On the spatial restricted three-body problem

Agustin Moreno

Uppsala Universitet

Joint with Otto van Koert: arXiv:2011.10386, arXiv:2011.06562.

Spin-off (holomorphic dynamics): arXiv:2011.06568.

Survey available: arXiv:2101.04438.

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses m_E , m_M , m_S , under gravitational interaction.

Classical assumptions:

- **1 (Restricted)** $m_S = 0$, i.e. S is negligible.
- (Circular) The primaries E and M move in circles around their center of mass.
- **(Planar)** S moves in the plane spanned by E and M.

Spatial case: drop the planar assumption.

Goal: Study motion of S.

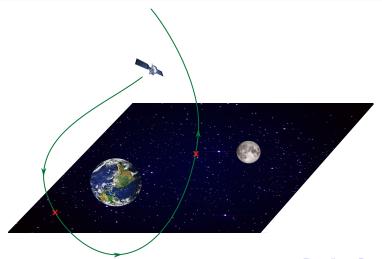
Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses m_E , m_M , m_S , under gravitational interaction.

Classical assumptions:

- **(Restricted)** $m_S = 0$, i.e. S is negligible.
- (Circular) The primaries E and M move in circles around their center of mass.
- **(Planar)** S moves in the plane spanned by E and M.

Spatial case: drop the planar assumption.

Goal: Study motion of S.



In rotating coordinates so that E, M are fixed, the Hamiltonian is autonomous and so a conserved quantity:

$$H: \mathbb{R}^3 \setminus \{E, M\} \times \mathbb{R}^3 \to \mathbb{R}$$

$$H(q, p) = \frac{1}{2} \|p\|^2 - \frac{\mu}{\|q - M\|} - \frac{1 - \mu}{\|q - E\|} + p_1 q_2 - p_2 q_1,$$

where we normalize so that $m_E + m_M = 1$, and $\mu = m_M$.

Planar problem: $p_3 = q_3 = 0$ (flow-invariant subset).

Two parameters: μ , and H = c Jacobi constant.

Integrable limit cases

If $\mu = 0 \rightsquigarrow H = K + L$, where

$$K(q,p) = \frac{1}{2} ||p||^2 - \frac{1}{||q||}$$

is the Kepler energy (two-body problem), and

$$L=p_1q_2-p_2q_1$$

is the Coriolis/centrifugal term. This is the *rotating Kepler* problem.

Fact: $c \to -\infty \rightsquigarrow$ Kepler problem.

Hill regions

H has five critical points: L_1, \ldots, L_5 called *Lagrangians*.

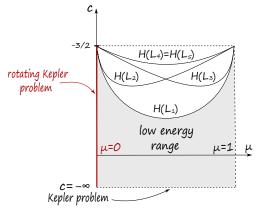


Figure: The critical values of *H*.

Hill regions

For
$$c \in \mathbb{R}$$
, let $\Sigma_c = H^{-1}(c)$. Consider

$$\pi: \mathbb{R}^3 \setminus \{E, M\} \times \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{E, M\}$$

$$(q,p)\mapsto q,$$

and the Hill region

$$\mathcal{K}_c = \pi(\Sigma_c).$$

Low energy Hill regions

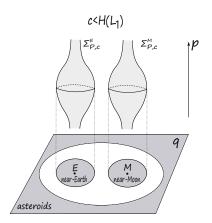


Figure: Morse theory in the three-body problem.

Low energy Hill regions

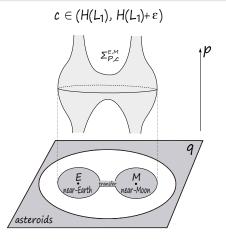


Figure: Morse theory in the three-body problem.

H is singular at *collisions* (q = E or $q = M \rightsquigarrow p = \infty$), but can be regularized via Moser's recipe:

$$(q,p) \stackrel{\mathsf{switch}}{\longmapsto} (-p,q) \stackrel{\mathsf{stereo.\ proj.}}{\longmapsto} (\xi,\eta) \in T^*\mathcal{S}^3$$

We get compactifications for spatial energy levels:

$$\Sigma_c^E \leadsto \overline{\Sigma}_c^E \cong S^* S^3.$$

$$\Sigma_c^M \leadsto \overline{\Sigma}_c^M \cong S^* S^3.$$

$$\Sigma_c^{E,M} \leadsto \overline{\Sigma}_c^{E,M} \cong S^* S^3 \# S^* S^3.$$

Similarly, the planar problem level sets get compactified to $\overline{\Sigma}_{P,c}^{E} \cong S^{*}S^{2} = \mathbb{R}P^{3}, \overline{\Sigma}_{P,c}^{M} \cong S^{*}S^{2} = \mathbb{R}P^{3}, \overline{\Sigma}_{P,c}^{E,M} \cong \mathbb{R}P^{3} \# \mathbb{R}P^{3}$

H is singular at *collisions* (q = E or $q = M \rightsquigarrow p = \infty$), but can be regularized via Moser's recipe:

$$(q,p) \stackrel{\mathsf{switch}}{\longmapsto} (-p,q) \stackrel{\mathsf{stereo.\ proj.}}{\longmapsto} (\xi,\eta) \in T^*\mathcal{S}^3$$

We get compactifications for spatial energy levels:

$$\Sigma_c^E \leadsto \overline{\Sigma}_c^E \cong S^*S^3.$$

$$\Sigma_c^M \leadsto \overline{\Sigma}_c^M \cong S^*S^3.$$

$$\Sigma_c^{E,M} \leadsto \overline{\Sigma}_c^{E,M} \cong S^*S^3\#S^*S^3.$$

Similarly, the planar problem level sets get compactified to $\overline{\Sigma}_{P,c}^{E} \cong S^{*}S^{2} = \mathbb{R}P^{3}, \overline{\Sigma}_{P,c}^{M} \cong S^{*}S^{2} = \mathbb{R}P^{3}, \overline{\Sigma}_{P,c}^{E,M} \cong \mathbb{R}P^{3} \# \mathbb{R}P^{3}.$

H is singular at *collisions* (q = E or $q = M \rightsquigarrow p = \infty$), but can be regularized via Moser's recipe:

$$(q,p) \overset{\mathsf{switch}}{\longmapsto} (-p,q) \overset{\mathsf{stereo.\ proj.}}{\longmapsto} (\xi,\eta) \in \mathcal{T}^*\mathcal{S}^3$$

We get compactifications for spatial energy levels:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Similarly, the planar problem level sets get compactified to

$$\overline{\Sigma}_{P,c}^{E}\cong S^{*}S^{2}=\mathbb{R}P^{3},\,\overline{\Sigma}_{P,c}^{M}\cong S^{*}S^{2}=\mathbb{R}P^{3},\,\overline{\Sigma}_{P,c}^{E,M}\cong\mathbb{R}P^{3}\#\mathbb{R}P^{3}.$$

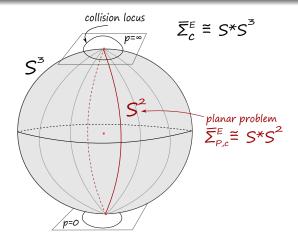


Figure: The Moser-regularized level set near *E*.

Contact geometry of the three-body problem

Theorem (planar case: Albers-Frauenfelder-van Koert-Paternain '12, spatial case: Cho-Jung-Kim '19)

For $\mu \in (0,1)$, $c < H(L_1)$, $\overline{\Sigma}_c^E$ and $\overline{\Sigma}_c^M$ are contact-type, and so is $\overline{\Sigma}_c^{E,M}$ for $c \in (H(L_1), H(L_1) + \epsilon)$ for some $\epsilon > 0$. As contact manifolds:

$$\overline{\Sigma}_c^E \cong \overline{\Sigma}_c^M \cong (S^*S^3, \xi_{std}),$$

$$\overline{\Sigma}_c^{E,M} \cong (S^*S^3, \xi_{std}) \# (S^*S^3, \xi_{std}).$$

The planar problem is a flow-invariant codim-2 contact submanifold:

$$egin{aligned} \overline{\Sigma}_{P,c}^{E} &\cong \overline{\Sigma}_{P,c}^{M} \cong (S^{*}S^{2}, \xi_{std}), \ \overline{\Sigma}_{P,c}^{E,M} &\cong (S^{*}S^{2}, \xi_{std}) \# (S^{*}S^{2}, \xi_{std}). \end{aligned}$$

In his long search for closed orbits in the planar three-body problem, Poincaré's approach can be reduced to:

- (1) Finding a global surface of section for the dynamics;
- (2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff's theorem:

An area-preserving homeomorphism of an annulus that rotates the two boundaries in opposite directions (the twist condition) has at least two fixed points.

Goal: Generalize this approach to the spatial problem.

In his long search for closed orbits in the planar three-body problem, Poincaré's approach can be reduced to:

- (1) Finding a global surface of section for the dynamics;
- (2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff's theorem:

An area-preserving homeomorphism of an annulus that rotates the two boundaries in opposite directions (the twist condition) has at least two fixed points.

Goal: Generalize this approach to the spatial problem.

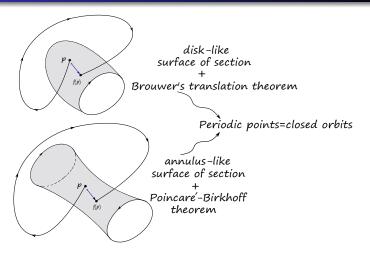
In his long search for closed orbits in the planar three-body problem, Poincaré's approach can be reduced to:

- (1) Finding a global surface of section for the dynamics;
- (2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincaré-Birkhoff's theorem:

An area-preserving homeomorphism of an annulus that rotates the two boundaries in opposite directions (the twist condition) has at least two fixed points.

Goal: Generalize this approach to the *spatial* problem.



Open book decompositions

An open book decomposition on a closed odd-dimensional manifold M is a fibration $\pi: M \backslash B \to S^1$, where $B \subset M$ is a closed codimension-2 submanifold with trivial normal bundle, and $\pi(b, r, \theta) = \theta$ on some collar neighbourhood $B \times \mathbb{D}^2$ of B.

Abstract data: page $P = \overline{\pi^{-1}}(pt)$ (with $B = \partial P$ binding), monodromy $\phi : P \stackrel{\cong}{\to} P$, $\phi|_B = id$.

$$(P,\phi) \rightsquigarrow M = \mathbf{OB}(P,\phi) = P_{\phi} \bigcup B \times \mathbb{D}^2,$$

where P_{ϕ} =mapping torus

Open book decompositions

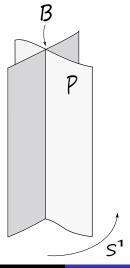
An open book decomposition on a closed odd-dimensional manifold M is a fibration $\pi: M \backslash B \to S^1$, where $B \subset M$ is a closed codimension-2 submanifold with trivial normal bundle, and $\pi(b, r, \theta) = \theta$ on some collar neighbourhood $B \times \mathbb{D}^2$ of B.

Abstract data: page $P = \overline{\pi^{-1}}(pt)$ (with $B = \partial P$ binding), monodromy $\phi : P \stackrel{\cong}{\to} P$, $\phi|_B = id$.

$$(P,\phi) \rightsquigarrow M = \mathbf{OB}(P,\phi) = P_{\phi} \bigcup B \times \mathbb{D}^2,$$

where P_{ϕ} =mapping torus.

Open book decompositions



Global hypersurfaces of section

If $\varphi_t: M \to M$ is a flow on M generated by an autonomous vector field X, then π is adapted to the dynamics if B is φ_t -invariant (i.e. $X|_B$ is tangent to B), and X is transverse to the interior of all pages.

Each page P is a *global hypersurface of section*, i.e. it is codimension-1, $B = \partial P$ is a union of orbits, and the orbits of all points in $M \setminus B$ meet the interior of each page transversely in the future and past.

 \rightsquigarrow Poincaré return map $f : int(P) \rightarrow int(P)$.

Global hypersurfaces of section

If $\varphi_t: M \to M$ is a flow on M generated by an autonomous vector field X, then π is adapted to the dynamics if B is φ_t -invariant (i.e. $X|_B$ is tangent to B), and X is transverse to the interior of all pages.

Each page P is a *global hypersurface of section*, i.e. it is codimension-1, $B = \partial P$ is a union of orbits, and the orbits of all points in $M \setminus B$ meet the interior of each page transversely in the future and past.

 \rightsquigarrow Poincaré return map $f : int(P) \rightarrow int(P)$.

Planar situation: smoothly $\mathbb{R}P^3 = \mathbf{OB}(\mathbb{D}^*S^1, \tau_0^2)$, where $\tau_0 = \mathbf{Dehn}$ twist along $S^1 \subset \mathbb{D}^*S^1$.

- If $\mu \sim 0$ is small and $c < H(L_1)$, Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If c ≪ H(L₁) and μ ∈ (0,1), Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for $\mu \sim 0$ small and $c < H(L_1)$, and computes the return map.

Planar situation: smoothly $\mathbb{R}P^3 = \mathbf{OB}(\mathbb{D}^*S^1, \tau_0^2)$, where $\tau_0 = \mathbf{Dehn}$ twist along $S^1 \subset \mathbb{D}^*S^1$.

- If μ ~ 0 is small and c < H(L₁), Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If c ≪ H(L₁) and μ ∈ (0,1), Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for $\mu \sim 0$ small and $c < H(L_1)$, and computes the return map.

Planar situation: smoothly $\mathbb{R}P^3 = \mathbf{OB}(\mathbb{D}^*S^1, \tau_0^2)$, where $\tau_0 = \! \mathsf{Dehn}$ twist along $S^1 \subset \mathbb{D}^*S^1$.

- If μ ~ 0 is small and c < H(L₁), Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If c ≪ H(L₁) and μ ∈ (0,1), Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for $\mu \sim 0$ small and $c < H(L_1)$, and computes the return map.

Planar situation: smoothly $\mathbb{R}P^3 = \mathbf{OB}(\mathbb{D}^*S^1, \tau_0^2)$, where $\tau_0 = \mathbf{Dehn}$ twist along $S^1 \subset \mathbb{D}^*S^1$.

- If μ ~ 0 is small and c < H(L₁), Poincaré [P12] provides annulus-like global surfaces of section by perturbing the rotating Kepler problem.
- If c ≪ H(L₁) and μ ∈ (0,1), Conley [C63] shows there are annulus-like surfaces of section and the return map is a Birkhoff twist map, and uses Poincaré-Birkhoff.
- McGehee [M69] provides a disk-like global surface of section for μ ~ 0 small and c < H(L₁), and computes the return map.

Open books and surfaces of section in the planar problem

convexity range: $C = \{(\mu, c), c < H(L_1) : \text{Levi-Civita regularization of planar problem is convex}\}.$

Non-perturbative methods by Hofer-Wysocki-Zehnder:

- Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for $(\mu, \mathbf{c}) \in \mathcal{C}$, give global disk-like surfaces of section.
- Hryniewicz-Salomão-Wysocki [HSW], for $(\mu, c) \in C$, give such an open book on $\mathbb{R}P^3$ adapted to the dynamics.
- Hryniewicz-Salomão [HS], for $(\mu, c) \in C$, give disk-like surfaces of section, the pages of a *rational* open book for $\mathbb{R}P^3$.

Open books and surfaces of section in the planar problem

convexity range: $C = \{(\mu, c), c < H(L_1) : \text{Levi-Civita regularization of planar problem is convex}\}.$

Non-perturbative methods by Hofer-Wysocki-Zehnder:

- Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for $(\mu, c) \in C$, give global disk-like surfaces of section.
- Hryniewicz-Salomão-Wysocki [HSW], for $(\mu, c) \in C$, give such an open book on $\mathbb{R}P^3$ adapted to the dynamics.
- Hryniewicz-Salomão [HS], for $(\mu, c) \in C$, give disk-like surfaces of section, the pages of a *rational* open book for $\mathbb{R}P^3$.

Open books and surfaces of section in the planar problem

convexity range: $C = \{(\mu, c), c < H(L_1) : \text{Levi-Civita regularization of planar problem is convex}\}.$

Non-perturbative methods by Hofer-Wysocki-Zehnder:

- Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHvK], for $(\mu, c) \in C$, give global disk-like surfaces of section.
- Hryniewicz-Salomão-Wysocki [HSW], for $(\mu, c) \in C$, give such an open book on $\mathbb{R}P^3$ adapted to the dynamics.
- Hryniewicz-Salomão [HS], for $(\mu, c) \in C$, give disk-like surfaces of section, the pages of a *rational* open book for $\mathbb{R}P^3$.

Step 1: Open books in the spatial three-body problem

 $\overline{\Sigma}_c = H^{-1}(c)$ compact and connected component of a (regularized) energy hypersurface in the SCR3BP.

Theorem (M.–van Koert)

For $\mu \in (0,1)$, we have

$$\overline{\Sigma}_c = \left\{ \begin{array}{ll} \textit{OB}(\mathbb{D}^*S^2, \tau^2), & \textit{if } c < \textit{H}(\textit{L}_1) \\ \textit{OB}(\mathbb{D}^*S^2 \natural \mathbb{D}^*S^2, \tau_1^2 \circ \tau_2^2), & \textit{if } c \in (\textit{H}(\textit{L}_1), \textit{H}(\textit{L}_1) + \epsilon), \end{array} \right.$$

which are adapted to the dynamics. Here, τ is the Dehn-Seidel twist along the zero section $S^2 \subset \mathbb{D}^*S^2$.

Binding $B = S^*S^2 = \partial \mathbb{D}^*S^2 = \mathbb{R}P^3 = \text{planar problem for energy } c$.

Step 1: Open books in the spatial three-body problem

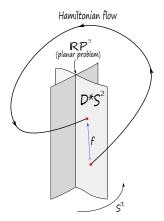


Figure: The open book in the spatial problem for $c < H(L_1)$.

Basic idea

Let $B = \{p_3 = q_3 = 0\}$ (planar problem). Define

$$\pi(q,p) = \frac{q_3 + ip_3}{\|q_3 + ip_3\|} \in S^1, \ d\pi = \frac{p_3 dq_3 - q_3 dp_3}{p_3^2 + q_3^2}.$$

Then

$$d\pi(X_H) = \frac{p_3^2 + q_3^2 \cdot \left(\frac{1-\mu}{\|q-E\|^3} + \frac{\mu}{\|q-M\|^3}\right)}{p_3^2 + q_3^2} > 0,$$

for $p_3^2 + q_3^2 \neq 0$, and numerator vanishes only along *B*.

Problem: This does not extend to the collision locus

Basic idea

Let $B = \{p_3 = q_3 = 0\}$ (planar problem). Define

$$\pi(q,p) = \frac{q_3 + ip_3}{\|q_3 + ip_3\|} \in S^1, \ d\pi = \frac{p_3 dq_3 - q_3 dp_3}{p_3^2 + q_3^2}.$$

Then

$$d\pi(X_H) = \frac{p_3^2 + q_3^2 \cdot \left(\frac{1-\mu}{\|q-E\|^3} + \frac{\mu}{\|q-M\|^3}\right)}{p_3^2 + q_3^2} > 0,$$

for $p_3^2 + q_3^2 \neq 0$, and numerator vanishes only along *B*.

Problem: This does not extend to the collision locus.

Physical interpretation

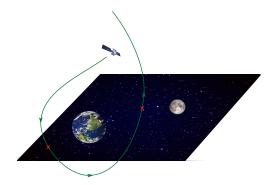


Figure: The $\pi/2$ -page corresponds to $q_3 = 0$, $p_3 > 0$, and means that the spatial orbits of S are transverse to the plane spanned by E, M away from collisions.

Polar orbits

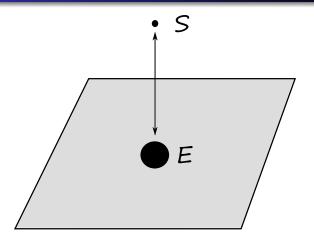


Figure: Polar orbits prevent transversality on the collision locus.

Return map

Theorem (M.-van Koert)

For every $\mu \in (0,1]$, $c < H(L_1)$, and page P, the return map f extends smoothly to the boundary $B = \partial P$, and in the interior it is an exact symplectomorphism

$$f = f_{c,\mu} : (int(P), \omega) \rightarrow (int(P), \omega),$$

where $\omega = d\alpha|_P$, $\alpha = \alpha_{\mu,c}$ contact form. Moreover, f is Hamiltonian in the interior, and the Hamiltonian isotopy extends smoothly to the boundary.

Here, ω degenerates at B, but after a continuous conjugation, it is *deformation equivalent* to the standard symplectic form. The Hamiltonian is *not* rel boundary.

Return map

Theorem (M.-van Koert)

For every $\mu \in (0,1]$, $c < H(L_1)$, and page P, the return map f extends smoothly to the boundary $B = \partial P$, and in the interior it is an exact symplectomorphism

$$f = f_{c,\mu} : (int(P), \omega) \rightarrow (int(P), \omega),$$

where $\omega = d\alpha|_P$, $\alpha = \alpha_{\mu,c}$ contact form. Moreover, f is Hamiltonian in the interior, and the Hamiltonian isotopy extends smoothly to the boundary.

Here, ω degenerates at B, but after a continuous conjugation, it is *deformation equivalent* to the standard symplectic form. The Hamiltonian is *not* rel boundary.

Spatial vs Planar orbits

Note that

$$Fix(f^k) = IntFix(f^k) \bigcup BdyFix(f^k),$$

where

IntFix(
$$f^k$$
) \longleftrightarrow {spatial orbits of period k }
BdyFix(f^k) \to {planar orbits}

Goal: Find *interior* periodic points with arbitrary large minimal *k*.

Step 2: Fixed point theory of Hamiltonian twist maps

 $(W, \omega = d\lambda)$ Liouville domain, $\alpha = \lambda|_{B}$. Let $f: (W, \omega) \to (W, \omega)$ be a Hamiltonian symplectomorphism.

Definition

f is a *Hamiltonian twist map* if there exists a time-dependent Hamiltonian $H: \mathbb{R} \times W \to \mathbb{R}$ such that:

- H is smooth (or C^2);
- $f = \phi_H^1$;
- There exists a smooth function $h : \mathbb{R} \times B \to \mathbb{R}$ which is *positive* and

$$X_{H_t}|_B = h_t R_{\alpha}$$
.

Fixed-point theorem

Theorem (M.–van Koert, Generalized Poincaré–Birkhoff theorem)

Suppose that f is an exact symplectomorphism of a Liouville domain (W, λ) , and let $\alpha = \lambda|_B$. Assume the following:

- (Hamiltonian twist map) f is a Hamiltonian twist map;
- (index-definiteness) If dim $W \ge 4$, then assume $c_1(W)|_{\pi_2(W)} = 0$, and $(\partial W, \alpha)$ is strongly index-definite. In addition, assume all fixed points of f are isolated;
- (Symplectic homology) SH_•(W) is infinite dimensional.

Then f has simple interior periodic points of arbitrarily large (integer) period.

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If dim W = 2, dim $SH_{\bullet}(W) = \infty$ iff $W \neq \mathbb{D}^2$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If dim W = 2, dim $SH_{\bullet}(W) = \infty$ iff $W \neq \mathbb{D}^2$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If dim W = 2, dim $SH_{\bullet}(W) = \infty$ iff $W \neq \mathbb{D}^2$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

- Strong index definiteness is a technical assumption, implied by strict convexity.
- If dim W = 2, dim $SH_{\bullet}(W) = \infty$ iff $W \neq \mathbb{D}^2$.
- A very vast generalization of the classical Poincaré-Birkhoff theorem, in the spirit of the Conley conjecture (good).
- We couldn't check the twist condition in the three-body problem (not so good).

Holomorphic dynamics

Observation: the adapted open book $\mathbf{OB}(\mathbb{D}^*S^2, \tau^2)$ is *iterated planar* (IP), i.e. the page $\mathbb{D}^*S^2 = \mathbf{LF}(\mathbb{D}^*S^1, \tau_P^2)$ admits a Lefschetz fibration with genus zero fibers, all inducing the open book $\mathbf{OB}(\mathbb{D}^*S^1, \tau_P^2)$ at the binding $\mathbb{R}P^3$.

$$T^*S^2 = \mathbf{LF}(T^*S^1, au_P^2)$$

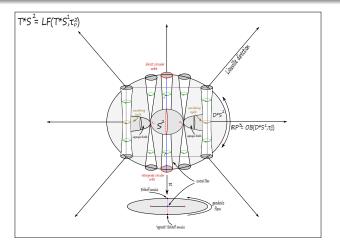


Figure: The standard Lefschetz fibration on J^*S^2

Abstract page

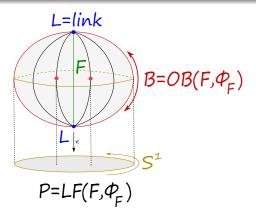


Figure: Abstractly, the compact version of the Lefschetz fibration on a page P. F is the regular fiber, $L = \partial F$ is the "binding of the binding" B, a link.

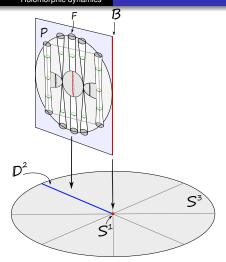


Figure: The moduli space of fibers is a copy of $S^3 = \mathbf{OB}(\mathbb{D}^2, \mathbb{1})$.

Contact structures and Reeb dynamics on moduli

Let $(M, \xi_M) = \mathbf{OB}(P, \phi)$ be an IP 5-fold, $P = \mathbf{LF}(F, \phi_F)$.

Reeb $(P, \phi) = \{\alpha \text{ adapted contact form: } \alpha|_B \text{ adapted to } B = \mathbf{OB}(F, \phi_F)\}.$

Theorem (M., Contact structures and Reeb dynamics on moduli)

For a given $\alpha \in \textbf{Reeb}(P, \phi)$, there is a moduli space \mathcal{M} of $d\alpha$ -symplectic copies of F foliating M, forming the fibers of a Lefschetz fibration on each page. \mathcal{M} is a contact manifold $(\mathcal{M}, \xi_{\mathcal{M}}) \cong (S^3, \xi_{std}) = \mathbf{OB}(\mathbb{D}^2, \mathbb{1})$.

Any $\alpha \in \textbf{Reeb}(P, \phi)$ induces a contact form $\alpha_{\mathcal{M}} \in \textbf{Reeb}(\mathbb{D}^2, \mathbb{1})$, $\ker \alpha_{\mathcal{M}} = \xi_{\mathcal{M}}$, adapted to a trivial open book of the form $\theta_{\mathcal{M}} : \mathcal{M} \backslash \mathcal{M}_B \cong S^3 \backslash S^1 \to S^1$.

Idea: fiber-wise integration

The contact form $\alpha_{\mathcal{M}}$ is defined via

$$(\alpha_{\mathcal{M}})_{u}(v) = \int_{z \in F_{u}} \alpha_{z}(v(z)) dz,$$

where $F_u = \text{im}(u)$, $dz = d\alpha|_{F_u}$, $u \in \mathcal{M}$, $v \in T\mathcal{M}$. Its Reeb vector field $R_{\mathcal{M}}$ is defined via

$$\mathbf{D}_{u}R_{\mathcal{M}}=0$$
, where $\mathbf{D}_{u}=$ linearized CR-operator,

$$1 = (\alpha_{\mathcal{M}})_{u}(R_{\mathcal{M}}(u)) = \int_{z \in F_{u}} \alpha_{z}(R_{\mathcal{M}}(z))dz,$$
$$= (d\alpha_{\mathcal{M}})_{u}(R_{\mathcal{M}}(u), \cdot) = \int_{z \in F_{u}} d\alpha_{z}(R_{\mathcal{M}}(z), \cdot)dz$$

 $R_{\mathcal{M}}$ is a reparametrization of an L^2 -projection of \mathcal{B}_{α} to $\mathcal{T}_{\mathcal{M}}$, \mathcal{B}_{α}

Idea: fiber-wise integration

The contact form $\alpha_{\mathcal{M}}$ is defined via

$$(\alpha_{\mathcal{M}})_{u}(v) = \int_{z \in F_{u}} \alpha_{z}(v(z)) dz,$$

where $F_u = \text{im}(u)$, $dz = d\alpha|_{F_u}$, $u \in \mathcal{M}$, $v \in T\mathcal{M}$. Its Reeb vector field $R_{\mathcal{M}}$ is defined via

$$\mathbf{D}_{u}R_{\mathcal{M}}=0$$
, where $\mathbf{D}_{u}=$ linearized CR-operator,

$$1 = (\alpha_{\mathcal{M}})_{u}(R_{\mathcal{M}}(u)) = \int_{z \in F_{u}} \alpha_{z}(R_{\mathcal{M}}(z))dz,$$

$$0=(d\alpha_{\mathcal{M}})_{u}(R_{\mathcal{M}}(u),\cdot)=\int_{z\in F}d\alpha_{z}(R_{\mathcal{M}}(z),\cdot)dz.$$

 $R_{\mathcal{M}}$ is a reparametrization of an L^2 -projection of R_{α} to $T_{\mathcal{M}}$.

Return map and symplectic tomographies

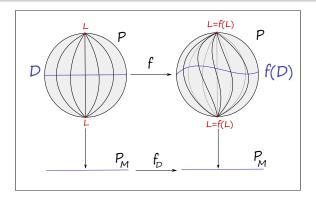


Figure: The return map f might not preserve the symplectic foliation. One can take *symplectic tomographies* D (a symplectic 2-disk) to induce return maps f_D on \mathcal{M} .

Shadowing cone

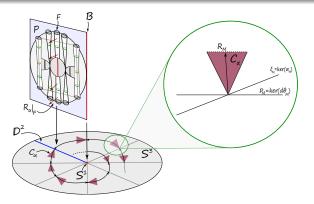


Figure: The shadowing cone is $C_{\alpha} = \pi_*(\ker d\alpha)$. Orbits of α project to orbits of the cone, which are transverse to $\xi_{\mathcal{M}}$ and to every page. The Reeb vector field $R_{\mathcal{M}}$ spans the average direction of C_{α} .

Holomorphic shadow

Define the holomorphic shadow map as

$$\mathsf{HS} : \mathsf{Reeb}(P, \phi) \to \mathsf{Reeb}(\mathbb{D}^2, \mathbb{1})$$

$$\alpha \mapsto \alpha_{\mathcal{M}}$$
.

Integrable case: Rotating Kepler problem \mapsto Hopf flow on S^3 .

The return map preserves the foliation. The two nodal singularities are fixed, and correspond to the polar orbits. The map is a classical twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem

HS is surjective.

In other words, Reeb dynamics in M is at least as complex as Reeb dynamics in S^3 .

New program: Try to "lift" knowledge from dynamics on $S^3_{\mathbb{R}}$, \mathbb{R}

Holomorphic shadow

Define the holomorphic shadow map as

$$\mathsf{HS} : \mathsf{Reeb}(P, \phi) \to \mathsf{Reeb}(\mathbb{D}^2, \mathbb{1})$$
 $\alpha \mapsto \alpha_M.$

Integrable case: Rotating Kepler problem \mapsto Hopf flow on S^3 .

The return map preserves the foliation. The two nodal singularities are fixed, and correspond to the polar orbits. The map is a classical twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem

HS is surjective

In other words, Reeb dynamics in M is at least as complex as Reeb dynamics in S^3 .

New program: Try to "lift" knowledge from dynamics on $S^3_{\mathbb{R}}$, \mathbb{R}

Holomorphic shadow

Define the *holomorphic shadow map* as

$$\mathsf{HS} : \mathsf{Reeb}(P, \phi) \to \mathsf{Reeb}(\mathbb{D}^2, \mathbb{1})$$

$$\alpha \mapsto \alpha_{\mathcal{M}}$$
.

Integrable case: Rotating Kepler problem \mapsto Hopf flow on S^3 .

The return map preserves the foliation. The two nodal singularities are fixed, and correspond to the polar orbits. The map is a classical twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem)

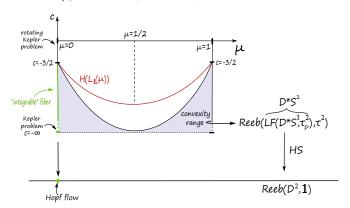
HS is surjective.

In other words, Reeb dynamics in M is at least as complex as Reeb dynamics in S^3 .

New program: Try to "lift" knowledge from dynamics on S^3 .

Case of three-body problem

If $(\mu, c) \in \mathcal{C}$, combining our adapted open book with [HSW] on $B = \mathbb{R}P^3 \leadsto \alpha_{\mu,c} \in \mathbf{Reeb}(\mathbb{D}^*S^2, \tau^2)$.



Further directions: Entropy

Joint work in progress with Umberto Hrynewicz, Abror Pirnapasov:

Claim 1: C^{∞} -generic Reeb flows on any closed 3-fold have positive topological entropy.

Pull back via the shadow map →

Claim 2: C^{∞} -generic Reeb flows in **Reeb**(P, ϕ) also have positive topological entropy, for every IP 5-fold, generated by purely spatial orbits.

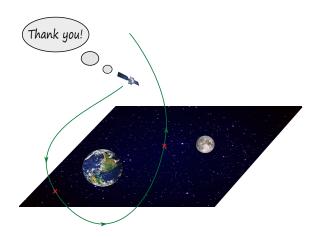
- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
 Enter the famous Katok examples! they are a counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S³)
- This is a good time to revisit the origins.

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check
 - Enter the famous Katok examples! they are a counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S^3).
- This is a good time to revisit the origins.

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
 - Enter the famous Katok examples! they are a counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S^3).
- This is a good time to revisit the origins.

- Hamiltonian maps which are not the identity at the boundary should perhaps be studied more systematically, specially in higher dimensions.
- The Hamiltonian twist condition, if true at all, seems HARD to check.
 - Enter the famous Katok examples! they are a counterxample to the conclusion of the theorem, i.e. they are not twist maps. BUT they are arbitrarily close to the Kepler problem (geodesic flow on S^3).
- This is a good time to revisit the origins.

Spatial circular restricted three-body problem Spatial version of Poincaré's program: Step 1 Spatial version of Poincare's program: Step 2 Holomorphic dynamics



Complementary slides: Index growth

We call a strict contact manifold $(Y, \xi = \ker \alpha)$ strongly index-definite if the contact structure $(\xi, d\alpha)$ admits a symplectic trivialization ϵ so that:

• There are constants c>0 and $d\in\mathbb{R}$ such that for every Reeb chord $\gamma:[0,T]\to Y$ of Reeb action $T=\int_0^T\gamma^*\alpha$ we have

$$|\mu_{RS}(\gamma;\epsilon)| \geq cT + d$$
,

where μ_{RS} is the Robbin–Salamon index.

Drop absolute value \rightsquigarrow index-positive.

Complementary slides: Examples of index-positivity

Lemma (Some examples)

- If (Y, α) ⊂ ℝ⁴ is a strictly convex hypersurface, then it is strongly index-positive.
- If $(Y, \ker \alpha) = (S^*Q, \xi_{std})$ is symplectically trivial and (Q, g) has positive sectional curvature, then (Y, α) is strongly index-positive.

Complementary slides: special case of fixed-point theorem

Theorem (M.-van Koert, special case)

Let $W \subset (T^*M, \lambda_{can})$ be fiber-wise star-shaped, with M simply connected, orientable and closed. Let $f: W \to W$ be a Hamiltonian twist map. Assume:

- Reeb flow on ∂W is strongly index-positive; and
- All fixed points of f are isolated.

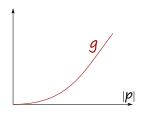
Then f has simple interior periodic points of arbitrarily large period.

Complementary slides: Toy example

 $Q = S^n$ with round metric.

 $H: T^*Q \to \mathbb{R}, \ H(q,p) = 2\pi |p| \ not$ smooth at zero section. Then $\phi_H^1 = id$, all orbits are periodic with same period.

Let $K=2\pi g$, with g=g(|p|) smoothing of |p| near p=0. Then $\phi_K^1=\phi_G^{2\pi g'(|p|)}$, where ϕ_G^t geodesic flow, is a Hamiltonian twist map. It has simple orbits of arbitrary period (g'(|p|)=I/k coprime $\leadsto k$ -periodic orbit).

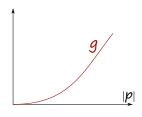


Complementary slides: Toy example

 $Q = S^n$ with round metric.

 $H: T^*Q \to \mathbb{R}, \ H(q,p) = 2\pi |p| \ not$ smooth at zero section. Then $\phi_H^1 = id$, all orbits are periodic with same period.

Let $K=2\pi g$, with g=g(|p|) smoothing of |p| near p=0. Then $\phi_K^1=\phi_G^{2\pi g'(|p|)}$, where ϕ_G^t geodesic flow, is a Hamiltonian twist map. It has simple orbits of arbitrary period (g'(|p|)=I/k coprime $\rightsquigarrow k$ -periodic orbit).



Complementary slides: dynamical applications

Definition

Let P be a page, and $f: \operatorname{int}(P) \to \operatorname{int}(P)$ a return map. A *fiber-wise* k-recurrent point is $x \in \operatorname{int}(P)$ such that $f(\mathcal{M}_X) \cap \mathcal{M}_X \neq \emptyset$.

This is a "symplectic version" of a leaf-wise intersection.

Theorem (M.)

In the SCR3BP, for every k, one can find sufficently small perturbations of the integrable cases which admit infinitely many fiber-wise k-recurrent points.

More further directions: Lagrangians

Conjecture (Long interior chords)

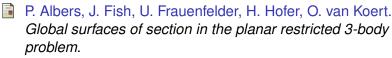
Suppose that f is an exact symplectomorphism of a Liouville domain (W, λ) , let $\alpha = \lambda|_B$, and $L \subset (W, \lambda)$ exact, spin, Lagrangian with Legendrian boundary. Assume the following:

- (Hamiltonian twist map) f is a Hamiltonian twist map;
- (index-definiteness) If dim $W \ge 4$, then assume $c_1(W)|_{\pi_2(W)} = 0$, and $(\partial W, \alpha)$ is strongly index-definite;
- (Wrapped Floer homology) WFH_•(L) is infinite dimensional.

Then $f^k(int(L)) \cap int(L)$ is non-empty for k arbitrarily large.

Motivation: Finding long spatial collision orbits in the 3BP.

References I



Arch. Ration. Mech. Anal. 204(1) (2012), 273–284.

Albers, Peter; Frauenfelder, Urs; van Koert, Otto; Paternain, Gabriel P.

Contact geometry of the restricted three-body problem.

Comm. Pure Appl. Math. 65 (2012), no. 2, 229–263.

Wanki Cho, Hyojin Jung, Geonwoo Kim. The contact geometry of the spatial circular restricted 3-body problem.

arXiv:1810.05796

References II

C. Conley.

On Some New Long Periodic Solutions of the Plane Restricted Three Body Problem.

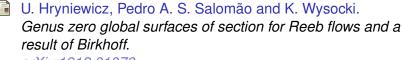
Comm. Pure Appl. Math. 16 (1963), 449-467.

U. Hryniewicz and Pedro A. S. Salomão.

Elliptic bindings for dynamically convex Reeb flows on the real projective three-space.

Calc. Var. Partial Differential Equations 55 (2016), no. 2, Art. 43, 57 pp.

References III



arXiv:1912.01078.

- McGehee, Richard Paul. Some homoclinic orbits for the restricted three-body problem. Thesis (Ph.D.), The University of Wisconsin - Madison. ProQuest LLC, Ann Arbor, MI, 1969. 63 pp.
- Poincaré, H.
 Sur un théoreme de géométrie.
 Rend. Circ. Matem. Palermo 33, 375–407 (1912).