
IAS/Park City Mathematics Series
Volume 00, Pages 000–000
S 1079-5634(XX)0000-0

Small solutions to polynomial equations using lattices and
applications in cryptography

Nadia Heninger

Abstract. These lectures give an overview of Coppersmith and Howgrave-Graham’s
methods for finding small solutions to polynomial equations modulo integers by
finding a short vector in a lattice. We present several variations on the form of
the problem, with applications to cryptography.

These notes are a very rough draft, and are very informal in many places.

1. Introduction

Lattices have numerous applications to problems of interest in cryptography,
both destructive (cryptanalysis using lattice algorithms) and constructive (devel-
oping new cryptographic algorithms that we believe are secure if our understand-
ing of lattice algorithms is correct).

• Cryptanalysis: Can use approximation algorithms for SVP in lattices to
cryptanalyze a wide variety of classical cryptography:

– Attacks on low public exponent RSA
– Factoring with partial knowledge
– (EC)DSA with partial information about nonces
– Knapsack-based cryptosystems
The first three of these applications will be the focus of these lecures.

• Cryptographic constructions:
– Lattice problems appear to be hard to solve for quantum computers,

so lattice-based cryptosystems among most promising candidates for
post-quantum cryptography. (Several just chosen by NIST!)

– Algebraic structure of lattices leads to many interesting cryptographic
constructions that may someday be practical, like fully homomorphic
encryption, identity-based encryption, etc.

2010 Mathematics Subject Classification. Primary 14Dxx; Secondary 14Dxx.
Key words and phrases. Park City Mathematics Institute.

©0000 (copyright holder)

1

2Small solutions to polynomial equations using lattices and applications in cryptography

2. Lattice background

Definition 2.0.1. A lattice is a subset of Rn generated by integer linear combina-
tions of some linearly independent basis vectors {b1, . . . ,bm}, bi ∈ Rn.

We can represent elements in our lattice explicitly as vectors. For example,
the origin vo = (0, 0, . . . , 0) is always in any nonempty lattice. In general, a
lattice vector v =

∑m
i=0 aibi = (z1, . . . , zn) with ai ∈ Z and bi basis vectors,

so zi ∈ R. Since we focus on computational applications, any real number will
have to be approximated by a rational. Given a lattice of rationals, we can clear
denominators and work over the integers Z.

A lattice over Rn has useful computational properties. Algebraically, it is a
group under the operation addition. Geometrically, it lives in Rn so it inherits
the dot product and distance metrics from Rn. We mostly care about the `1 and
`2 metrics. We’ll write | · | for the `2 metric when not otherwise specified.

It is possible to show that a lattice is discrete, that is, that ∃δ > 0 s.t. |vi− vj| > δ
∀ vi 6= vj ∈ L.

We can also use these properties to give a less constructive definition of a lattice
that is equivalent to Definition 2.0.1.

Definition 2.0.2. A lattice is a discrete additive subgroup of Rn.

Theorem 2.0.3. In n dimensions a lattice has a basis of size at most n.

We will generally represent a basis as a matrix B whose rows are the basis
vectors b1, . . . ,bm. A lattice may not be full rank, but for our applications it
typically is, so we can take m = n. We will write L(B) to represent the lattice
generated by basis B.

A basis for a lattice is not unique.

Theorem 2.0.4. Deciding if L(B) = L(B ′) for B 6= B ′ is efficient.

Proof. The Hermite Normal Form of a matrix over Z is unique and efficient to
compute. Given B and B ′ we can check if HNF(B) = HNF(B ′). �

Definition 2.0.5. The determinant of a lattice with basis B is |detB|.

Theorem 2.0.6. The determinant is invariant for a given lattice.

Geometrically, we can interpret the determinant of the lattice as giving the vol-
ume of the fundamental parallelepiped inscribed by the basis vectors:

∑n
i=0 aibi

with 0 6 ai < 1.

Definition 2.0.7 (Dual lattice). For a full-rank lattice L, we can define the dual
lattice L∗ = {u ∈ Rn | ∀ v ∈ L, 〈v,u〉 ∈ Z}.

Nadia Heninger 3

For a full-rank lattice, computing a basis for the dual lattice is easy: for a basis
B of L(B), B∗ = (B−1)T is a basis for the dual L∗(B).

Let λ1 > 0 be the length of the shortest vector in the lattice. This is well defined
because the lattice is discrete.

Definition 2.0.8. The ith successive minimum λi is the smallest radius of a ball
containing i linearly independent lattice vectors.

You can think of λi as the length of the shortest vector linearly independent to
the vectors achieving the i− 1 successive minima.

Theorem 2.0.9 (Minkowski). λ1(L) <
√
ndetL1/n

The Gaussian Heuristic gives an expectation for the length of the shortest vector
in a lattice. It says that

gh(L) ≈
√

n

2πe
(detL)n

Definition 2.0.10 (Shortest Vector Problem (SVP)). Given an arbitrary basis B for
a lattice, find a shortest vector in L(B) the lattice generated by B.

Theorem 2.0.11.
SVP is NP-hard.

Definition 2.0.12 (Closest Vector Problem (CVP)). Given an arbitrary basis B, and
a point x find a vector in L(B) closest (with shortest distance to) to x.

• CVP is NP-hard.

Definition 2.0.13 (Bounded-Distance Decoding (BDD)). Find all lattice points
within a specified radius of an arbitrary point.

It may be NP-hard to solve the shortest vector problem exactly, but we can
compute an approximation to the shortest vector (and in fact to all of the suc-
cessive minima) in polynomial time, albeit with an exponential bound on the
approximation factor.

Theorem 2.0.14 (Lenstra Lenstra Lovasz (LLL)[12]). Given a basis B for a lattice, we
can in polynomial time find a reduced basis {bi} s.t.

|bi| 6 2(n−1)/2λi

Note that the approximation factor is exponential in the lattice dimension. This
does not seem like a very good approximation, but it turns out that it is good
enough for many applications. In addition, many applications might only require

4Small solutions to polynomial equations using lattices and applications in cryptography

lattices of fixed (small) dimension, in which case this approximation factor is a
constant.

Theorem 2.0.15 (LLL, Informal). We can find a vector of length

|v| < 2dimL(detL)1/dimL

Empirically, the LLL algorithm seems to perform better than the worst-case
bounds on random lattices. For many cryptanalysis-type problems, the behavior
of LLL matches this prediction.

Conjecture 2.0.16 (Nguyen Stehlé [15]). For a random lattice, LLL finds a vector
|v| < 1.02dimL(detL)1/dimL

It is an open problem to explain or fully characterize this behavior.

If we need a better approximation factor, we can exchange exponential running
time to achieve it by using blockwise SVP solvers for larger block sizes k. [1, 8, 9,
13]

Theorem 2.0.17 (Informal). Given a lattice basis, can in time 2O(k) find a reduced
basis s.t. |bi| 6 kO(n/k)λi.

There is a long historical connection between lattice reduction and problems
concerning polynomials. Consider the following problem from the original Lenstra
Lenstra Lovasz lattice reduction paper [12]. Let α be an algebraic number. If we
have a guess for its degree, we can try to find its minimal polynomial by finding
a short vector in the lattice generated by the rows of the following basis:

B =


1 0 . . . 0 αd

0 1 . . . 0 αd−1

...
. . .

...

0 0 . . . 1 α0


If f(x) = fdxd + · · ·+ f0 is the minimal polynomial of α so f(α) = 0, we would

hope that there is a vector vf = (fd, . . . , f0, 0) in this lattice. There are a few
complications to making this work in practice. First, we need to represent α to
some precision, so the last column will not be exactly 0. Second, we want this
vector to be particularly short in order to find it among the short vectors of the
lattice, which means that we should multiply a scaling factor to the last column
of the basis. It requires some work to find the right balance of these two choices.

3. Univariate polynomials modulo integers

This section will introduce Coppersmith’s method for using lattice basis reduc-
tion to find small roots of polynomials modulo integers. Coppersmith’s original

Nadia Heninger 5

presentation of this method is in [6]. Howgrave-Graham gave a dual formulation
of this algorithm that is more intuitive to reason about, which is the presentation
we give here. [11] Coppersmith later wrote up a survey of improvements and
optimizations to this method. [7]

3.1. Motivation Let’s begin with some context for why this algorithm is inter-
esting in the first place, since the question of how difficult it is to find roots of
polynomials varies by the setting.

• Polynomial time: Solving f(x) ≡ 0 over Q. In fact, the LLL paper gives
such an algorithm.

• Polynomial time: Solving f(x) ≡ 0 mod p, p prime. The Cantor-Zassenhaus
algorithm and Berlekamp’s algorithm are polynomial-time algorithms for
factoring polynomials over finite fields.

• Polynomial time: Solving f(x) ≡ 0 mod N, factorization of N known, N
has few factors. For a composite integer, factor into primes, solve mod
each prime, and use Chinese remainder theorem and Hensel lifting to lift
solutions mod N. This is efficient if N is easy to factor or its factorization
is already known, and N does not have too many prime factors.

• Not polynomial time: Finding all solutions to f(x) ≡ 0 mod N, factoriza-
tion of N known, N has many factors.
f can have exponentially many roots in the number of factors of N.

Consider f(x) = xd and N = pd for a prime p. Any of the pd−1 multiples
of p modulo N can be a root.

• Hopefully not polynomial time: Computing roots of f(x) modulo N, fac-
torization of N unknown.

We hope that this problem is hard because a general method to solve
polynomials mod N would break RSA. Recall that an RSA public key is
an integer N = pq whose factorization is not made public, along with a
public exponent e; say e = 3 is not known to be insecure in general. With
textbook RSA, the ciphertext c encrypting a message m is computed as
c = me mod N.

Now imagine that the adversary has observed the ciphertext c and the
public key N and e. Then the polynomial

xe − c ≡ 0 mod N

has a root x = m for m our original message. If an adversary can effi-
ciently find roots of polynomials of this form, then RSA is insecure.

Right now, the only methods known to solve this problem in general
require learning the factorization of N and computing m as above. How-
ever, intriguingly, it is not known that finding roots of the RSA polynomial
above is equivalent to factoring the modulus.

6Small solutions to polynomial equations using lattices and applications in cryptography

3.2. Coppersmith’s theorem Coppersmith’s method gives us an efficient method
to find some roots of low degree polynomials modulo integers without having to
factor the modulus. However, the tradeoff is that we need to accept a bound on
the size of root that can be efficiently found.

Theorem 3.2.1 (Coppersmith). Given a monic polynomial f ∈ Z[x] of degree d and
modulus N ∈ Z, there is an algorithm to find all ri ∈ Z satisfying

f(ri) ≡ 0 mod N

when |ri| < N
1/d. The algorithm runs in time polynomial in logN and d.

3.3. Coppersmith’s algorithm outline We will start with a high-level overview
of the method, and then dive into each of the steps in return.

Input: f = xd + fd−1x
d−1 + · · ·+ f0 ∈ Z[x], modulus N ∈ Z

Desired output: All r ∈ Z, |r| < N1/d with f(r) ≡ 0 mod N.

(1) Consider the lattice generated by coefficient vectors of polynomials hi of
bounded degree that satisfy hi(r) ≡ 0 mod N. Any polynomial h in this
lattice is an integer combination of the hi and thus satisfies h(r) ∈ Z for
r satisfying f(r) ≡ 0 mod N.

(2) Pick a concrete basis for a sublattice and run the LLL algorithm to find a
short element in this sublattice.

(3) Construct an auxiliary polynomial Q from the shortest vector output and
prove that Q(r) = 0 over Z not just modulo N.

(4) Find the roots ri of Q over Q and output those satisfying f(ri) ≡ 0 mod N.

3.4. Choosing a suitable set of basis polynomials Let f(x) = x3 + f2x
2 + f1x+ f0

and N be the inputs to our problem. Any polynomial multiple hi(x) of f(x)
and/or N satisfies hi(r) ≡ 0 mod N by construction.

Example 3.4.1. If we only care about polynomials Q of degree 3, then we might
try to construct our target polynomial Q from

Q(x) = c3f(x) + c2Nx
2 + c1Nx+ c0N

with c3, c2, c1, c0 ∈ Z.

c3 (x3 + f2x
2 + f1x + f0)

+ c2 Nx2

+ c1 Nx

+ c0 N

Q3x
3 + Q2x

2 + Q1x + Q0

Nadia Heninger 7

3.4.1. Manipulating polynomials as coefficient vectors We can represent ele-
ments of Z[x] as coefficient vectors:

gdx
d + gd−1x

d−1 + · · ·+ g0 ↔ (gd,gd−1, . . . ,g0)

If we construct the matrix 
1 f2 f1 f0

N

N

N


Then the coefficient vector representing our polynomial

Q(x) = c3f(x) + c2Nx
2 + c1Nx+ c0N

is an integer combination of the rows of this matrix.
Observe that integer combinations of the coefficient vectors of polynomials

over Z[x] of fixed maximum degree form a lattice. (It is a group under addition,
and satisfies the discreteness property because the vectors are integers.

3.5. Ensuring that our auxiliary polynomial Q vanishes over Z. The inputs to
our algorithm were f(x) ∈ Z[x], N ∈ Z.

As an intermediate output of the algorithm, we wanted to find Q(x) such that
Q(r) = 0 over Z.

(1) Q(x) ∈ 〈f(x),N〉 so Q(r) ≡ 0 mod N by construction.

(2) If |r| < R, then we can bound

|Q(r)| = |Qdr
d +Qd−1r

d−1 + · · ·+Q1r+Q0|

6 |Qd|R
d + · · ·+ |Q2|R

2 + |Q1|R+ |Q0|

(3) If |Q(r)| < N and Q(r) ≡ 0 mod N then Q(r) = 0.

We want a Q in our lattice with short coefficient vector!
However, the lattice in the example above doesn’t quite capture the same no-

tion of shortness that we need. Observe that if we scale each column of the lattice
corresponding to the coefficient of the monomial xi in our basis polynomial by
Ri, then the `1 norm of the vector corresponding to h(x) is an upper bound on
the evaluation of |h(r)| for |r| < R. The bounds given by the LLL algorithm are in
terms of the `2 norm, but we can multiply by

√
dimL to get a bound.

We can establish the following series of inequalities.

|Q(r)| 6 |vQ|1

We showed this above, by construction.

|vQ|1 6
√

dimL|vQ|2

8Small solutions to polynomial equations using lattices and applications in cryptography

√
dimL|vQ|2 6

√
dimL2dimL detL1/dimL

This is the loose bound for the LLL algorithm. If you wish, you can use the more
precise or empirical bounds.

Thus in order to achieve the bound |Q(r)| < N, it suffices to show for a partic-
ular lattice construction

√
dimL2dimL detL1/dimL < N

This is easiest demonstrated with a small example.

Example 3.5.1. Input: f(x) = (x+ a)3 − c, N
Output: r < R such that f(r) ≡ 0 mod N.

(1) Construct lattice basis
R3 3aR2 3a2R a3 − c

NR2

NR

N


We have

dimL = 4

detL = R6N3

So to establish the theorem, we should show
√

dimL2dimL detL1/dimL < N.

Since dimL is a small constant, let’s drop the approximation factors below.
Then we expect the algorithm to work when

detL1/dimL < N

(R6N3)1/4 < N

R < N1/6

That is, we can find roots of absolute value up to N1/6 just by reducing
a 4-dimensional lattice.

3.6. Achieving the Coppersmith bound r < N1/d What is shown above isn’t
quite enough to get all the way to Coppersmith’s bound |r| < N1/d. In order
to achieve this bound, the polynomials in the input basis need two additional
properties:

(1) Higher multiplicities: Generate lattice from subset of 〈f(x),N〉k. That
means that Q(r) ≡ 0 mod Nk.

(2) Higher degree polynomials: Allow higher degree polynomials (higher
than the polynomials of kd generated by the above).

Nadia Heninger 9

The multiplicity shouldn’t be the same as total degree, and asymptotically you
don’t want it to be.

In order to achieve the bounds, bound |Q(r)| by computing the dimension and
determinant of the lattice in terms of multiplicity and degree, and then optimize
the multiplicity and total degree. This gets one almost to the bound N1/d. Cop-
persmith himself resorts to brute forcing a few final bits to get all the way to the
bound.

This optimization is a bit annoying, so we will leave it as an exercise for the
dedicated reader. Or you can check the computations worked out in general in [5].
In order to obtain a polynomial-time algorithm, we need polynomial bounds on
the total degree (which determines the dimension of the lattice to be reduced), the
multiplicity (which determines the size of the entries in the lattice), and to show
that a polynomial-time algorithm like LLL can find a sufficiently short vector.

It is interesting that this result does not require a better than exponential ap-
proximation factor for the lattice reduction algorithm used. Coppersmith notes
that the approximation factor of LLL becomes a constant factor of 2 on the bound
of the size of the root that can be obtained, which can be eliminated by brute
forcing one bit of the root.

3.6.1. Dual lattices and the solution vectors Sometimes it is easier to work with
the dual of the lattice as defined above. Observe that for our lattice L as con-
structed above whose vectors are all of the form vh = (hmR

m, . . . ,hdRd, . . . ,h0

corresponding to the coefficient vectors of some polynomial h(x) = hmxm+ · · ·+
h0 satisfying h(r) ≡ 0 mod Nk, for any of our desired integer roots r, the vector
ur = (rm/(RmNk), . . . , rd/(RdNk), . . . , r0/N

k is an element of the dual L∗, be-
cause 〈vh,ur〉 = h(r)/Nk ∈ Z by construction. We can also observe that for
|r| < R, a vector ur will be small.

3.6.2. Is Coppersmith’s bound |r| < N1/d optimal? Yes, in general. Consider
f(x) = xd, N = pd. Attempting to improve bound to |r| < N1/d+ε yields 2Nε

multiples of p that are roots. Exponentially many solutions cannot be enumerated
in polynomial time.

This counterexample does not rule out most applications of cryptographic in-
terest, where e.g. N = pq or solution is known to be unique by construction.

Using more advanced methods, it is possible to rule out the existence of an
“obvious” improvement over the above that might improve on Coppersmith’s
bound. That is, it is not possible to solve for r > N1/d with any method that
constructs an auxiliary polynomial Q(x) using powers, polynomial multipliers,
or any other method that preserves all of the p-adic and rational roots of the
input polynomial.

10Small solutions to polynomial equations using lattices and applications in cryptography

Theorem 3.6.1 (Chinburg, Hemenway, Heninger, Scherr [4]). Let f ∈ Z[x] be monic,
degree d, modulus N ∈ Z, ε > 0. There is no auxiliary polynomial of the form

h(x) =
∑
i,j

ai,jx
i(f/N)j

so that |h(r)| < 1 for all r satisfying |r| 6 N1/d+ε.

3.7. Some open problems

(1) Is there an alternative to Coppersmith’s method that circumvents these
limitations?

(2) Lattices throw away the multiplicative structure of our ideals. Is there a
tool that doesn’t?

(3) Is computing eth roots mod N equivalent to factoring N?

3.8. Exercises Your exercise for this lecture is to implement a simplified version
of Coppersmith’s method to break an RSA-encrypted ciphertext with a partially
predictable message.

4. Finding roots of polynomial equations modulo divisors of integers

In this section, we will study the problem of finding solutions to polynomials
(simplified to a linear equation to start with) modulo divisors of integers. Like
the previous section, we will address a few variants of this problem in order to
understand what makes it potentially interesting.

• Polynomial time: Solving x− a ≡ 0 over Q. This one is obvious as stated.

• Polynomial time: Solving x− a ≡ 0 mod B, B prime.

• Polynomial time: Solving x− a ≡ 0 mod B, such that B | N, factorization
of N known, N has few factors. As before, we can solve modulo each
prime, and then use the Chinese remainder theorem and Hensel lifting to
enumerate solutions modulo each divisor of N.

• Not polynomial time: Finding all solutions to x − a ≡ 0 mod B such
that B | N, factorization of N known, N has many factors. There are
exponentially many B, so enumerating all of them is exponential time.

• Hopefully not polynomial time: Solving x−a mod B, B | N, factorization
of N unknown. Finding such a solution would reveal a factor of N.

We will sketch the method to prove the following theorem in this section.

Theorem 4.0.1 (Howgrave-Graham). Given f(x) = a+ x, integer N, 0 < β 6 1, we
can find r satisfying

f(r) ≡ 0 mod B

for B | N, |B| > Nβ, when |r| < Nβ
2
.

Nadia Heninger 11

This immediately gives an alternative proof of a result that Coppersmith proved
using a slightly different lattice method, which is stated in a specialized form to
the RSA application below.

Theorem 4.0.2 (Coppersmith 1996). Let N = pq with p,q ≈
√
N. Given half the bits

(most or least significant) of p, we can factor N in polynomial time.

To show this using Theorem 4.0.1, let a be a value such that p = a+ r with
|r| < p1/2.Then r is a small solution to f(x) = a + x modulo p, a divisor of N.
Since p ≈

√
N, we set β = 1/2, and then Theorem 4.0.1 tells us we should be able

to find r < N1/4 ≈ p1/2.
If we wish, we can also combine Theorem 3.2.1 with Theorem 4.0.1. This

version was proven by May.

Theorem 4.0.3 (May). Given degree d polynomial f, integer N, we can find roots r
modulo divisors B of N satisfying

f(r) ≡ 0 mod B

for |B| > Nβ, when |r| < Nβ
2/d in time polynomial in logN and d.

4.1. Howgrave-Graham’s algorithm outline The algorithm to solve this variant
is very similar to the previous section; we just need to change the bound on the
size of the vector we are looking for in the lattice.

Input: f = x+ a ∈ Z[x], N ∈ Z, 0 < β < 1

Desired output: All r ∈ Z, |r| < Nβ
2

s.t. f(r) ≡ 0 mod B, B | N.

(1) Generate lattice of polynomial multiples of f, N:

Nk, xNk, . . . , fNk−1, . . . , fk, xfk, . . .

Any polynomial h in this lattice satisfies h(r) ≡ 0 mod Bk for r ∈ Z

satisfying f(r) ≡ 0 mod B.

(2) Pick a concrete basis for a sublattice and run the LLL algorithm to find a
short element in this sublattice.

(3) Construct a polynomial Q from the shortest vector output.

(4) Find the roots ri of Q. |Q(r)| < Bk and h(r) ≡ 0 mod Bk =⇒ h(r) = 0,
so any desired r must be a root of Q over Q.

4.2. Partial RSA key recovery example Let a encode some most significant bits
of p, a divisor of N, so that p− a is small, that is, there is a small r such that
a+ r = p. We will give a small example to show how effective this method is
even with very small lattices.

Input: f(x) = a+ x,N
Output: r < R s.t. f(r) ≡ 0 mod p, p|N, p > N1/2

12Small solutions to polynomial equations using lattices and applications in cryptography

(1) We chose the polynomial basis x(x+ a), (x+ a),N.
(2) This corresponds to a lattice basis


R2 Ra 0

0 R a

N


dimL = 3

detL = R3N

(3) LLL will find us a vector of size about |v| ≈ detL1/dimL.
(4) The algorithm will find the root when we have

|Q(r)| 6 |v| ≈ detL1/dimL < p

(R3N)1/3 < N1/2

R < N1/6

4.2.1. Achieving the Howgrave-Graham bound r < Nβ
2
. The above example

doesn’t quite get to the full bound that Howgrave-Graham establishes. As in the
the univariate Coppersmith’s theorem in the previous section, to achieve the full
bound, we need to generate a larger lattice as follows:

(1) Generate the lattice from subset of 〈f(x),N〉k so that any polynomial in
the lattice vanishes modulo Bk.

(2) Allow higher degree polynomials.

The optimization of these parameters remains annoying, and we leave it to the
enthusiastic reader, or take a look at [5].

Like the univariate Coppersmith’s theorem modulo N, this result does not
require better than an exponential approximation factor on the size of the vector
found in the lattice.

4.2.2. Exercise Your exercise for this lecture is to implement factorization from
partial knowledge using this method.

5. Hidden number problem

In the hidden number problem defined by Boneh and Venkatesan, there is a secret
integer d and a public integer modulus n (it could be prime but does not need
to be). An adversary chooses integers t1, . . . , tm, computes a relation ai + ri ≡
tid mod n for some ai and ri, and reveals the values {(ai, ti)}ni=1. The problem
is to compute the secret integer d from this information.

To put this in a familiar framework, we can write down the problem as a
system of linear equations in unknowns x1, . . . , xm,y:

a1 − t1y+ x1 ≡ 0 mod n

Nadia Heninger 13

a2 − t2y+ x2 ≡ 0 mod n

...

am − tmy+ xm ≡ 0 mod n

There are m+ 1 unknowns and m equations.

• If there are no size bounds on xi or y, then there are n possible solutions.
This is exponential in the size of the input (the bit length of n).
• If y can be chosen uniformly modulo n, then heuristically we expect to

have a unique solution once the |ri| < n
(m−1)/m.

Note that we can carry out a linear transformation to eliminate the variable y
from our input linear relations and obtain a problem of the form

a ′1 − t
′
1xm + x1 ≡ 0 mod n

a ′2 − t
′
2xm + x2 ≡ 0 mod n

...

a ′m−1 − t
′
m−1xm + xm−1 ≡ 0 mod n

We will drop the ′ in the following and assume this linear transformation has
already been carried out.

5.1. Solving the hidden number problem with lattices
The input to the problem is a collection of linear relations

a1 − t1xm − x1 ≡ 0 mod n

a2 − t2xm − x2 ≡ 0 mod n

...

am−1 − tm−1xm − xm−1 ≡ 0 mod n

in unknowns x1, . . . , xm, where there is a desired solution xi = ri with |ri| < R.

Construct the lattice basis

(5.1.1) Bs =



n

n

. . .

n

−t1 −t2 . . . −tm−1 1

a1 a2 . . . am−1 R


The vector vr = (r1, r2, . . . , rm,R) is in this lattice by construction.

14Small solutions to polynomial equations using lattices and applications in cryptography

We have:

dimL = m+ 1

detL = Rnm−1

The Gaussian Heuristic tells us that we expect the shortest vector in the lattice
to satisfy

|v| 6

√
dimL

2πe
(detL)1/dimL

We are searching for a vector with length |vr| 6
√
m+ 1R.

Thus we expect that vr will shorter than the expected shortest vector in the
lattice and appear in a (fully) reduced basis when

logR 6 blogn(m− 1)/m− (m− 1)(log(2πe))/(2m)c

In order to do well with many samples, we actually do need to solve the
shortest vector problem, which can be done in practice using an algorithm like
BKZ. This means that for large parameters, solving the hidden number problem
at the limit is exponential time in the number of samples.

This tells us that as the number of samples m increases, the size of the bound
R increases to n, but will not get all the way there.

Unlike Coppersmith’s theorem, we are not guaranteed that any sufficiently
short vector is a solution: there may be short vectors that do not solve the problem.
To obtain a theorem, one needs to assume the randomness of the {ti} and give a
statement that works with high probability. [3]

5.1.1. Application: Recovering ECDSA private keys from signatures with short
nonces A useful application of the hidden number problem in cryptanalysis is
to recover ECDSA secret keys from information about the signature nonces. This
application is due to Nguyen and Shparlinski [14].

In this section we’ll use some of the usual variable names in this application,
which collide with some of the variables we’ve used in previous sections.

In the ECDSA signature scheme, global parameters include specification of an
elliptic curve E with generator point G of order n. A secret key is an integer d
modulo n, and the corresponding public key is the curve point dG. To generate
a signature on a message hash h that we treat as an integer modulo n, the signer
chooses a secret integer k. The signature has two components: r = x(kG), the x-
coordinate of the curve point, and s = k−1(h+ dr) mod n. Note that the relation
defining the s-parts of the signaures is an integer linear relation modulo n.

In our key recovery scenario, the signer generates two signatures with short
nonces k. Let s1 = k−1

1 (h1 + dr1) mod n and s2 = k−1
2 (h2 + dr2) mod n be the

s-parts of the two signatures, and assume we know that |k| < K for some bound
K. We can eliminate d and rearrange terms to obtain

k1 − s
−1
1 s2r1r

−1
2 k2 + s

−1
1 r1r

−1
2 h2 − s

−1
1 h1 ≡ 0 mod n

Nadia Heninger 15

Let a1 = −s−1
1 r1r

−1
2 h2 − s

−1
1 h1 and t1 = −s−1

1 s2r1r
−1
2 . Then we have a linear

relation a1 − t1k2 − k1 ≡ 0 mod n that we wish to solve for unknown small k1

and k2. We construct the lattice basis

B =


n

−t1 1

a1 K


It has determinant Kn and dimension 3. Ignoring approximation factors and
constants, we expect there to be a target solution vector vk = (k1,k2,K) with
|vk| ≈ K, and for there to be non-solution short vectors v ≈ (nK)1/3. If |vk| <

(nK)1/3 then we hope to succeed with good probability. This is satisfied when
K < n1/2.

5.2. Writing down HNP as a coefficient embedding lattice Given the input
problem as stated in Equation 5.1.1, it is natural to wonder whether we could
use the polynomial coefficient-oriented approach to solve the problem, or im-
prove over the bound above. Using the coefficient embedding, we could try to
solve the problem by constructing the lattice basis

Bc =



R . . . t1R −a1

R . . . t2R −a2
. . .

...
...

R tm−1R −am−1

nR

n


The rows of the lattice correspond to the scaled coefficient embedding of the

linear equations in Equation 5.1.1, plus the coefficient embeddings of nxm−1 ≡
0 mod n and n ≡ 0 mod n.

Observe that L(Bc) = nRL∗(Bs).
Then we would anticipate something like the following algorithm to be a faith-

ful adaptation of the Howgrave-Graham/Coppersmith method for solving this
problem:

(1) Run BKZ on this lattice to produce a fully reduced lattice.
(2) Each vector in the reduced lattice basis corresponds to a linear equation

in the xi. If the vector is sufficiently short, this relation is true over Q and
not just modulo n.

(3) Each relation corresponding to a vector in the reduced lattice basis is
linearly independent, because basis vectors are linearly independent.

(4) If we have m sufficiently short vectors, we solve the system of linear equa-
tions to obtain solutions for the xi.

16Small solutions to polynomial equations using lattices and applications in cryptography

The main challenge in this approach is that we now require m short vectors in
the reduced basis, instead of just one. There are bounds on the successive minima
of a lattice, but in the generic case these are not able to give interesting bounds
for m out of m + 1 vectors in the reduced basis. One would need to analyze
the structure of this lattice in particular. This can be done using Banaszczyk’s
transference theorems [2], but it is probably easier to just work with the solution
embedding.

However, these dual formulations give a useful perspective on the lattice con-
structions: sometimes one or the other is easier to reason about or solve.

Given this perspective, it is also a natural question whether using higher de-
gree polynomials might provide a benefit as it did in the Coppersmith/Howgrave
case. Interestingly, it doesn’t seem to.

5.2.1. Exercises Work out a variant of Coppersmith’s method to solve for for
multiple chunks of unknown bits.

5.2.2. Open problem Characterize when using higher degree polynomials pro-
vides a benefit for this type of problem.

6. Translation to F[z]

In this section, we would like to translate these techniques from polynomials
with integer coefficients to polynomials whose coefficients are polynomials in
F[z].

6.1. Translating from Z to F[z]. In this section, we’ll review the various notions
that we need to translate.

• We would like to replace the results over the ring of integers Z to the
ring of polynomials with coefficients in a field F[z]. We will use z as the
variable for our polynomials.
• Where before we were looking for roots of polynomials with integer co-

efficients Z[x] that we wrote as f(x) = fdx
d + . . . f0 with fi ∈ Z, we will

now have polynomials in F[z, x], where we can explicitly write down a
polynomial f(z, x) = fd(z)xd + · · ·+ f0(z) with fi(z) ∈ F[z].
• Modular reduction works the way we would like in both cases. Where

before we were looking for roots of some polynomial f(x) modulo an
integer N, now we will be looking for roots of some polynomial f(z, x)
modulo a polyomial N(z) ∈ F[z].

• Factorization also works the way we want to in both cases. Where in the
integer case we have unique factorization into primes, in F[z] we have
unique factorization into irreducible polynomials.

• For the norm of an element f ∈ Z, we used the absolute value |f|. For
polynomials, we will use the degree, |f(z)| = degz f. This is our first major

Nadia Heninger 17

difference: the degree is non-Archimedean, where the absolute value for
integers is Archimedean.

• For a vector in Zn, explicitly we had v = (v1, . . . , vn) with vi ∈ Z.
Over the polynomials, our vectors will be in F[z]n, or explicitly v =

(v1(z), . . . , vn(z)).
• For vector length over Zn, we used the `1 and `2 norms. For F[z]n

we will define the length to be the maximum degree of a vector |v| =

maxi deg vi(z).
• Our integer lattices were Z-modules. For polynomials, we will trans-

late to F[z]-modules. Explicitly, our polynomial lattice over F[z]n will
be generated by a set of basis vectors B = {b1, . . . ,bn} with bi ∈ F[z]n

(so bi = (bi,1(z), . . . ,bi,n(z)) that are linearly independent over F[z]. An
element v ∈ L(B) is any v =

∑n
i=1 a(z)bi(z), a(z) ∈ F[z].

• We can translate lattice notions fairly straightorwardly. For example, the
determinant of a polynomial lattice can be computed as detB for a basis
B ∈ F[z]n×n of L.

6.1.1. Lattice problems over F[z]-modules

Definition 6.1.1. F[z]-module: all vectors generated by polynomial combinations
of some basis vectors {b1, . . . ,bn} ∈ F[z]n.

It turns out that lattice problems over lattices with non-Archimedean norms
are much easier than the case of Archimedean norms. In particular, SVP can be
solved in polynomial time for a lattice with a non-Archimedean norm. [16]

For polynomial lattices, there are multiple notions of reduction. The definitions
below are convenient for our purposes.

Definition 6.1.2. Let the pivot of each row vector be the leftmost element that
achieves maximal degree in that vector. A basis is reduced if its pivots are all in
different columns.

Theorem 6.1.3. If {bi} is a reduced basis for L, deg detL =
∑
i degbi.

Theorem 6.1.4 (von zur Gathen, Mulders and Storjohann). A reduced basis for a
polynomial lattice contains v ∈ L of length deg v 6 (1/dimL)(deg detL). Such a
reduced basis can be computed in polynomial time in the maximum degree of the input
basis and the dimension.

Algorithm 6.1.5 (Lattice Basis Reduction). Repeat until basis is reduced:

(1) Find a pair of vectors with pivots in the same column.
(2) Perform a row operation to reduce the degree of one of them.

Theorem 6.1.6 (Giorgi, Jeannerod, Villard). Polynomial lattice basis reduction can be
performed in

nω+o(1)D

field operations. (D = maxi degbi, bi in input basis, ω 6 2.373)

18Small solutions to polynomial equations using lattices and applications in cryptography

Theorem 6.1.7. A reduced basis contains a shortest vector of L.

• All of this works for any non-Archimedean norm as length.

6.2. Polynomial common divisors Now we can try to translate the problem of
finding roots of polynomials modulo divisors to polynomials over F[z]. Let N(z)

have total degree n. Then let f(x) = a(z) + x. We wish to find a low-degree r(z)
such that f(r(z)) ≡ 0 mod p(z), with p(z)|N(z).

Theorem 6.2.1 ([5]). Given f(x) = xd + · · ·+ f0(z) with coefficients in F[z], N(z) of
degree n, can find all r(z) such that

deg gcd(f(r(z)),N(z)) > nβ

deg r(z) 6 nβ2/d

The proof sketch will be as before, translated to polynomials. Let R be the
degree bound on the root r that we wish to find, so that deg r(z) 6 R.

(1) Choose a set of basis polynomials from {xjf(x)iN(z)k−i}.

(2) For any polynomial h(x) = hd(z)xd + hd−1(z)x
d−1 + · · ·+ h0(z), the vec-

tor vh representing the scaled coefficient embedding of h(x) can be writ-
ten as vh = (hd(z)z

dR,hd−1(z)z
(d−1)R, . . . ,h0(z)). Then degh(r(z)) 6

|vh|.

(3) Construct the polynomial lattice basis B of scaled coefficient embeddings
of the basis polynomials.

(4) Apply polynomial lattice basis reduction to the lattice basis.

(5) Map the shortest vector in the lattice to a polynomial Q(x).

(6) Bound degQ(r(z)) 6 |vQ| 6 (1/dimL(B))deg detL(B). If we can show
that (1/dimL(B))deg detL(B) < knβ where nβ 6 degp(z) so nβk 6
degp(z)k, then since Q(r(z)) ≡ 0 mod p(z)k and degQ(r(z)) < degp(z)k,
then Q(r(z)) = 0, so that r(z) can be found by factoring Q(x).

(7) Factor Q over F[z] to find its roots.

To establish the theorem, we choose a maximum degree (in x) m for our poly-
nomial basis, and a multiplicity k for our roots. Then we can choose a good set of
basis polynomials, compute the determinant and dimension of the lattice basis,
and optimize the choice of k and m with respect to β and d.

6.3. Application: Reed-Solomon decoding For our sample application of this
theorem, we will give a (polynomial lattice-based) algorithm for decoding Reed-
Solomon codes.

Input: {(z1,y1), . . . , (zn,yn)}

Nadia Heninger 19

Problem: Find all polynomials r of degree less than R such that

r(zi) = yi

for βn pairs of inputs, where 0 < β 6 1.
First, we will put the problem into our framework. Let N(z) =

∏
i(z− zi). Let

a(z) be constructed through interpolation so that a(zi) = yi for each i. Then for
an r(z) such that r(zi) = a(zi), a(z) − r(z) ≡ 0 mod (z− zi). Let S be the set of i
where this is the case. Then a(z) − r(z) ≡ 0 mod

∏
i∈S(z− zi).

Theorem 6.3.1 (Unique decoding). For unique decoding, the number of errors that can
be tolerated is e = n(1 −β) < (n− R)/2.

We will show this with a simplified version of the lattice construction above.
For our set of basis polynomials, we will use f(x) = x− a(z), and N(z).

Our explicit lattice basis will be

B =

[
zR −a(z)

N(z)

]
Its dimension is dimL = 2 and its determinant is detL = zRN(z). Using lattice

reduction, we can find a vector v ∈ L satisfying |v| 6 (R+n)/2. The degree of the
common divisor, which is the number of points matching the codeword, is βn,
and the number of non-matching (errored) points is (1 −β)n.

In order to obtain the theorem, we need to show

(R+n)/2 < nβ

(R−n)/2 < n(β− 1)

(n− R)/2 > n(1 −β)

To decode beyond the unique decoding limit, we can apply Theorem 6.2.1 and
re-obtain the list decoding bound of Guruswami and Sudan [10].

Theorem 6.3.2 (Guruswami Sudan[10]). There is an efficient algorithm to decode up
to e = (1 −β)n < n−

√
nR.

These applications illustrate the usefulness of these theorems even in the case
when factoring is “easy”. In the Reed-Solomon code application, we have the
complete factorization of the modulus N(z), but the difficult part is to find which
factor our polynomial has a root over. These bounds are also constructive: since
we are guaranteed to find all roots modulo any divisor satisfying the theorem,
this shows that there are only polynomially many root/divisor combinations sat-
isfying the bounds.

References
[1] D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz, Slide reduction, revisited - filling the

gaps in SVP approximation, Advances in cryptology – CRYPTO 2020, part ii, August 2020, pp. 274–
295.←4

20 References

[2] W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Mathematische
Annalen 296 (1993), no. 1, 625–635.←16

[3] D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of secret keys in Diffie-
Hellman and related schemes, Advances in cryptology – CRYPTO’96, August 1996, pp. 129–142.
←14

[4] T. Chinburg, B. Hemenway, N. Heninger, and Z. Scherr, Cryptographic applications of capacity
theory: On the optimality of Coppersmith’s method for univariate polynomials, Advances in cryptology
– ASIACRYPT 2016, part i, December 2016, pp. 759–788.←10

[5] H. Cohn and N. Heninger, Ideal forms of coppersmith’s theorem and guruswami-sudan list decoding,
Advances in Mathematics of Communications 9 (2015), no. 3, 311.←9, 12, 18

[6] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities, Jour-
nal of Cryptology 10 (September 1997), no. 4, 233–260.←5

[7] D. Coppersmith, Finding small solutions to small degree polynomials, International cryptography and
lattices conference, 2001, pp. 20–31.←5

[8] N. Gama and P. Q. Nguyen, Finding short lattice vectors within Mordell’s inequality, 40th annual
ACM symposium on theory of computing, May 2008, pp. 207–216.←4

[9] N. Gama and P. Q. Nguyen, Predicting lattice reduction, Advances in cryptology – EURO-
CRYPT 2008, April 2008, pp. 31–51.←4

[10] V. Guruswami and M. Sudan, Improved decoding of reed-solomon and algebraic-geometric codes, Pro-
ceedings 39th annual symposium on foundations of computer science (cat. no.98cb36280), 1998,
pp. 28–37.←19

[11] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, 6th ima interna-
tional conference on cryptography and coding, December 1997, pp. 131–142.←5

[12] A. K Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Mathe-
matische Annalen 261 (1982), 515–534.←3, 4

[13] D. Micciancio and M. Walter, Practical, predictable lattice basis reduction, Advances in cryptology –
EUROCRYPT 2016, part i, May 2016, pp. 820–849.←4

[14] P. Q. Nguyen and I. E. Shparlinski, The insecurity of the elliptic curve digital signature algorithm with
partially known nonces, Designs, Codes and Cryptography 30 (2003), no. 2, 201–217.←14

[15] P. Q Nguyen and D. Stehlé, LLL on the average, International algorithmic number theory sympo-
sium, 2006, pp. 238–256.←4

[16] J. Von zur Gathen, Hensel and newton methods in valuation rings, Mathematics of Computation 42
(1984), no. 166, 637–661.←17

UC San Diego
Email address: nadiah@cs.ucsd.edu

	Introduction
	Lattice background
	Univariate polynomials modulo integers
	Motivation
	Coppersmith's theorem
	Coppersmith's algorithm outline
	Choosing a suitable set of basis polynomials
	Ensuring that our auxiliary polynomial Q vanishes over Z.
	Achieving the Coppersmith bound r < N1/d
	Some open problems
	Exercises

	Finding roots of polynomial equations modulo divisors of integers
	Howgrave-Graham's algorithm outline
	Partial RSA key recovery example

	Hidden number problem
	Solving the hidden number problem with lattices
	Writing down HNP as a coefficient embedding lattice

	Translation to F[z]
	Translating from Z to F[z].
	Polynomial common divisors
	Application: Reed-Solomon decoding

