∨1 ) of

0→ (F s)× → p−1(ι(M1))→ M1 → 0



Generalizing Poonen-Stoll

Theorem (Morgan-S.)
Given E, f2, and ψtht as above, the cocycle class ψtht lies in
Sel M∨1 , and

CTPE (φ, f2(φ)) = CTP(φ, ψtht) ∈ 1
2Z/Z

for all φ in Sel M2.
The proof is a crazy cochain bash, and it recovers the result of
Poonen and Stoll.



Part IV: Class groups



Symmetry from roots of unity
Choose a positive integer n, and choose a number field F
containing µn. For α in F×, define

χn,α : Gal(F ( n√α)/F )→ µn

by χn,α(σ) = σ n√α
n√α .

Take HF to be the Hilbert class field of F , and write
rec : Cl F ∼−−→ Gal(HF/F )

for the Artin reciprocity map.
Theorem (Lipnowski-Sawin-Tsimerman, Morgan-S.)
Choose d dividing n, and suppose F contains µn2/d . Choose ideals
I, J of F and units α, β in F× subject to the condition

(α) = In and (β) = Jn.

We assume that F ( n
√
α, n√β)/F is unramified everywhere. Then

χn,α(rec(J))d = χn,β(rec(I))d .



The dual class group

Take

Cl ∗F = Hom (Gal(HF/F ), Q/Z) ∼= Hom (Cl F , Q/Z) .

There is a natural perfect reciprocity pairing

RP: Cl ∗F ⊗ Cl F → Q/Z.

For any positive integer n, this restricts to a pairing

RPn : Cl ∗F [n]⊗ Cl F [n]→ 1
nZ/Z

with kernels n · Cl ∗F [n2] and n · Cl F [n2].



Class groups as Selmer groups

We have

Cl ∗F [n] = Hom
(

Gal(HF/F ), 1
nZ/Z

)
= Sel

(
1
nZ/Z, (Lv )v

)
,

with Lv consisting of the unramified classes at v .
The Selmer group for the dual module sits in an exact sequence

0→ O×F /(O×F )n → Selµn
pCl−−→ Cl F [n]→ 0.

Taking En to be the exact sequence

0→ 1
nZ/Z→

1
n2Z/Z→ 1

nZ/Z→ 0

in SModF with the unramified local conditions, we find

CTPEn (φ, ψ) = RPn(φ, pCl(ψ)) for φ ∈ Sel 1
nZ/Z, ψ ∈ Selµn.



Duality identity + naturality

Proposition
Fix an isomorphism f2 : 1

nZ/Z→ µn. If F contains µn2 , the pairing

CTPEn (–, f2(–)) : Sel 1
nZ/Z ⊗ Sel 1

nZ/Z→ Q/Z

is symmetric.
In this case, we have a morphism of exact sequences

En =
[

0 1
nZ/Z

1
n2Z/Z 1

nZ/Z 0
]

E∨n =
[

0 µn µn2 µn 0
]f1 f f2

where f satisfies f = f ∨.
Duality identity and naturality then give the statement.



A simple case with d > 1

Proposition
Take n = 4, and fix an isomorphism f2 : 1

4Z/Z → µ4.
If F contains µ8, the pairing

2 · CTPE4(–, f2(–)) : Sel 1
4Z/Z ⊗ Sel 1

4Z/Z→
1
2Z/Z

is symmetric.
From trilineariy with respect to Baer sum, 2 · CTPE4 can be
identified with the pairing associated to the sequence

E4 + E4 =
[
0→ 1

4Z/Z −−→
1
8Z/Z ⊕

1
2Z/Z −−→

1
4Z/Z→ 0

]
,

which is symmetrically self-dual over F .



An application of theta groups

Theorem (Morgan-S.)
Suppose F is a CM field with complex conjugation κ : F → F that
contains µn2/d .
Choose α ∈ F× so F ( n

√
α)/F is everywhere unramified and totally

split at all primes above two, and find the ideal I so

(α) = In.

Then
χn,α(rec(κI))d = 1.

Using the previous theorem, it is not hard to show that the left
hand side needs to be either +1 or −1.



Thank you!


