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In the early days, my business friends would ask me, “How does it feel to be in the real world?”
I would say, and I still feel, that mathematics seems much more real to me than business—
in the sense that, well, what’s the reality in a McDonald’s stand? It’s here today and gone
tomorrow. Now, the integers—that’s reality. When you prove a theorem, you’ve really done
something that has a substance to it, to which no business venture can compare for reality.
(Jim Simons, The emissary, June 1998)

The title of my lecture is intended to convey that what Americans call abstract algebra is in
fact very concrete. It tells us not only that the integers—and that is reality!—have certain
properties that we care about, but also why they have those properties. I was, as a student,
first vividly struck by this power of algebra when I learnt of their application to Fermat numbers
and Mersenne numbers: invoking basic results about groups, rings and fields one after the other,
one obtains astonishingly efficient and elegant methods for deciding whether a number of the
form 2m ± 1 is a prime number. The details are in my lecture. Ever since, I have been using
algebra as a means towards understanding the world I live in: the real world of mathematics
that is here today and that will not be gone tomorrow.

1 Fermat primes
A Fermat prime, named after Pierre de Fermat (1607–1665), is a prime number of the shape
2m + 1 with m ∈ Z>0. Examples: 3, 5, 17, 257, 65537. Historically, these have been of interest
in cyclotomy.

Theorem 1.1 (Carl Friedrich Gauss (1777–1855); Pierre Wantzel (1814–1848)). A regular n-
gon is constructible with compass and straightedge if and only if n equals a 2-power (including
20 = 1) times a product of finitely many pairwise distinct Fermat primes (including the empty
product 1).

It is not difficult to see that 2m+1, with m > 0, can only be prime if m = 2k for some k ∈ Z≥0,
so we will restrict our attention to exponents m that are a power of 2. We define for k ∈ Z≥0
the kth Fermat number to be Fk = 22

k
+1. It is conjectured that the only Fermat numbers Fk

that are prime are the five mentioned above.

Conjecture 1.2. Fk is prime ⇐⇒ k ∈ {0, 1, 2, 3, 4}.

It is known that Fk is not prime for 5 ≤ k ≤ 32, and for a handful of larger k, such as
k = 18 233954; for all but two of all these values of k, a factor of Fk is known, such as 641 | F5

(Euler; see Exercise 1.8). The two exceptions are k = 20 and k = 24. So how can we nonetheless
be sure that F20 = 22

20
+1 and F24 = 22

24
+1 are not prime? After all, performing trial division

up to
√
F20 = 2.59...× 10157826 is out of the question.

Theorem 1.3 (Théophile Pépin (1826–1904; 1877)). Let m ∈ Z≥2 and n = 2m + 1. Define
ri ∈ Z/nZ for i ≥ 0 by r0 = (3 mod n), ri+1 = r2i (again mod n). Then it holds that

n is prime ⇐⇒ rm−1 = −1 (= 2m).

This involves only m (≈ logn
log 2

) arithmetic operations, nowhere near as much as
√
n.
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Example. Let m = 8, so n = 257. Then r0 = 3, r1 = 9, r2 = 81, r3 = 6561 = 1421 = −121,
r4 = 14641 = 1791 = −8, r5 = 64 = 26, r6 = 212 = −24, r7 = 28 = −1, so n is prime.

Proof. We start by noting that ri = (32
i
mod n) for all i ≥ 0.

Case m is odd. Then 3 | n and n > 3, so n is not prime. On the other hand, 3 | ri for all i,
so rm−1 6= (−1 mod n). Thus both assertions are false and the equivalence holds.

Henceforth assume m is even.
⇐=: Suppose rm−1 = −1. Let d > 1 be a divisor of n; showing that d = n will prove the

primality of n. Now 32
m−1 is congruent to −1 modulo n, hence also modulo d. So 32

m−1 6≡
1 mod d but 32m ≡ 1 mod d. Hence the order of (3 mod d) in the unit group (Z/dZ)∗ divides
2m but not 2m−1, so equals 2m. Since the order of an element of a group is at most the order of
the group, we have 2m ≤ #(Z/dZ)∗ ≤ d− 1, whence d ≥ 2m +1 = n. We conclude that d = n,
as desired.

The converse is slightly more work, some of which is left to the reader in the form of the
following exercise.

Exercise 1.4. Suppose A is a finite abelian group with precisely one element of order 2, say ε. Then #A is
even, and for each α ∈ A it holds that α(#A)/2 6= ε ⇐⇒ α(#A)/2 = 1 ⇐⇒ ∃β ∈ A : α = β2.

=⇒: Assume n is prime. Then Z/nZ is a field with n elements, and we denote it by Fn. In the
exercise we take A = F∗n, of order n−1 = 2m. If ε ∈ A has order 2, then (ε−1)(ε+1) = ε2−1 = 0.
Since ε − 1 6= 0 has an inverse in the field Fn, it follows that ε = −1, whence A satisfies the
hypothesis of the exercise. Taking α = 3, we find that 32

m−1 ≡ −1 mod n unless and only
unless 3 is a square in Fn.

Suppose there is a
√
3 (i.e. an element whose square is 3) in Fn. There is also a

√
−1, namely

2m/2, so a
√
−3 exists as well, namely

√
3 ·
√
−1. We claim that ζ = −1+

√
−3

2
has order 3 in F∗n.

Indeed, ζ satisfies (2ζ+1)2 = −3, so 4(ζ2+ζ+1) = 0. As 2 has an inverse modulo n, this gives
ζ2 + ζ + 1 = 0; thus ζ3 = 1 while ζ 6= 1, proving our claim. Now Lagrange’s Theorem—one of
the first theorems one encounters in a course on group theory—states: the order of an element
of a finite group divides the order of a group. This gives that 3 = order(ζ) | #F∗n = n−1 = 2m,
a contradiction which completes the proof.

Exercise 1.5. Suppose p > 2 is prime and α ∈ F∗
p. Prove: Fp has a

√
α ⇐⇒ α(p−1)/2 = 1.

Exercise 1.6. Suppose p > 3 is prime. Then Fp has a
√
−3 ⇐⇒ 3 | p−1. Also, Fp has a

√
−1 ⇐⇒ 4 | p−1.

Conclude: Fp has a
√
3 ⇐⇒ p ≡ ±1 mod 12.

Exercise 1.7. Suppose p is a prime number dividing Fk = 22
k

+ 1.
(a) If k ≥ 0, prove that p ≡ 1 mod 2k+1. [Hint: 22

k ≡ −1 mod Fk.]
(b) If k ≥ 2, prove that p ≡ 1 mod 2k+2. [Hint: F 2k+1

k−1 ≡ −1 mod Fk.]

Exercise 1.8. (a) Using the equalities 641 = 27 · 5 + 1 = 54 + 24, prove that 232 ≡ −1 mod 641. Deduce that
641 is a prime divisor of F5 = 22

5

+ 1.
(b) Using the equalities 431 = 24 · 33 − 1 = 29 − 34 give a similar proof of the primality of 431.

Exercise 1.9. (a) Replace in the first 32 rows of the Pascal triangle each even integer by a 0 and each odd
integer by a 1. Show this yields the binary expansions of the first 32 odd n for which a regular n-gon is
constructible (including n = 1).

(b) Show that the only n for which regular n-, (n+1)- and (n+2)-gons are all constructible with ruler and
compass are n = 1, 2, 3, 5, 255, 65535.

2



2 Mersenne primes
A Mersenne prime (named after Marin Mersenne, 1588–1648) is a prime number of the shape
2m − 1 with m ∈ Z≥2. For example 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127, and

22
22

2−1−1−1 − 1 = 170 141183 460469 231731 687303 715884 105727.

Historically these have attracted interest due to their connection with perfect numbers. A
perfect number is a positive integer n that equals the sum of its divisors < n (e.g. 6 = 1+2+3,
28 = 1 + 2 + 4 + 7 + 14 and 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248).

Theorem 2.1 (Euclid, ⇐= , 3rd century BC; Leonhard Euler (1707–1783), =⇒ , 1841). Let
n ∈ Z>0 be even. Then:
n is perfect ⇐⇒ there exists m ∈ Z≥2 such that 2m − 1 is prime and n = 2m−1(2m − 1).

Conjecturally, odd perfect numbers do not exist.
We leave as an exercise to show: if 2m− 1 is prime, then m is prime. The converse does not

hold, e.g. 211 − 1 = 2047 = 23 · 89.
It is conjectured that there are infinitely many Mersenne primes. Usually the largest known

prime is a Mersenne prime, owing to the Lucas–Lehmer test to be discussed momentarily. As
of June 30th, 2022 we know 51 Mersenne primes, and the largest known prime number is
282 589933 − 1.

Theorem 2.2 (Lucas–Lehmer test; Édouard Lucas (1842–1891; 1878); Derrick Henry Lehmer
(1905–1991; 1930)). Let m ∈ Z>2 and put n = 2m − 1. Define si ∈ Z/nZ (i ≥ 1) by s1 =
(4 mod n) and si+1 = s2i − 2 for i ≥ 1. Then

n is prime ⇐⇒ sm−1 = 0.

Exercise 2.3. Let si (i ≥ 1) be defined as in the Lucas–Lehmer test, but with R replacing Z/nZ. Then for all
i ≥ 1,

si = (2 +
√
3)2

i−1

+ (2−
√
3)2

i−1

.

Proof of Theorem 2.2. In the present proof, the case that m is even is the easy one, and we
leave it to the reader. Therefore we assume m is odd. Before beginning the proof proper, we
will establish a multiplicative interpretation for sm−1 = 0. We use a variant of the formula just
given, but replacing 2 +

√
3 by (

√
2 · 1+

√
3

2
)2. Although this complicates the bases, it simplifies

both exponents to be just 2i. Further, since we want to perform arithmetic not inside R but
modulo n and its divisors, we work with a suitable ring R having an adequate supply of special
elements.

Let R be a commutative ring 6= 0 with a
√
2, a
√
3 and a 1

2
. Define α, β ∈ R by α =

√
2(1+

√
3)

2

and β =
√
2(1−

√
3)

2
, so that α2 = 2+

√
3 and β2 = 2−

√
3. Define si ∈ R (i ≥ 0) by si = α2i +β2i

(as before, s1 = 4 and si+1 = s2i − 2 for i ≥ 1). Because αβ = −1 and 2m−1 is even, we arrive
at the promised multiplicative interpretation:

sm−1 = 0 ⇐⇒ α2m−1

= −β2m−1

= −α−2m−1 ⇐⇒ α2m = −1 =⇒ order(α ∈ R∗) = 2m+1

(note that −1 6= 1 in R, since otherwise 0 = 2 ∈ R∗, forcing R = 0, which we excluded).
The next step is to produce a suitable ring R. Take a divisor d > 1 of n = 2m − 1. The

ring Z/dZ already has a 1
2
, since n is odd. It also has a

√
2 = 2(m+1)/2, with indeed square

(
√
2)2 = 2m+1 = 2 · 2m = 2; here we used that d | 2m− 1, equivalently 2m ≡ 1 mod d. However,
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Z/dZ may not have a
√
3 (see Exercise 2.5). Therefore we adjoin to Z/dZ a

√
3, yielding an

extension ring

R = (Z/dZ)⊕ (Z/dZ) ·
√
3 = {a+ b

√
3 : a, b ∈ Z/dZ}

with componentwise addition, and multiplication for which
√
3 ·
√
3 = 3. Then R is a com-

mutative ring 6= 0 having all required special elements, so we can start the actual proof of the
asserted equivalence.
⇐= : Assume that sm−1 = 0 in Z/nZ, then also in Z/dZ, hence in R. Therefore our

multiplicative interpretation shows

n < 2(n+ 1) = 2m+1 = order(α ∈ R∗) ≤ #R = d2,

so d >
√
n. But if each divisor of n greater than 1 is greater than

√
n, then n is prime.

=⇒: Suppose n is prime, then necessarily d = n. Now Z/nZ is a field we denoted Fn, and
we contend that R = Fn ⊕ Fn

√
3 is also a field. Namely, let a+ b

√
3 ∈ R be nonzero, so a 6= 0

or b 6= 0. Note that (a + b
√
3)(a − b

√
3) = a2 − 3b2. If a2 − 3b2 = 0 then b 6= 0, so a

b
=
√
3.

However, since n = 2m−1 ≡ 1 mod 3 and n ≡ −1 mod 4, Exercise 1.6 tells us that Fn does not
have a

√
3. So a2 − 3b2 6= 0 and, Fn being a field, it follows that a+ b

√
3 ∈ R∗, as contended.

Thus R is a finite field with n2 elements, denoted Fn2 , a quadratic extension of Fn. We can
now finish off the proof by invoking an elegant theorem from the theory of finite fields.

Theorem 2.4. Let p be a prime, and k ∈ Z≥1. Let Fpk be a finite field with pk elements. Then
the automorphism group of Fpk is cyclic of order k, generated by the Frobenius automorphism
Frob given by Frob(r) = rp for all r ∈ Fpk .

On the other hand, we know that R = Fn2 has a conjugation automorphism a+b
√
3 7! a−b

√
3

of order 2, interchanging α and β. By the theorem this automorphism coincides with Frob, i.e.
it sends every r ∈ R to rn. In particular, αn = Frob(α) = β = −α−1, whence α2m = αn+1 = −1.
Thus, our multiplicative interpretation implies sm−1 = 0.

This proof illustrates that problems about “ordinary” integers are often most easily solved by
working in “extensions”. Above we encountered the extensions Fn ⊂ Fn2 and Z/dZ ⊂ R; for
many other problems one uses extensions with base ring Z or Q, which form the domain of
algebraic number theory.

Exercise 2.5. Let m ≥ 3 and n = 2m − 1. Show that n is divisible by a prime p ≡ ±5 mod 12 and that for at
least half of all divisors d of n, the ring Z/dZ does not have a

√
3.

4


