Operator instability from Voiculescu bo GromovLawson.

Some background for the balk of Dadarlal next week.

Thanks to Alex Lubotzky, Jianchao Wu, and Guoliang Mu.

Philosophy: (Slam). Is every "almost X " almost (an) X?

This is close to the issue of testability.

But, more generally, leads to Lots of interesting mach problems.

This seminar is devoted to the representation version of chis.

From Ulam's anecdotal

Speaking of "epsilons," I want to mention a number of little amusements I have indulged in over the years concerning what I call "epsilon stability," not just of equations and their solutions, but more generally of mathematical properties.

As an example of this "epsilon stability," consider the simple functional equation: $f(x+y)=f(x)+f(y)$, i.e., the equation defining the automorphism of the group of real numbers under addition. The "epsilonic" analogue of this equation is $|g(x+y)-g(x)-g(y)|<\varepsilon$. The question is then: Is the solution g necessarily near some solution \bar{f} of the strictly linear equation? As D. Hyers and I showed, the answer is yes. In fact, $|g-f|<\varepsilon$, with the same epsilon as above. This is not a very deep theorem. What about the more general case? Suppose I have a group for which I replace the group operation by one that is "close" to it in some appropriate sense. This of course requires a notion of distance in a group. The result of the replacement is an "almost endomorphism." Then we may ask: Is it of necessity "near" a strict endomorphism? The answer is not known in general, even for compact groups. Recently, D. Cenzer obtained an approximation result for some easy groups, e.g., the group of rotations on a circle.

In the same spirit, we may take the idea of a transformation which is an isometry, a transformation which preserves distances. What about transformations which do not exactly preserve distances but change them by very little, i.e., at most by a given $\varepsilon>0$? Suppose I have a transformation of a Banach space or some space which transforms into itself, and where every distance is changed by less than a fixed ε. Is such a transformation "near" one which is a true isometry? Hyers and I proved, in a series of short papers, that this is true for Euclidean space, for Hilbert space, for the C space, and so forth. If you have such a transformation, it must then be within a fixed multiple of a strictly true isometry.

Recently I became more ambitious and looked at some other mathematical statements from this point of view. One could try to "epsilonize" in this sense theorems on projective geometry, on conics, and so on. More generally, take as

history of the Scottish Book.

an example some famous theorem like the theorem on functions with an algebraic addition. It is a well-known statement that the only functions which satisfy an algebraic addition theorem are, in addition to sine, cosine and elementary functions, the elliptic functions. One could ask (perhaps this question is not yet properly formulated): Is it true that a function which "almost" satisfies an algebraic addition theorem must be "almost" an elliptic function?

And in a similar vein: If we have a function which is differentiable, let us say five times, and its derivative vanishes and changes sign at a point, then any sufficiently differentiable function which is sufficiently close, in the sense of absolute value alone, must also have a vanishing fifth derivative at a nearby point. This is almost trivial to prove, though at first it seems false. Why is this true? Because the fifth derivative can be obtained by finite differences. This is all very nice and easy for functions of one variable. For functions of several variables the analog becomes interesting and not too well-known or established. The same is true, mutatis mutandis, for spaces of infinitely many dimensions, and is of possible interest to physicists as a general "stability" property.

Examples:
(1) In analysis.

Does every sequence where
$A f_{i} \longrightarrow 0$ converge to an
f where $A f=0$?
e.9. Dirichlet principle.

- Many notions of convergence. (Positivizi
- Soonctinis you exand the Integral) bon of an f.

Relatel to the problem of
ioverisibility (comped aparater ace small)

$$
H_{1} \xrightarrow[\substack{\ldots \\ B}]{A} H_{2}
$$

$$
\begin{aligned}
& s_{1} \text { that } \quad B_{A}=I+\text { comphed, is } \\
& A B= \pm+ \text { comphet } \\
& A=\text { ibreatible + compect. }
\end{aligned}
$$

(Determaned by Fretholm index.

$$
\text { ind } A=\operatorname{sim} \operatorname{ker} A-\lambda, \cosh A)
$$

(2) Kazhdan Property (T).

A group Γ has Property (T) it for every unitary rep'n

$$
\Gamma \times V \rightarrow V
$$

if $\quad\|\gamma v-v\|<\varepsilon\|v\| \quad \gamma \in \operatorname{gen} . \operatorname{set}$.
then v is close to v_{∞}
where $\gamma_{\infty}=V_{\infty}$. (Where chases $1_{\text {min in }}$)
(3) Expander Graphs.
P is an expanker means thet
if

$$
\begin{aligned}
& A \subset \Gamma \quad h_{a s} \\
& \# \partial A \approx 0
\end{aligned}
$$

then $A \approx B$ with $\partial B=\phi$.
(\# r, normalizel by size of A, A^{\prime}).
(4) Ferry's theorem

Teorem: For every conneded closed motric manitiold M^{n}, Here's an $\varepsilon>0$, so that

$$
f: M^{n} \longrightarrow N^{n} \quad n \leqslant m_{1}
$$

$$
M, N \text { canieul }
$$

can be moved a little t_{1} a homes.
if $\forall n \in N, \quad \operatorname{dic} \quad f^{-1}(n)<\varepsilon$.

$$
\begin{aligned}
f i r \text { hoomes } \Leftrightarrow & d_{i \operatorname{an}}\left(f^{n}(n)\right)=0 \\
& \forall_{n}+N
\end{aligned}
$$

The analogue for $f: M \rightarrow N \times F$ and you consilur $f^{-1} \pi^{-1}(n)$, false for algebraic K-theory reasms. (Chapman- Ferry, Quinn)
(5) So now let's get to almost representations

Lat Γ be generated by $\gamma_{1} \ldots \gamma_{x}$, let

We wand to know if $H \delta>0 \quad \exists \varepsilon>0$ so that every \mathcal{E}-almost arepresentetioni

$$
\rho: \Gamma \rightarrow G
$$

is within δ of representation $\hat{\rho}: \Gamma \rightarrow G$.

There are modifications, is. allowing post composition $G_{i} \rightarrow G_{j}$. When th G_{i} are nested.

We will have $G_{i}=U(i)$
and $\|A\|=$ operation norm

$$
=\sup _{V \neq 0} \frac{\left\|A_{V}\right\|}{\|v\|}
$$

For a fixed i this is trivial since $R(T) \subset U(i)^{\# \text { ghenentior }}$ is compact.

$$
\text { Example } \quad \Gamma=\mathbb{Z}_{k}=\langle\gamma\rangle
$$

A_{n} almost representation of Γ

$$
\Leftrightarrow \quad A \subset U(d)
$$

such that $\left\|A^{k}-I\right\|<\varepsilon$

Of course A can be diagonized

$$
A \sim\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& \ddots & \\
& & \lambda_{d}
\end{array}\right]
$$

and we are asking the $\left|\lambda_{i}^{h}-1\right|<\varepsilon$

$$
\Rightarrow \mid \lambda_{i} \text {-root of unity } \left\lvert\,<\frac{\varepsilon}{k}\right.
$$

In general finite grouper are stable.

This can be dore by a cohimelogical argument or by vising a "Hamal basis" + Sher's lemma argument.

Trivially, free group r are stable.

Vóculescy.
The next case to consider is \mathbb{Z}^{2}
clues lop.
$w(v, v)$. Ides: $\quad t \rightarrow \operatorname{det}((1-t) U V+t v u)$
${ }^{4} \pi$ has winding number O for commuting matrices. whit mont
2. The Main Result. Fix once and for all an integer $n \geq 7$ and let $w_{n}=e^{2 \pi i / n}$. Voiculescu's unitaries are defined by

By (a) we have that for n large, Ω_{n} and S_{n} are in fact almost commuting.
Theorem. If X and Y are commuting $n \times n$ complex matrices then

$$
\max \left\{\left\|X-\Omega_{n}\right\|,\left\|Y-S_{n}\right\|\right\} \geq \sqrt{2-\left|1-\omega_{n}\right|}-1 .
$$

Proof. Let X and Y be commuting $n \times n$ matrices and let $d=\max \left\{\left\|X-\Omega_{n}\right\|, \| Y-\right.$ $\left.S_{n} \|\right\}$. Assume by way of contradiction that $d<\sqrt{2-\left|1-\omega_{n}\right|}-1$.

For every t in $[0,1]$ let $A_{t}=\Omega_{n}+t\left(X-\Omega_{n}\right)$ and $B_{t}=S_{n}+t\left(Y-S_{n}\right)$ and define γ_{t} to be the closed complex curve given by

$$
\gamma_{t}(r)=\operatorname{det}\left((1-r) A_{t} B_{t}+r B_{t} A_{t}\right), \quad r \in[0,1] .
$$ hand for $t=0$ we have $A_{t}=\Omega_{n}$ and $B_{t}=S_{n}$ hence

$$
\begin{gathered}
\gamma_{0}(r)=\operatorname{det}\left((1-r) \Omega_{n} S_{n}+r S_{n} \Omega_{n}\right)=\operatorname{det}\left((1-r) \Omega_{n}+r S_{n} \Omega_{n} S_{n}^{*}\right) \operatorname{det}\left(S_{n}\right)= \\
(-1)^{n+1} \operatorname{det}\left((1-r) \Omega_{n}+r \bar{\omega}_{n} \Omega_{n}\right)=(-1)^{n+1}\left(1-r+r \bar{\omega}_{n}\right)^{n} \operatorname{det}\left(\Omega_{n}\right)=\left(1-r+r \bar{\omega}_{n}\right)^{n} .
\end{gathered}
$$

Note that as r goes from 0 to $1,\left(1-r+r \bar{\omega}_{n}\right)$ moves along the segment joining 1 to $\bar{\omega}_{n}$ in the complex plane. It follows that $\gamma_{0}(r)$ is never zero and that it winds around zero Clockwise once.

Now, since the winding number is a homotopy invariant of closed curves in the complex plane with the origin removed we shall arrive at a contradiction as soon as we prove that $\gamma_{t}(r)$ is never zero. Equivalently it suffices to show that $(1-r) A_{t} B_{t}+r B_{t} A_{t}$ is invertible for all t and r which we do next by proving that the latter matrix is at a distance less than one from the unitary matrix $\Omega_{n} S_{n}$.

We have

$$
\left\|(1-r) A_{t} B_{t}+r B_{t} A_{t}-\Omega_{n} S_{n}\right\| \leq(1-r)\left\|A_{t} B_{t}-\Omega_{n} S_{n}\right\|+r\left\|B_{t} A_{t}-\Omega_{n} S_{n}\right\| \leq
$$

$$
\begin{gathered}
(1-r)\left(\left\|A_{t} B_{t}-A_{t} S_{n}\right\|+\left\|A_{t} S_{n}-\Omega_{n} S_{n}\right\|\right)+ \\
r\left(\left\|B_{t} A_{t}-S_{n} A_{t}\right\|+\left\|S_{n} A_{t}-S_{n} \Omega_{n}\right\|+\left\|S_{n} \Omega_{n}-\Omega_{n} S_{n}\right\|\right) \leq \\
(1-r)\left(\left\|A_{t}\right\|\left\|B_{t}-S_{n}\right\|+\left\|A_{t}-\Omega_{n}\right\|\left\|S_{n}\right\|\right)+ \\
r\left(\left\|B_{t}-S_{n}\right\|\left\|A_{t}\right\|+\left\|S_{n}\right\|\left\|A_{t}-\Omega_{n}\right\|+\left|1-\omega_{n}\right|\right) \leq \\
(1-r)((1+d) d+d)+r\left(d(1+d)+d+\left|1-\omega_{n}\right|\right)= \\
(1+d) d+d+r\left|1-\omega_{n}\right| \leq d^{2}+2 d+\left|1-\omega_{n}\right|
\end{gathered}
$$

Now, since $d<\sqrt{2-\left|1-\omega_{n}\right|}-1$ we have

$$
d^{2}+2 d+\left|1-\omega_{n}\right|<1
$$

We do not claim that our estimate is optimal. For example, estimating $\|(1-r) A_{t} B_{t}+$ $r B_{t} A_{t}-\Omega_{n} S_{n} \|$ for $r \leq 1 / 2$ and replacing $\Omega_{n} S_{n}$ by $S_{n} \Omega_{n}$ in a similar estimate for $r \geq 1 / 2$ we can prove that $d \geq \sqrt{2-\left|1-\omega_{n}\right| / 2}-1$.

References

1. M. D. Choi, "Almost commuting matrices need not be nearly commuting", Proc. AMS 102(1988), 529-533.
2. K. R. Davidson, "Almost commuting Hermitian matrices", Math. Scand. 56(1985), 222-240.
3. P. R. Halmos, "Some unsolved problems of unknown depth about operators on Hilbert space", Proc. Roy. Soc. Edinburgh Sect. A 76(1976), 67-76.
4. T. A. Loring, "K-Theory and asymptotically commuting matrices", Can. J. Math 40(1988), 197-216.
5. D. Voiculescu, "Remarks on the singular extension in the C^{*}-algebra of the Heisenberg group", J. Operator Theory 5(1981), 147-170.
6. D. Voiculescu, "Asymptotically commuting finite rank unitary operators without commuting approximants", Acta Sci. Math. (Szeged) 45(1983), 429-431.

Departamento de Matemática, Universidade de São Paulo, C.P. 20570, 01498 São Paulo SP, Brasil

Department of Mathematics, Statistics and Computing Sciences, Dalhousie University, Halifax, Canada B3H 3J5

Next week Daderlat will explain how to
prove (more than)

Theorem (D) If Γ is a linear group and some $\tilde{H}^{2 i}(\Gamma ; Q) \neq 0$ then P is not operator stable.

My main goal is to explain this for Γ a uniform lattice is $O(2 n, 1)$ following an it ha of Gromor, Lawson in th 801,
t put this ito a broader framework related to the other examples I mentioned culver.

Sobsidianey goals: (might mishth not be achicred)
(a) The analogovs orthogonal story.
(b) The role of elenents of finide mider to irchice groups which are concentrcted in odd diminsion e.f for Gauland reasors. (tallong w/ Lubotzk , in....)
(c) Stebility is puettes rare bud valvecle tar proving non-approximubitity resutbs - where might one losis?
(d) Some quantituative questions, e.g. Evs. d. How many "different" $A R^{\prime}$'s are thre?

Voicalescu's theorem is $\Gamma=2 \oplus \mathbb{R}$.

$$
H^{2}(r: Q)=\mathbb{Q} .
$$

The relewent seometry is bundle theary.

$$
X
$$

(i)

$$
\begin{gathered}
\pi^{-1}\left(\theta_{i}\right) \simeq \theta_{i} \times V \\
\pi\rangle_{i} V_{i} \text { proj } \\
\theta_{i}
\end{gathered}
$$

(ii) Over $\theta_{i} \cap \theta_{j}$ the maps

$$
\begin{gathered}
\left(\theta_{i} \cap \theta_{j}\right) \times V \underset{\varphi_{i} \varphi_{j}^{-1}}{\stackrel{\varphi_{j} \varphi_{i}^{-1}}{\rightleftarrows}}\left(\theta_{i} \cap \theta_{j}\right) \times V \\
\theta_{i} \cap \theta_{j}
\end{gathered}
$$

cul fiterwize linear (isometries)*

* Evers \mathbb{R}-vectos buntle can be given an inner product, and ereery \mathbb{C} vedor bunde cur be giviso a fiberwizu Hensitian produc.

Excmples:
(a) Moebivi band

s^{1}

(b)

$T s^{2}$ can be made complyx when you thisk of S^{2} as the Riemonn Sphere
(Haing Bell Theorems).
(c) Suppose M is compact and

$$
\begin{aligned}
\varphi: \pi_{1} M & \longrightarrow O(d) \\
& \longrightarrow U(d)
\end{aligned}
$$

is a representation then

is a bundle associates to p.
So you can study rep's view topology!
$((a) x$ or this soot $\mathbb{Z} \rightarrow O(1)$.
(b) is not as $\pi_{1}\left(s^{2}\right)=0$.)

Subsample: $p: \mathbb{Z}_{k} \rightarrow U(d)$

$$
\begin{aligned}
& \mathbb{Z}_{k} \times S^{2 n-1} \longmapsto \text { freely } \\
& \mathbb{S}^{d} \rightarrow S^{2 n-1} \times \mathbb{C}^{d} \\
& \frac{1}{S^{2 n-1} / \mathbb{U}^{2} / k} \text { - Lens gpu. }
\end{aligned}
$$

Constructions on bundles,
I (α) Pill back,
(β) Whitney Sum

$(\gamma)(\otimes$, exterior powers, etc. re, all linear constructions.
(a) Enables, for us, two things,

- A best M to use for the
$\pi M=2$

- A classitizition of bundles.

Theorem d-dimensoins bundles over X bp o are in a $1-1$ correspondence with is

$$
X \xrightarrow{f} \text { Grassmansian of } F^{d} e F^{N}
$$

(a still) always assume X ir a find complex to avoid technicalities).
$B \Gamma$ is a space (homotopy type) associatod to Γ

$$
B \Gamma \rightleftarrows \Gamma
$$

Exemaple

etc.
flick $\left\{C F^{N}\right.$

points in P
git the
vector agha above them

points
$\therefore+4$
Grasiminnian

$$
\text { Note } G\left(F^{d} \subset F^{N}\right) \approx G(N) /_{G(d) \times G(N-d)}
$$

linere $G=O$ or U,
so $H^{*}($ Gor $)$ can be studied by classical mathids (e.s. Carten, Borel etz.)

We will lat $N \rightarrow \infty$ and focus on \mathbb{C}.
i, caressmennian

Theorem: $H^{*}(U(N) / v(d) \times v(N, d))$

$$
\approx \overline{\mathbb{Z}}\left[c_{1}, c_{2} \ldots c_{d}\right]
$$

where $c_{i} \in H^{2 i}$.
These cre celled Chern clases.

Definition: If $\pi: E \rightarrow X$ is a
$\varphi_{E}: X \rightarrow$ Gousanannain complex redo bundle then we can associede $\varphi_{E}^{\psi}\left(c_{i}\right)$.

$$
c_{i}^{1!}(\pi) \in H^{2 i}(x ; \mathbb{Z})
$$

vising the theorems of the previous two slides.

There are more direct definition of $C_{i}(\pi)$ 4) sis other topology (ecg. Grotherdiech) or geometry (hern)

Subexample: $p: \mathbb{Z}_{h} \rightarrow U(d)$
Wetting $n \rightarrow \infty$, then $H^{2 i}\left(S^{2 n-1} / \mathbb{R}_{n} ; Z\right)$

$$
\cong \mathbb{Z}_{k}
$$

for each i.

$$
c_{i}^{\prime}(p)=i^{+\frac{1}{4}} \text { symmetric fundion of }
$$

th rotation numbers chatining ρ.

So for k prime, the Chern classes determine the representation, but for composite numbers, not.

Concretely C_{1} measures the following.

First for a line bundle.

$$
\begin{gathered}
\mathbb{C} \rightarrow E \\
s \vdots \\
\vdots \\
X
\end{gathered}
$$

choose a section that doesn't vanish more than it has to. fol vertices no problem: Att edges you car easily do it \sin ie $\mathbb{C}-\{0\}$ is comedel. So for each 2 -simplex or X we get $\left\langle C_{1}, \Delta\right\rangle=$ winding number of the jetim around O in a local trivielizetion
over Δ.

Note fixing over Δ_{1} is likely to
change the
cochin oreo

a neighboring $\Delta_{j} . \quad\left[C_{1}\right]+H^{2}(x ; z)$ is well dofimèd.

In general take $\left.E\right|_{X^{2}}$ and use $S_{1} \cdots S_{n-1}$ globally dasine'd and tala $s_{n} \perp\left\langle s_{1} \sim s_{n-1}\right\rangle$ and take the wiring number.

Excmple.
$\times \mathbb{C}$

At posint $z \in S^{1}$ glve $\left(z_{L} \times \mathbb{C}\right)$ to $\left(z_{R} \times \mathbb{C}\right)$ senting (z, \vec{v}) to $(z, \vec{z} \vec{V})$

Has $C_{1}=1 \in H^{2}\left(S^{2}\right)=\pi$.

- For bigher lisientinal fiter zor get
$S^{\prime} \rightarrow U(d) \xrightarrow{d t} S^{1}$ and $\frac{1}{4}$ be winaling nomer.
* Our next goal is to understand a rik of almost representailions in bundle thery and whet is special about their Chern classes.
(1) Bustle associetiod to $A R$.

We nould lite to gemeralice th castleution
of the bundle over S^{\prime} from a repreventation $\rho: \mathbb{U} \rightarrow$ Uld) which ouly uses $\rho(1)$.

Br nill Neo
\downarrow
B)
(2) Comections on bundles.

Flatness

A connection is a way to defini traspont from fiber to fiber, I wosit grive the axioms buv Let's consider an excmple.

$$
\times \mathbb{C}
$$

id on z^{2} on

If you go from

you allays move the fibres in the same way by it really depend on wee you go through.

For flat bustles (ie bundles coning from representations) nearby curves transport the same way bute in gevevel the night
not be any way to den/mi a locally well datelined fiber transport.
(3) (Curvature and Chern causes)

These lo cal deviations are measured by a 2 -form Ω (Grith values in Ext (r))

$$
C_{n}(\xi)=\frac{1}{(4 \pi i)^{n}} \psi_{n}\left(\Lambda^{n} \Omega\right)
$$

(This is a hint about the symontoic functions in $\mathbb{Z}_{k} \rightarrow U(d)$.)

$$
\text { It torn, out }\left[c_{n}\right] \in H^{2 n}(; \pi)!
$$

but nat by derefinition.

So it curvature is small

$$
\begin{aligned}
& {\left[c_{n}\right]=0 \in H^{2 n}(; \mathbb{C}) .} \\
& \text { Lont turefore } \left.H^{2 n}(; Q)\right) .
\end{aligned}
$$

We are now ready to glre a more sophistis eand view of Voiculesen examile.

What do you do over

clopeto id s, slue in
(4) Therès a correspontence

Flat boukles orer Bundles with

$$
x \quad \longleftrightarrow \begin{aligned}
& \text { Kundles wirt } \\
& \text { Ocurvature, }
\end{aligned}
$$

which generatizus to
"Almas flat" bundles
over $x \longleftrightarrow$ Bundlus with suncl curveture.

Key lemmac: An clmost)
f(ar) bundle over a
sitholy conneated spaces is
alwoyp topolosically trivial.
(If $\varepsilon<\mathcal{E}_{X}: \varepsilon_{\lambda}$ mijht
be tiny.

Warring: ε dols depend on X

If ane rescales X

curvature is multiplied by k^{2} so you can bluey' valessin make curvature shall! he need a fled X.

The upshot is that we hare th following:
(1) For a sufficiently good AR of Γ we get a bundle over $B \Gamma$.
(ii) For sufficiently close $A R^{\prime}$ the bundles are topologically somorphei
(iii) The rational Chevre classes of any flat bundle ($=$ bundle arsocith to a presentation) vanish.

This explains the Voicultion excomple.

For Inter developments it's important to know that

CLASSICAL FACT:
For every n there is a complex vector burde $\xi \downharpoonright S^{2 n}$ with $c_{n}(\xi) \neq 0 \in H^{2 n}\left(S^{2 n}\right)$.

In fact:
Bott's theorem:
Complex vector bundles over $S^{2 k+1}$ are all stably trivial and over $S^{2 n}$ are in a $1-1$ coresponterce with the multiples of $\left(n-17!\right.$ in $H^{2 n}\left(s^{2 n}\right) \leqslant \mathbb{R}$

This says $\quad \pi_{2 k+1}\left(U\left(n_{n}\right)\right)=\mathbb{Z} \quad k>n$
and $\quad \pi_{2 k}(U(n))=0 \quad k>n$
Which is (the begirniss ot) why this is called Butt's periodicity theorem.

It's at the foundationis of K-theory.
Defintion:

$$
\begin{aligned}
& \text { (One also arde } 3 \text { in furbelly } \\
& \text { ne ative dimissinal trivigal burlles } \\
& \text { dinamion } 30 \text { thed }
\end{aligned}
$$

We doit need K-theory yet, but last week already we sch a tractor with the same letter play a role in proving positive stability results.

$$
K(X) \otimes \mathbb{Q} \cong \oplus H^{2 i}(X ; \mathbb{Q})
$$

Wan X is a finite complex $K(X)$ is finitely generated, so we obtain

Cor: A flat busalle over a finite complex (le.g. compard maniliold) aluang gives en elenent of finite outler is K-theory.

Not true for ∞-compleses or for slmost represeaniabions, (Hence K-therritic obstevetion to strailito.)

Growor-Lawson Construction

Curvature of $\left.\varphi^{t}\right\}$ is related to curvature of ξ and $\operatorname{Lip}(y)$

Gromor-Laruson Construction

Deviation
from invarinince $=$ Then accumulendes of transport accumulated ouen Δ

so curvoture gats mult by Liply $)^{2}$

Gromor-Laruson Construction

Gromor-Laruson Construction

Gromor-Lawson Sobstruction
$\pi_{A \Phi^{*}} \xi$

$\underline{\text { Picture of } \pi_{*}}$

π_{x} for flat bundles corresponds to
ind: $\operatorname{Rep}(\Delta) \rightarrow \operatorname{Rep}(\Gamma)$
for a finite ibex subgroup of Γ.

Note: The curvature doesn't changer with π_{*}
(Operator norm is "non-Archimentikin)
ic

$$
\begin{aligned}
& \left\|\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]\right\|=\|A \oplus B\| \\
= & \sup (\|A\|,\|B\|) .
\end{aligned}
$$

(ant small Δ^{\prime}, in M lith to the sara smell A^{\prime} 's in \widetilde{M}_{n} jut a lot or them).

So we hive
Theorem of Gromor -Larson
If $M^{2 n}=k^{a} / \Gamma$
G real senisimple, T a uniform lattice, then
M has a farsily of about
flat bundles which ave not close to fight bundles.

Ressark: Typically, e.j. T
in a high rank group the dimansitin of the bundle is $d \approx \exp \left(\frac{1}{\varepsilon}\right)$

The number that can be produced that are different from one another is d^{α} for some. $\alpha<1$.

Does this mean anything?

Let's vas the tricia again,

Corollming: Any homotopy trows has a cover that's a torus. Indeed ALL large enough Covers.
[Aside: This in circular rensosins, but il
illustrates an argument that wares]

Corollary: The tangent bundle of writ is trial.
re. We controlled ar arbitraty element of $K\left(\tau^{n}\right)$ vie this trickle

Note: $\operatorname{Rank}\left(K\left(T^{n}\right)\right)=2^{n-1}$

Issues ibrolved mith topological versoo differenticble which I muot igrore.

Alvo $\tau_{M} \in K O(M)$ not $K(M)$.

$$
K O=K \text {-theory bwed on real }
$$

(orthogonal) vector buadle,

There a-e maps

$$
K O(M) \underset{\substack{\otimes \mathbb{C} \\ \mathbb{R}}}{\longrightarrow} K(M) \underset{\text { farget }}{\longrightarrow} K O(M)
$$

So $K O(M) \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ is a summand of $K(M) \cup \mathbb{R}\left[\frac{1}{2}\right]$

Corollary of GL: For $M^{4 k}=k_{k} C \Gamma$ One does not have orthogonal group stability.

$$
K O(M) \otimes \mathbb{Q} \cong \oplus H^{4 i}(M ; \mathbb{Q}) .
$$

Note: For \mathbb{Z}^{2} one dols
have orthogonal group stability

$$
\text { (Loring-Sorenson } 2014 \text {) }
$$

Speculation: For π (hyperbolic)

$$
3 \text {-manifold - Orthogonal }
$$

stability holds,

Gromor sat Larson were interested in "controlling all of K-theory (to understand the geometry of M', with

$$
M \xrightarrow{\varphi} B \Gamma
$$

having $\varphi_{*}([M]) 0 \in H_{*}(B \Gamma ; Q)$
fut for their purpose then didn't need to work about old dioninsions or even anything below the top.

Alas we must skip the rest of this story- However me will say that
thru the rourke of

$$
\begin{aligned}
& \text { Higion-Kasparor - } \\
& \text { Skendalis - Th - Tn } \\
& \text { - Guestner - Higion - W }
\end{aligned}
$$

one sees that for Γ
a torsion free linear group
is split ínjetive

Gromar and Livion essentially found a mup

$$
K\left(C_{\max }^{*} \Gamma\right) \rightarrow \mathbb{R}
$$

ausocisied to a weak* limet of almost flat burdu.

Dadarlat uses mane sophisticuled c^{x}-algebra technigues
to get all homomorphisms
from the linage

$$
K(B \Gamma) \rightarrow K\left(C_{\max }^{*} \Gamma\right)
$$

to come from almost fit
bundles. (assuming ar approx: constition on Γ and th splitting in good)
It is related to a non, comonutative Fredholm index.

Dadnolat obtains.

Theorem: If P is a linear group and for some $1>0$

$$
H^{2_{i}}(B \Gamma ; Q) \neq 0 \quad \operatorname{th} \Gamma \Gamma
$$

is not unithm stable.
(Unoformen lattice result of GL is a very special cade.)

$$
\text { Similarly it loby } \begin{aligned}
H^{4 i} & \left(B Y^{\prime} ; Q\right) \\
& \neq 0
\end{aligned}
$$

itan P is nod orthogonally stable.
final retharks.
(1) Then's more K-theorn
(2) There's more than K-theory.

1. More in K-theory,
a) Obriously one can use forsition in $K \mid B \Gamma)$ and $K O(B \Gamma)$ to work. But 'it', not so direct. (beaver of tow sion that [BS $(x, n)]$ does come from represtatetions)
b) We didn't take the torsion in Γ seriously enough.

Example $\Delta \times \mathbb{Z}_{2}$ gets twice as many $A R^{\prime}$, as Δ does.

So if Γ has a $\Delta x \mathbb{Z}_{k}$ inside one can potentially ore $H^{2 i}(\Delta ; \theta)$ to detect almost representations.
$G(-e x a m p l e$.

Has $\mathbb{Z} \oplus \mathbb{Z}$ equiverrint
vector bundles on YH.
and then play all the same games.

- The Gromov-Lawon tapes of geometry have been seonetrised by a bunch or people and pant of the Beum-Connes wonj)edure.
- An unconditional result, 1 , that if Γ contains torsion then $\widetilde{K}\left(C_{\max }^{*} \Gamma\right)$
 is always an infinite group (has a homo to \mathbb{R}.... still mysterious) \Rightarrow Some lattices with only old cohmologh are til not unitive stable.

2. More than K - theory.

$$
B S(2,3)=\left\langle a, b \mid a^{-1} b^{2} a=b^{3}\right\rangle
$$

One can calculate that $\mathbb{Z} \in B S(2,3)$

$$
g \longrightarrow b
$$

Is a cohomilogiza) isomorphism ($\quad \therefore K$-theory isomorphism) so one would guess that 'it's, staple. But in', not

The o rem: (Dedswiat) $B S(m, n)$ is never staple when not residually fiji, te. Ira particular BS $(2,3)$.

The proiv ir similar to the
de Chitlre - Glebsky - Lubotzky - Thoon

Grgument. (which shows non-Frobenivs
approximability from non-residual finitenes and Frobesius stability

He wes residual cmenability to get Matrix-approximability ${ }^{*}$ so he deduces non-stgbility from non-resìclual finiteness.

$$
\left\langle a, b \mid a^{-1} b^{2} a=b^{3}\right\rangle
$$

ϕ :

$$
a \rightarrow 4: B S(2,3) \rightarrow B S(2,3)
$$

11 subjective and hes

$$
b^{-1} a^{-1} b a b^{-1} a^{-1} b a b \text { in }+4
$$

kernel.

THE END.

