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Hamiltonian ODE and Langevin SDE
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How does this work: Hamiltonian ODE -> Gibbs measure

Potential energy:

V (q) = q2

2 + q4

4 , q ∈ R

Hamiltonian:

H(q,p) = p2

2︸︷︷︸
kinetic energy

+V (q), p ∈ R

Hamiltonian ODE:

d

dt

(
q
p

)
=
(
∂pH
−∂qH

)
=
(

p
−q−q3

)
⇐⇒ d2

dt2
q =−q−q3
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Gibbs measure is defined as: for β > 0

dµ(q,p) = Z−1
β exp

(
−βH(q,p)

)
dqdp

In our example,

dµ(q,p) = Z−1 exp
(
−q4/4

)
exp

(
−q2/2−p2/2

)
dqdp︸ ︷︷ ︸

Gaussian measure:=dρ

dµ� dρ

can fail in infinite dimensional (PDE) setting

Invariance: Gibbs measure is invariant under the Hamiltonian flow Φt

µ
(
Φt
(
(q0,p0) ∈A

))
= µ

(
(q0,p0) ∈A

)
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Langevin SDE -> Gibbs measure

An overdamped Langevin SDE :

dq =−V ′(q)dt+
√

2dB,

where B = Brownian motion.

The measure
dν(q) = Z−1 exp

(
−V (q)

)
dq

is invariant under the Langevin dynamics.

Note:

dµ(q,p) = dν(q)exp
(
− p2

2

)
dp.

Andrea R. Nahmod (UMass Amherst) Propagation of Randomness and Gibbs measures 5 / 34



From ODE to PDE on Tori
Consider now φ : Tdx→ R or C and energy

H(φ) =
∫
Tdx

(
|φ|2

2 + |∇φ|
2

2 + |φ|
p+1

p+ 1

)
dx.

Formally, we can associate it to a Gibbs measure:

dµ(φ)∼ Z−1
β exp

(
−βH(φ)

)∏
dφ(x)

as well as 3 different dynamical flows←→ Φp+1
d models

(a) A nonlinear stochastic heat equation. (↔ Langevin)

(b) A nonlinear wave equation. (↔ real-valued Hamiltonian)

(c) A nonlinear Schrödinger equation. (↔ complex-valued Hamiltonian)
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Literature of Φp+1
d models on Td

Dimension Measure Heat Wave Schrödinger

d= 1

[Iwa87] [Fri85] [Bou94]

d= 2

[Nel66] [DPD03] [Bou99]
p= 3

[Bou96]
p≥ 5
Open

d= 3

[GJ73] [Hai13] Open Open

d= 4

[ADC19]

d≥ 5

[Aiz81, Fro82]

Timeline:
1960 2022

1982 1987 2003 20132019
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The NLS on Td

{
iut+ ∆u = |u|p−1u
u(x,0) = u(0), x ∈ Td

Here p≥ 3 is odd, eq. is defocusing, conserves mass and Hamiltonian.

Deterministic scaling: scr := d
2 −

2
p−1 ( heuristics from high-high-to-high )

Theorem: For scr ≥ 0, NLS on Td is locally well-posed for data in Hs when s > scr.
Ill-posedness may occur for s < scr.

(Bourgain ’93, Bourgain-Demeter ’15; Christ-Colliander-Tao ’03 . . . )

In BEC, binary collisions between the bosons, yields the cubic NLS on T3; while ternary collisions give a quintic NLS in d = 1,2,3 (L. Erdös–B. Schlein–H.T. Yau;

T. Chen–N. Pavlović; Y. Hong–K. Taliaferro–Z. Xie; X. Chen-J. Holmer.)
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The graphs of u(1) and u(2) when t = 1 of regularity s = 0.6 > sc = 0
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The graphs of u(1) and u(2) when t = 1 of regularity s =−0.1 < sc = 0
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Injecting Randomness

Want to understand and describe how randomness affects the behavior of solutions to PDE’s.
Such randomness may come into the problem in various ways but two common ones are:

From the equation such as in stochastic problems with additive or multiplicative noise.

From random initial data which obeys some canonical law of distribution (e.g.Gaussian law).
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The NLS on Td: Random data theory
Canonical random data:

uω(0) = f(ω) =
∑
k∈Zd

gk(ω)
〈k〉α

eik·x, α := s+ d

2

where {gk} are i.i.d . r.v. complex Gaussian Egk = 0, E|gk|2 = 1, or uniformly distributed on the unit
circle of C.

The law of f(ω) is formally given by a Gaussian measure supported on Hs−(Td), s= α− d2

α= 1 special:

Corresponds to statistical ensemble of Gibbs measures.

In 2D and 3D such Gibbs measures are supported on distributions: H0−(T2) and H−
1
2−(T3)

respectively.
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Random series on the torus T

1920-1930: Paley, Zygmund, Rademacher, Kolmogorov, Khintchine . . .

Khintchine’s inequality gives the square root cancellation1, roughly stating that a sum of
functions/complex scalars aj with randomized signs/phases has magnitude comparable to its
square function.

For a sequence of i.i.d. random variables {Xj}j on a probability space (Ω,P),
P(Xj = 1) = 1

2 = P(Xj =−1) and any 1≤ p <∞,

[
E
(
|
∑
j

ajXj |p
)]1/p ∼ (∑

j

|aj |2
)1/2

1as in the CLT
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Probabilistic scaling: a guiding principle

uω(0) = f(ω) =N−α
∑
|k|∼N

gk(ω)eik·x,

then f and the linear solution u(1) := S(t)f(ω) have a.s. unit size in Hs.

Let u(2) satisfy iu
(2)
t + ∆u(2) = |u(1)|p−1 ·u(1). If NLS is a.s. locally well posed, the iteration u(2)

should also be bounded in Hs for fixed time t. Fix |t| ∼ 1 and |k| ∼N ,

û(2)(t,k)∼N−pα ·
∑

k1,...,kp∈Zd, |kj |∼N

1Akk1···kp
gk1(ω)gk2(ω) · · ·gkp(ω)

.N−pα ·
(
Nd(p−2)+d−2+)1/2

so u(2) is bounded in Hs norm if and only if s≥− 1
p−1 := spr.

The Nd(p−2)+d−2+ is from counting the integer lattice point set
Akk1···kp : {

k1−k2+k3−···+kp=k
|k1|2−|k2|2+|k3|2−···+|kp|2−|k|2≈Ω

}
.

kx1

ky1

1
1
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Random data: u(1) v.s. u(2) of regularity s = −0.1 > spr =−1
4
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Random data: u(1) v.s. u(2) of regularity s = −0.6 < spr =−1
4
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Parabolic and Hyperbolic Comparisons

Stochastic heat equation:
(∂t−∆)u+Np(u) = ξ,

where ξ is some spacetime Gaussian noise on R×Td; sHpr =− 2
p−1

Nonlinear wave equation:
(∂2
t −∆)u+Np(u) = 0,

with initial data being a Gaussian random field on Td; sWpr =− 3
2(p−1) .

The probabilistic scaling heuristics provide a guiding principle to the a.s. well-posedness problem of the
corresponding dynamics, and should not be understood as an actual threshold.

In most cases this is indeed true (e.g. NLS p≥ 3) but in some cases, especially in
low dimensions and/or low degree nonlinearity, discrepancies may occur. These are not uncommon in other settings
involving the notion of scaling including in (stochastic) parabolic and in deterministic settings.

Discrepancies mainly maybe caused by two mechanism: 1) high-high-to-low interactions in such cases ; 2)
anomalies occurring in various counting estimates depending on the specific dispersive relation.
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Study of propagation of randomness

Start with random initial data distributed according to some canonical law (e.g. Gaussian,
independent Fourier coefficients) then how does this random structure get transported when one
moves along the flow of a nonlinear dispersive equation?

Some natural questions:

1. What is the optimal regime where the solution exists and is unique almost surely, at least
locally in time?

2. Can one describe the solution in terms of the random structure of the initial data -for short
times?

3. If there are (formally invariant) Gibbs measures, can we justify their invariance?
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Bourgain’s Seminal Work (’96)
He considered the invariance of the Gibbs measure for the
cubic NLS equation on T2: spr = −1

2 < 0− < 0 = scr < s.

H0−

Hs

0

eit∆f(ω) + Hs

eit∆f(ω)

multilinear large
deviation estimates

integer lattice
counting estimates
↔ analytic number
theory

T T ∗ arguments↔
random matrix
estimates
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s

−1
2 = spr 0−

0 = scr Deterministc Known

Bourgain: a.s. Local Wellposedness

?

Bourgain’s method
fails

Why: If we start with random data f a bit rougher than Gibbs and proceed with
linear-nonlinear ansatz:

u= eit∆f +v.

Then remainder v is not as regular as before (stays below L2).
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So one cannot close the estimates of the fixed point argument as in Bourgain by relying
solely on the (poor) regularity of v.

We need to understand the intrinsic random structure of v. First question is where does this
poorer regularity of v comes from?

Just as it was the case in the study of singular stochastic heat equation (by Hairer’s regularity
structures or Gubinelli et al.’s paracontrolled calculus) the culprits are wave interactions such
as (simplest form):

(uωlin)high vlow vlow ←− need to remove (but, all of them!)
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How did we resolve this problem?

s

−1
2 = spr 0−

0 = scr
Deterministic Known

Bourgain: A.S. Local Wellposedness

?

Random Tensor Theory (Y. Deng, A.N, H. Yue, 2019–2020)

Unveil the random structure of the remainder v above.

Detailed information on propagation of randomness.

Works for any d≥ 2 and any number of wave interactions p+ 1 (unified theory).
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Components of the solutions: all kinds of iteration trees
To find the solution expand nonlinearity using the equation itself; keep expanding until we hit a low frequency
input dictated by how close we are to spr → iteration procedure represented by Feynman-type diagrams or
tree expansions such as:

an example iteration tree:

k1 k2 k3 k4 k5 = k1

pairing

more trees:

I , , , · · ·

I , , · · ·

I ,

· · ·Andrea R. Nahmod (UMass Amherst) Propagation of Randomness and Gibbs measures 23 / 34



To find the solution on the full probabilistic subcritical regime s > spr we need arbitrary long
(finite) high-order expansions. This gives rise to what we call random tensors where t is
viewed as a parameter, which are highly nonlinear objects arising from the high-order
iteration trees.

The random tensors allow us to get a handle of the exploding complexity that arises from the
high-order iteration trees.

The random tensors carry the (random) information of the low frequency components of the
solution and are independent from the Gaussians g±kj (ω), j = 1, . . . , q. .
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Random tensors←− High-order iteration trees

F( )
(k)

=
∑
k1

hkk1(t) gk1(ω)

k1 k2 k3

sol. at low freq.

(1,1)-tensor mapping k1→ k

eit∆fhigh(ω) · ulow · ulow

hkk1(t)
Fourier picture

F( )
(k)

=
∑
a,b

hkab(t) ga(ω)gb(ω)

a b

(2,1)-tensor mapping a,b→ k

Random tensors are probabilistically independent from the Gaussians (which live on high frequencies).
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Solution Ansatz:

We make the Ansatz for the Fourier coefficient: uk(t) := û(k,t) of the solution:

uωk (t) = gk(ω)
|k|α

+
∑
k1

hkk1(t) gk1(ω) +
∑
k1k2

hkk1k2(t) gk1(ω)gk2(ω)+

· · · · · ·+
∑

k1k2···kq

hkk1k2···kq (t) gk1(ω)gk2(ω) · · ·gkq (ω) + (Remainder)k

The convergence of expansion is completely determined by the properties of these tensors.

Heuristically the difficulty of covering the full probabilistically subcritical range s > spr (for
fixed p) can be measured by the order of the (finite) expansion needed, which tends to infinity
as s→ spr.

Each iteration of the equation gains regularity ∼ (p−1)(s−spr) (as in probabilistic scaling
heuristcs argument).

Andrea R. Nahmod (UMass Amherst) Propagation of Randomness and Gibbs measures 26 / 34



Random tensors framework

We develop an algebraic theory: structure of the tensors and how they are built from smaller
tensors using certain operations such as tensor products, contractions, etc. giving rise to two
algebraic operations: merging and trimming.

We also develop the analytic theory, which behaves well with our algebraic theory and entails
choosing suitable norms for the tensors h= hkk1...kq , for which we prove several estimates
that provide suitable bounds for the tensor terms and remainder.

Proof proceeds then by induction relying on the above +

I LDE
I integer lattice counting estimates,
I high-order TT ∗/random matrix estimates
I subtle selection algorithm needed to exploit the flexibility we build into the estimates

proved in our analytic theory.
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RTT Analytic Theory
Given a set of input variables A, hkA : (Zd)A→ C is a function.
For (B,C) a partition of A, we define the operator norm ‖h‖2kB→kC of h viewed as an operator
mapping functions of kB to functions of kC .
For example for a tensor h= hkxyz we define

‖h‖2kx→yz := sup


∑
y,z

∣∣∣∣∣∣
∑
k,x

hkxyz ·zkx

∣∣∣∣∣∣
2

:
∑
k,x

|zkx|2 = 1


In some instances, we just use the `2 norm of h in all its variables (Hilbert-Schmidt norm), for
example for h= hab, we have

‖h‖2ab =
∑
a,b

|hab|2.

A crucial component of the RTT is the choice of norms for the tensors h= hkk1...kq that behave
well with the algebraic process of merging and trimming.
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Analytic theory: merging estimates

Suppose we consider the merged tensor

hbczw =
∑
a,e,f

(h1)abc(h2)aef (h3)efzw

Then we have the following multilinear estimates

‖h‖bz→cw ≤ ‖h1‖ab→c‖h2‖ef→a‖h3‖z→wef , or ≤ ‖h3‖efz→w‖h2‖a→ef‖h1‖b→ac, . . .

The formula of h does not depend on the order of hj , but the right hand sides of the
inequalities do. So we get a set of inequalities by reordering the tensors, from which we may
choose at our disposal.

Here is where a delicate selection algorithm comes in to optimize the choice one makes in
the multilinear merging estimates.
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Analytic theory: random matrix estimates (moment method)

Similarly for trimmed tensors:

h′kxz =
∑
yw

hkxyzw · gy(ω)gw(ω),

where the random tensor h= hkxyzw is independent with gy and gw, we have with high
probability that

‖h′‖kx→z .Nε max
(
‖h‖kxyw→z,‖h‖kxy→zw,‖h‖kxw→zy,‖h‖kx→zyw

)
where N is the max size of kxyzw, and ε > 0 is arbitrarily small.

I Proof goes back to Bourgain’s ‘96 paper and relies on high order T T ∗ argument and multilinear
estimates above.
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Invariance of 2D Gibbs NLS for all p≥ 5

Dimension Measure Heat Wave Schrödinger

d= 1

d= 2 [Bou99]
p= 3

[Bou96]
p≥ 5
Open

d= 3 Open Open

d= 4

d≥ 5

Timeline:
1960 2022

2019

2019

Andrea R. Nahmod (UMass Amherst) Propagation of Randomness and Gibbs measures 31 / 34



Invariance of 2D Gibbs NLS for all p≥ 5

Dimension Measure Heat Wave Schrödinger

d= 1

d= 2 [Bou99]
p= 3

[Bou96]
p≥ 5
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Hyperbolic Φ4
3 problem: Invariance of 3D Gibbs cubic NLW

Dimension Measure Heat Wave Schrödinger

d= 1

d= 2 [Bou99]
p= 3

[Bou96]
p≥ 5

[DNY19]

d= 3 [BDNY22] Open

d= 4

d≥ 5

Timeline:
1960 2022

2022
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Hyperbolic Φ4
3 problem: Invariance of 3D Gibbs cubic NLW

Dimension Measure Heat Wave Schrödinger

d= 1

d= 2 [Bou99]
p= 3

[Bou96]
p≥ 5

[DNY19]

d= 3 [BDNY22] Open

d= 4

d≥ 5

Invariance of Gibbs measure under 3D cubic NLW dynamics. Challenges:

It is harder because now dµ ⊥ dρ → probabilistic dependent Fourier modes.

Spatial regularity −1
2−. On the hand, the problem is probabilistically subcritical

sWpr =−3
4 <−

1
2−
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Heart of the matter: establish local in time existence and uniqueness of solutions on the statistical
ensemble:

Find a suitable representation of the statistical ensemble which is achieved by relying on the
parabolic Φ4

3 (3D cubic stochastic heat equation + invariance of the measure under its flow):
φwave(0) and φheat(τ) have the same law→ good representation!

A para-controlled Ansatz (thanks to the smoothing effect of NLW ) as opposed to the more
delicate random tensor Ansatz (Y.Deng–A.N.–H.Yue ’20).

The analytical framework of the RTT.

An analysis of heat-wave stochastic objects. The ‘caloric data’ comes from the cubic
stochastic heat equation: some interactions of the explicit stochastic objects contain both
heat and wave propagators→ synergy between parabolic and hyperbolic theories.

The discovery/existence of a hidden cancellation between sextic stochastic objects

A new bilinear random tensor estimate.

The combinatorial molecule estimates (as in Deng-Hani’s full derivation of the WKE for cubic
NLS).
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Open Challenges

Gibbs measure for 3D cubic NLS.

I As before dµ ⊥ dρ, measure lives in H−
1
2−.

I But now spr =−1
2 → probabilistically critical problem: no gain of regularity with each

iteration of HHH.

Out-of-equilibrium long time dynamics

I Is there any part of the random description of the solution that propagates for longer
times? Is it possible to extend for longer times the random structure lying in the high
frequencies components?
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Many thanks for your attention!!





Appendix



A case study: 2D Quintic NLS Gibbs: what’s happening?

Let us consider p= 5, and recall scr = 1
2 and following Bourgain write u= ulin +v.

Then ulin ∈H0− but v can only be put in H
1
2− which is still (det.) supercritical: one cannot

close the estimate by itself.

This poor regularity comes only from high-low frequency interactions so we may try to identify
a term X from v that is paracontrolled by ulin,

X = Iπ>(ulin, : |u|p−1 :) I = (i∂t−∆)−1

and hope that X behaves like ulin and that Y := v−X is smoother.

But for this, need some control on the lower frequency parts of : |u|p−1 : which itself contain
: |X|p−1 : whose regularity is H

1
2−, still supercritical→ no way of controlling it assuming only

this. Instead one needs to zoom in/unveil and invoke the structure of X .

I For heat -and to some extent wave- X has higher regularity due to smoothing so the low frequency part above
is a nice function and can be place directly into a good function space.
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Method of random averaging operators

To tackle this conundrum and prove the invariance of the Gibbs measure for 2D NLS ( any
p≥ 5) we introduce the method of random averaging operators (RAO) which also lays the
foundation for the more general random tensors theory (RTT) mentioned above.

Instead of trying to place the high-low interactions above in a low-regularity space
(unsuccessful), RAO views these interactions as an operator applied to the high frequency
linear evolution.

RAO has a much simpler form than random tensors and less notation-heavy, and suffices in
many cases where one is not too close to probabilistic criticality.

The RAO come in the RTT as they are the simplest and basic cases of random tensors→
the(1,1)-tensors.



Simple example (p = 3) : (1,1) tensor terms

Let I = Duhamel operator. Denote := eit∆fN (ω) and := uNδ , and define

:= IC(eit∆fN (ω),uNδ ,uNδ ),

:= IC
(
IC(eit∆fN (ω),uNδ ,uNδ ),uNδ ,uNδ

)
,

and so on , · · · .



The sum of these trees forms on an infinite series of trees:

ΨN,Nδ = := + + + · · · .

which is equivalent to the para-linearized equation:{
(i∂t+ ∆)ΨN,Nδ = C(ΨN,Nδ ,uNδ ,uNδ );
ΨN,Nδ (0) = fN (ω).

⇐⇒ = + .

By solving this equation, we have that the k-th Fourier mode of ΨN,Nδ is in the following form:

F
( )

(k) =
∑
k1

hkk1
gk1(ω)
〈k1〉α

where hkk1 is the (1,1) random tensor (matrix); indep. of gk1(ω).



The solution Ansatz in RAO

u=
∑
N

+ remainder = ulin +
(∑
N

+ + · · ·
)

+ remainder

= ulin︸︷︷︸
∈H0−

+ P(ulin)︸ ︷︷ ︸
∈H

1
2 −

+ remainder︸ ︷︷ ︸
∈H1−

New paradigm: We view the key high-low interactions where the high frequencies come from ulin
as a random operator P applied to ulin. We expand the solution u in Fourier space, where
uk(t) := û(t,k), as

uk(t) = gk(ω)
〈k〉α

+
∑
k1

hkk1
gk1(ω)
〈k1〉α

+ (remainder)k (RAO)

where hkk1 is the (1,1) random tensor (matrix) independent from gk1 and containing all the
randomness information of the low frequency components of the solution u and prove suitable
operator norm estimates for hkk1 .

We also globalized the local-in-time random averaging operator structures: Bourgain’s globalization + the
stability of the random structures (RAO Ansatz) under small H1− perturbations of the data.



Simple example (p=3) of a (2,1) tensor term

The (2,1) tensors have 2 terminal leaves which are Gaussian term eit∆fN (ω); the other
terminal leaves are low frequency components uNδ .

Denote

:= IC(eit∆fN1(ω), eit∆fN2(ω), uNδ )

where I is the Duhamel operator, N = max(N1,N2) and N1,N2 >Nδ, 0< δ < 1 fixed. Then
(modulo details about the temporal frequency):

The k-th Fourier mode is

F( )(k)∼
∑
k1,k2

( ∑
|k3|≤Nδ

1{ k=k1−k2+k3
|k|2=|k1|2−|k2|2+|k3|2

}û(k3)

︸ ︷︷ ︸
hkk1k2

)
gk1(ω)
〈k1〉α

gk2(ω)
〈k2〉α

where |k1| ∼N1, |k2| ∼N2 and |k3| ≤Nδ. Note that here hkk1k2 is a (2,1) random tensor -say-
maps k1,k2→ k. Another Example:
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IC
(
IC(eit∆fNa ,uNδ ,uNδ ),IC(e

it∆fNb ,uNδ ,uNδ ), IC(uNδ ,uNδ ,uNδ )
)

:=

where N = max(Na,Nb) and Na,Nb >Nδ.

F
( )

(k) =
∑
|a|∼Na
|b|∼Nb

hkab ·
ga(ω)
〈a〉α

gb(ω)
〈b〉α

Note that hkab is a (2,1) random tensor which maps a, b → k associated to the term .

hkab = hkk11k21 =
( ∑
k12,k13,k22,k23,
k31,k32,k33

1(?)kk11k21

∏
l∈{12,13,22,
23,31,32,33}

û(kl)
)

(?)kk11k21 := {(k12,k13,k22,k23,k31,k32,k33) : |kl| ≤Nδ, l ∈ {12,13,22,23,31,32,33}
k = (k11−k12 + k13)− (k21−k22 + k23) + (k31−k32 + k33)

|k|2 = (|k11|2−|k12|2 + |k13|2)− (|k21|2−|k22|2 + |k23|2) + (|k31|2−|k32|2 + |k33|2)}


