
ar
X

iv
:2

00
8.

05
56

9v
3 

 [
cs

.D
S]

  1
3 

Fe
b 

20
21

A new notion of commutativity for the algorithmic

Lovász Local Lemma

David G. Harris

University of Maryland, College Park

davidgharris29@gmail.com

Fotis Iliopoulos*

Institute for Advanced Study

fotios@ias.edu

Vladimir Kolmogorov†

Institute of Science and Technology Austria

vnk@ist.ac.at

February 16, 2021

Abstract

The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used

to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and

Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic

local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient

condition for this type of algorithms to converge fast.

Besides conditions for convergence, there are other natural questions one may ask of these algo-

rithms. For instance, “are they parallelizable?”, “how many solutions can they output?”, “what is the

expected ‘weight’ of a solution?”, etc. These questions and more have been answered for a class of

LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more

general notion of commutativity (essentially matrix commutativity) which allows us to show a number

of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.

1 Introduction

The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to

establish the existence of objects that satisfy certain properties [7]. At a high level, it states that given a col-

lection of bad events in a probability space µ, if each bad-event is not too likely and, further, is independent

of most other bad events, then the probability of avoiding all of them is strictly positive.

In its simplest, “symmetric” form, it states that if each bad-event has probability at most p and is de-

pendent with at most d others, where epd ≤ 1, then with positive probability no bad-events become true.

In particular, a configuration avoiding all the bad-events exists. Although the LLL applies to general prob-

ability spaces, most constructions in combinatorics use a simpler setting we refer to as the variable version

LLL. Here, the probability space µ is a cartesian product with n independent variables, and each bad-event

is determined by a subset of the variables. Two bad-events conflict if they depend on a common variable.

*This material is based upon work directly supported by the IAS Fund for Math and indirectly supported by the National Science
Foundation Grant No. CCF-1900460. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work is also supported by
the National Science Foundation Grant No. CCF-1815328.

†Supported by the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement no 616160

1

http://arxiv.org/abs/2008.05569v3


For example, consider a CNF formula with n variables in which each clause has k literals and each

variable appears in at most L clauses. For each clause c we can define the bad event Bc that c is violated in

a chosen assignment of the variables. For a uniformly random assignment of the variables, each bad-event

has probability p = 2−k and affects at most d ≤ kL others. So when L ≤ 2k

ek , the formula is satisfiable.

Note that, crucially, this criterion does not depend on the value n.

A generalization known as the Lopsided LLL (LLLL) allows bad-events to be positively correlated

with others; this is as good as independence for the purposes of the LLL. Some notable probability spaces

satisfying the LLLL include the uniform distribution on permutations and the variable setting, where two

bad-events B,B′ are dependent only if they disagree on the value of a common variable.

In a seminal work, Moser and Tardos [22] presented a simple local search algorithm to make the variable-

version LLLL constructive. This algorithm can be described as follows:

Algorithm 1 The Moser-Tardos resampling algorithm

1: Draw the state σ from distribution µ
2: while some bad-event B is true on σ do

3: Select, arbitrarily, a bad-event B true on σ
4: Resample, according to distribution µ, all variables in σ affecting B

Moser & Tardos showed that if the symmetric LLL criterion (or more general asymmetric criterion)

is satisfied, then this algorithm quickly converges. Following this work, a large effort has been devoted

to making different variants of the LLL constructive. This research has taken many directions, including

further analysis of Algorithm 1 and its connection to different LLL criteria [4, 19, 20, 23].

One particular line of research has been to use this type of local search algorithm and variants for general

probability spaces beyond the variable LLL. These include random permutations or random matchings of

the complete graph [1, 2, 14, 18, 16], as well as settings which are not directly connected to the LLL

itself [3, 5, 15]. At a high level of generality, we summarize this in the following framework. There is a

discrete state space Ω, with a collection F of subsets (which we sometimes call flaws) of Ω. We also have

some problem-specific randomized procedure called the resampling oracle Rf for each flaw; it takes some

random action to attempt to “fix” that flaw, resulting in a new state σ′ ← Rf (σ). With these ingredients, we

define the general local search algorithm as follows:

Algorithm 2 The general local search algorithm

1: Draw the state σ from some distribution µ
2: while some flaw f holds on σ do

3: Select a flaw f of σ, according to some rule S .

4: Update σ ← Rf (σ).

Besides conditions for convergence to flawless objects, one may naturally ask further questions regarding

properties of Algorithm 2. For instance, “is it parallelizable?”, “how many solutions can it output?”, “what

is the expected ‘weight’ of a solution?”, etc. These questions and more have been answered for the Moser-

Tardos (MT) algorithm in a long series of papers [4, 6, 8, 9, 11, 13, 19, 22]. As a prominent example, the

result of Haeupler, Saha and Srinivasan [9], as well as follow-up work of Harris and Srinivasan [12, 13],

allows one to argue about the dynamics of the MT process, resulting in several new applications such as

estimating the entropy of the output distribution, partially avoiding bad events and dealing with super-

polynomially many bad events.

We note one important difference between Algorithm 1 and Algorithm 2: the choice of which flaw to

resample, if multiple flaws are simultaneously true. The flaw selection rule S should s select a flaw f ∋ σ

2



for the state σ at time t; it may depend on the prior states and may be randomized.

The original MT algorithm allows nearly complete freedom for S . For general local search algorithms,

this is much more constrained, in general; only a few relatively rigid rules are known to converge, such as

selecting the flaw of least index [16]. However, in [21], Kolmogorov identified a property of resampling

oracles that allows a free choice for resampling rule called commutativity. This free choice for S , while

seemingly a minor detail, turns out to play a key role in extending the additional algorithmic properties of

the MT algorithm to the general setting of Algorithm 2. For instance, it leads to parallel algorithms [21] and

to bounds on the output distribution [17].

Our main contribution is to introduce a notion of commutativity, essentially matrix commutativity, that

is both more general and simpler than the definition in [21]. This will provide a streamlined and high-

level explanation for a variety of results and bounds involving distributional properties of Algorithm 2.

Most of these results had already been shown, in slightly weaker forms, in a variety of prior works such as

[21, 17, 12]. However, the proofs were computationally heavy and narrowly targeted to certain probability

spaces, with numerous technical side conditions and restrictions. It was not clear how these results could be

combined or how they related to each other.

Before we provide formal definitions, let us give some intuition. For each flaw f , consider an |Ω| × |Ω|
transition matrix Af . Each row of Af describes the probability distribution obtained by resampling f at a

given state σ. We call the algorithm T-commutative if the transition matrices commute for any pair of flaws

which are “independent” (in the LLL sense). We show a number of results for T-commutative algorithms:

1. We obtain bounds on the distribution of the state at the termination of Algorithm 2. In many cases, this

distribution approximates the LLL-distribution, i.e., the distribution induced by conditioning on avoid-

ing all bad events. The bounds are similar those shown in [17] for general commutative resampling

oracles. However, they are more general and avoid a number of technical conditions. Furthermore,

the proofs are much simpler.

2. For some probability spaces, stronger and specialized distributional bounds are available, which go

beyond the “generic” LLL bounds. Some examples were shown for the permutation setting [12] and

the variable-version LLLL [12]. Previously, these bounds had been shown with ad-hoc arguments

specialized to each probability space. Our construction recovers most of these results automatically.

3. We develop a generic parallel implementation of Algorithm 2. This extends results on parallel algo-

rithms of [21, 11]. Again, the results are more general and have simpler proofs.

4. In many settings, flaws are formed from smaller “atomic” events [11] – for example, in the permu-

tation setting, events of the form πx = y. We show that, if the atomic events satisfy the generalized

commutativity definition, then so do the larger “composed” events. Due to some technical restrictions,

this natural property did not seem to hold for the original commutativity definition of [21].

1.1 Overview of our approach

Although it will require significant definitions and technical development to state our results formally, let

us try to provide a high-level summary here. As a starting point, consider Algorithm 1. One of the main

techniques introduced by Moser & Tardos [22] to analyze this algorithm was a construction referred to as a

witness tree. For each resampling of a bad-event B at a given time, they generate a corresponding witness

tree which records an “explanation” of why B was true at that time. More properly, this witness tree provides

a history of all the prior resampling which affected the variables involved in B.

The main technical lemma governing the behavior of the MT algorithm is the “Witness Tree Lemma,”

which states that the probability that a given witness tree is produced is at most the product of the probabil-

ities of the corresponding events. The bound on the algorithm runtime, as well as parallel algorithms and

3



distributional properties, then follows by taking a union bound over witness trees. This infinite sum can be

bounded using techniques similar to the analysis of Galton-Watson processes.

Versions of this Witness Tree Lemma have been shown for some variants of the MT algorithm [10, 15]

Iliopoulos [17] further showed that it held for general spaces which satisfy the commutativity property; this,

in turn, leads to the nice algorithmic properties such as parallel algorithms.

Our main technical innovation is to generalize the Witness Tree Lemma, in two distinct ways. First,

instead of keeping track of a scalar product of probabilities in a witness tree, we instead consider a matrix

product. We bound the probability of a given witness tree (or, more properly, a slight generalization known

as the witness DAG) in terms of the products of the transition matrices of the corresponding flaws. Commu-

tativity can thus be rephrased and simplified in terms of matrix commutativity for the transition matrices.

Second, we change the criterion for when to add nodes to the witness tree. In the construction of Moser

& Tardos, the general rule is to add a node for flaw f if the tree already included a node corresponding to

some later-resampled flaw g which is dependent with f . In our construction, we only add the new node f
if it can increase some transition probabilities corresponding to the tree. This is a strictly more restrictive

criterion, and leads to more “compressed” or concise explanations of the resamplings. This in turn leads to

improved convergence bounds as well as simpler, unified proofs.

At the end, we obtain the scalar form of the Witness Tree Lemma by projecting everything to a one-

dimensional space. For this, we take advantage of some methods of [3] for viewing the evolution of Algo-

rithm 2 in terms of spectral bounds.

1.2 Outline of the paper

In Section 2, we provide basic definitions for resampling oracles and for analyzing the trajectories in them.

In particular, in Section 2.1, we provide our new matrix-based definition for commutativity. In addition to

being more general than the previous definitions, it also is easier to work with algebraically.

In Section 3, we define the witness DAG following [8]. We show that the probability of producing a

given witness DAG is bounded in terms of the products of the transition matrices of the flaws it contains.

In Section 4, we show how to project this matrix bound to get useful probabilistic bounds on the behavior

of Algorithm 2. We also relate it to standard criteria such as the symmetric or asymmetric LLL.

In Section 5, we show that the new commutativity definition leads to bounds on the distribution at the

termination of Algorithm 2.

In Section 6, we show that, if there is slack in the LLL conditions, then resampling process is likely to

have low depth. As a consequence, parallel algorithms can be used to implement Algorithm 2.

In Section 7, we consider a construction for building resampling oracles out of smaller “atomic” events.

2 Background and Basic Definitions

Throughout the paper we consider implementations of Algorithm 2. For each flaw f , state σ ∈ f , and state

σ′ ∈ Ω, we define Af [σ, σ
′] to be the probability that applying the resampling oracle Rf to σ yields state

σ′, i.e.

Af [σ, σ
′] = Pr(Rf (σ, r) = σ′)

For σ /∈ f , we define Af [σ, σ
′] = 0. We sometimes write σ

f
−→ σ′ to denote that the algorithm resamples

flaw f at σ and moves to σ′.

We define a trajectory T to be a finite or countably infinite sequence of flaws (f1, f2, . . . , ), and length(T )
is its length (possibly length(T ) = ∞). For an execution of Algorithm 2, we define the actual trajectory

T̂ to be (f1, f2, . . . , ) where fi is the flaw selected for resampling at time i. Note that length(T̂ ) is the

4



number of iterations executed by the search algorithm; when the algorithm does not terminate, we have

length(T̂ ) =∞.

The key to analyzing Algorithm 2 is to keep track of the possible ways in which resampling certain

flaws f can cause other flaws g. For our purposes, we use an undirected notion of dependence. Formally,

we suppose that we have a symmetric relation ∼ on Ω, with the property that f ∼ f for all f and for every

distinct pair of flaws f 6∼ g, we are guaranteed that resampling flaw f cannot introduce g or vice-versa, i.e.

Rf never maps a state Ω− g into g and likewise Rg never maps a state from Ω− f into f .

We remark that some previous analyses of local search algorithms [2] have used a directed notion of

causality or have further conditions of when f ∼ f for a flaw f . These can sometimes give more precise

bounds, but they are not directly compatible with our definitions and framework.

For an arbitrary event E ⊆ Ω, we define eE to be the indicator vector for E, i.e. eE [σ] = 1 if σ ∈ E
and eEσ = 0 otherwise. For a state σ ∈ Ω, we write eσ as shorthand for e{σ}, i.e. the basis vector which

has a 1 in position σ and zero elsewhere. Note that, with this notation, e⊤σAf is the vector representing the

probability distribution obtained by resampling flaw f at state σ.

For flaw f , we define Γ(f) to be the set of flaws g with f ∼ g, and we also define Γ(f) = Γ(f) \ {f}.
We say that a set I ⊆ F is stable if f 6∼ g for all distinct pairs f, g ∈ I .

For vectors u, v we write u � v if u[i] ≤ v[i] for all entries i.
Regenerating oracles. The original Moser-Tardos algorithm, and extensions to other probability spaces,

can be viewed in terms of regenerating oracles [16], i.e. each resampling action Rf should convert the distri-

bution of µ conditioned on f into the unconditional distribution µ. We provide more detail later in Section 4,

but, we can summarize this crisply with our matrix notation: the resampling oracle R is regenerating if µ is

a left-eigenvector of each matrix Af , with associated eigenvalue µ(f), i.e.

∀f µ⊤Af = µ(f) · µ⊤ (1)

2.1 The new commutativity definition

The original definition of commutativity given by Kolmogorov [21] required that for every f ≁ g ∈ F ,

there is an injective mapping from state transitions of the form σ1
f
−→ σ2

g
−→ σ3 to state transitions of the

form σ1
g
−→ σ′

2
f
−→ σ3, so that Af [σ1, σ2]Ag[σ2, σ3] = Ag[σ1, σ

′
2]Af [σ

′
2, σ3].

This definition is cumbersome to use, as well as lacking important symmetry and invariance proper-

ties. As one of the major contributions of this paper, we introduce a more natural notion of algorithmic

commutativity that is also more general than the notion of [21].

Definition 2.1 (Transition matrix commutativity). We say that the resampling oracle is transition matrix

commutative (abbreviated T-commutative) with respect to dependence relation ∼ on F if AfAg = AgAf ,

for every f, g ∈ F such that f ≁ g.

Observation 2.2. If the resampling oracle is commutative in the sense of [21], then it is T-commutative.

Proof. Consider f 6∼ g and states σ, σ′. By symmetry, we need to show that AfAg[σ, σ
′] ≤ AgAf [σ, σ

′].
Since f 6∼ g, we can see that both the LHS and RHS are zero unless σ ∈ f ∩ g.

Let V denote the set of states σ′′ with Af [σ, σ
′′]Ag[σ

′′, σ′] > 0. By the definition of [21], there is an

injective function F : V → Ω such that Af [σ, σ
′′]Ag[σ

′′, σ′] = Ag[σ, F (σ′′)]Af [F (σ′′), σ′]. Therefore, we

have

(AfAg)[σ, σ
′] =

∑

σ′′∈V

Af [σ, σ
′′]Ag[σ

′′, σ′] =
∑

σ′′∈V

Ag[σ, F (σ′′)]Af [F (σ′′), σ′]

Since function F is injective, each term of the form Ag[σ, τ ]Af [τ, σ
′] is counted at most once in this

sum with τ = F (σ′′). So (AfAg)[σ, σ
′] ≤

∑

τ∈f Ag[σ, τ ]Af [τ, σ
′] = (AgAf )[σ, σ

′].

5



We remark that dependency information can in fact be recovered from knowledge of the transition

matrices themselves:

Observation 2.3. The relation defined by f ∼ g iff f = g or AfAg 6= AgAf gives a T-commutative

dependency relation for the resampling oracle.

Proof. Consider a pair of distinct flaws f, g such that flaw f causes flaw g. There must be a transition

σ
f
−→ τ such that σ /∈ g and τ ∈ g. Since matrices Af , Ag have non-negative entries, this implies that

AfAg[σ, τ ] > 0, while AgAf [σ, τ ] = 0. Thus, AfAg 6= AgAf .

When this definition applies, we define AI to be the matrix
∏

f∈I Af for a stable set I; note that this

product is well-defined (without specifying ordering of I) since the matrices Af all commute.

For the remainder of this paper, we assume that the resampling oracle R is T-commutative unless

explicitly stated otherwise.

3 Witness DAGs and matrix bounds

In this section we study witness DAGs, a key graph structure developed in [8] for analyzing the evolution of

commutative resampling oracles. At a high level, the role of a witness DAG is to give an “explanation” of

why a certain (not necessarily bad) event E appeared during the execution of the algorithm. That is, if we

want to bound the probability that E will ever appear during the algorithm execution, we simply add up the

probabilities of appearance of all the witness DAGs that explain it.

Formally, consider a directed acyclic graph G, where each vertex v ∈ G has a label L(v) from the set

F . We say that G is a witness DAG (abbreviated wdag) if it satisfies the property that for all pairs of vertices

v,w ∈ G, there is an edge between v and w (in either direction) if and only if L(v) ∼ L(w). For a wdag

G with sink nodes v1, . . . , vk, note that L(v1), . . . , L(vk) are all distinct and {L(v1), . . . , L(vk)} is a stable

set which we denote by sink(G). We say that a flaw f is unrelated to a wdag G if there is no node v ∈ G
with L(v) ∼ f .

There is a key connection between wdags and the transition matrices, which we define as follows. For

any wdag H , we define an associated |Ω| × |Ω| matrix AH inductively as follows. If H = ∅, then AH is the

identity matrix on Ω. Otherwise, we choose an arbitrary source node v of H and set AH = AL(v)AH−v.

Proposition 3.1. The definition of AH does not depend on the chosen source node v. Furthermore, there is

an enumeration of the nodes of H as v1, . . . , vt such that AH =
∏t

i=1AL(vi).

Proof. We show this by induction on |H|. When |H| = 0 this is vacuously true.

For the second property, we have AH = AvAH−v for a source node v. By induction hypothesis,

there is an ordering v2, . . . , vt of H − v such that AH−v = AL(v2) . . . AL(vt). Setting v1 = v, we have

AH = AL(v1) . . . AL(vt).

For the first property, suppose H has two source nodes v1, v2. We need to show that we get the same

value by recursing on v1 or v2, i.e

AL(v1)AH−v1 = AL(v2)AH−v2 (2)

Now apply the induction hypothesis to H − v1 and H − v2, noting that v2 is a source node of H − v1
and v1 is a source node of H − v2. We get AH−v1 = AL(v2)AH−v1−v2 , AH−v2 = AL(v1)AH−v1−v2 . Thus,

in order to show Eq. (2), it suffices to show that AL(v1)AL(v2) = AL(v2)AL(v1). Since v1, v2 are both source

nodes, we have L(v1) 6∼ L(v2). Thus, this follows from T-commutativity.

6



As a warm-up, in Section 3.1 we show how to use wdags to show fast convergence for commutative

algorithms. The main point here is to demonstrate how the new commutativity definition helps with the

crucial task of bounding the probability of appearance of a given wdag. In Section 3.2 we prove a more

general bound that will be useful to capture properties of commutative algorithms beyond fast convergence

as well as more sophisticated convergence bounds.

3.1 Warm-up: Proving bounds for fast convergence

As in the original proof of Moser and Tardos [22], in order to bound the expected number of steps of a

commutative algorithm, we will estimate the expected number of times each flaw f ∈ F is resampled.

Towards that end, we first describe a simple procedure for constructing wdags from a trajectory of the

algorithm. Since we will later show a more general result, we omit a few technical proofs for clarity.

Consider an execution of Algorithm 2. For each time t, we will generate a corresponding wdag Gt which

provides the history of the tth resampling. This wdag is built backward in time for s = t, . . . , 1. Initially, at

s = t, it has a single node labeled by ft. For s = t− 1, . . . , 1, if the wdag Gt constructed so far has a node

with label g where g ∼ fs, then we add a vertex labeled fs; otherwise, we do not modify Gt.

We say that a wdag H appears if H ∼= Gt for any value t. It is not hard to see that the number of times

the algorithm resamples a given flaw f is equal to the number of appearing wdags whose (unique) sink is

labeled by f . Thus, to calculate the expected number running time of Algorithm 2, we need to sum the

probabilities of appearance of the wdags.

One of the main ingredients in the original proof of Moser and Tardos is that the probability of appear-

ance of each wdag G is at most
∏

v∈G µ(L(v)), i.e., the product of probabilities of the bad events that label

its vertices. Their proof crucially used the properties of the variable setting and, thus, it does not extend to

other probability spaces. Our key message is that T-commutativity allows us to bound the probability of a

certain wdag appearing by considering a product of transition matrices over the label of its vertices.

The following key result ties together wdags with the algorithm dynamics. (Recall that µ denotes the

initial state distribution.)

Lemma 3.2. For a given wdag H , the probability that H appears (in the sense of Section 3.1) is at most

µ⊤AH~1.

Proof. By a limiting argument, it suffices to show that if run Algorithm 2 for any finite number of steps t
starting with state σ, then the probability that H appears is at most e⊤σ AH~1. We prove this claim by induction

on t. If H is the empty wdag, or t = 0, or σ is flawless, the claim can be easily seen to be hold vacuously.

So suppose that t ≥ 1 and S selects a flaw g to resample in σ, and define EH to be the event that H
appears when running the search algorithm A. By conditioning on the random seed used by the flaw choice

strategy S (if any), we may assume that the search strategy S is deterministic.

We can now view the evolution of A as a two-part process: we first resample g, reaching state σ′ with

probability Ag[σ, σ
′]. We then execute a new search algorithm A′ starting at state σ′, wherein the flaw

selection rule S ′ on history (σ′, σ2, . . . , σt) is the same as the choice of S on history (σ, σ′, σ2, . . . , σt). Let

us denote by G′
s the wdags produced for this new search algorithm A′.

Suppose that H appears, so that Gs
∼= H for some value s ≤ t. In this case, one of the two conditions

must hold: (i) H has a unique source node v labeled g and G′
s−1
∼= H − v; or (ii) g is unrelated to H and

G′
s−1
∼= H .

In the first case, then in order for event EH to occur on the original search algorithm A, we must also

have EH−v hold on A′ within t− 1 timesteps. By induction hypothesis, this has probability at most e⊤σ′AH~1
for a fixed σ′. Summing over σ′ gives a total probability of

∑

σ′

Ag[σ, σ
′]e⊤σ′AH−v

~1 = e⊤σAgAH−v
~1 = e⊤σ AH

~1

7



as required.

Otherwise, if g is unrelated to H , then in order for event EH to occur forA, we must also have EH occur

for A′ within t− 1 timesteps. By induction hypothesis, this has probability at most e⊤σ′AH~1 for a fixed σ′.

Summing over σ′ gives a total probability of

∑

σ′

Ag[σ, σ
′]e⊤σ′AH

~1 = e⊤σAgAH
~1.

Since Ag commutes with AH , this is at most e⊤σAHAg
~1. Since Ag is stochastic, this in turn is at most

e⊤σAH
~1, which completes the induction.

To conclude the proof of the lemma, notice that if we start the search with state τ , then the probability

that H appears in Tt is at most e⊤τ AH~1. Integrating over τ , gives
∑

τ µ[τ ]e
⊤
τ AH~1 = µ⊤AH~1.

This can be used to show a generalization of the key Witness Tree Lemma of Moser and Tardos:

Corollary 3.3. Suppose the resampling oracle is regenerating. Then, for a given wdag H , the probability

that H appears is at most
∏

v∈H µ(L(v)).

Proof. Let f1, . . . , ft be the labels of the vertices in H , ordered from source nodes to sink nodes. We can

write AH = Af1 · · ·Aft . Since µ is a left-eigenvector of every transition matrix (see Eq. (1)), we have

µ⊤AH~1 = µ⊤Af1 · · ·Aft
~1 = µ(f1) · · · µ(ft)µ

⊤~1 = µ(f1) · · · µ(ft)

As we have already argued, this directly gives a bound on the expected number of steps of the algorithm.

Corollary 3.4. Suppose the resampling oracle is regenerating. Then, the expected number of steps of the

algorithm is at most
∑

f∈F

∑

wdags H with
sink(H)={f}

∏

v∈H

µ(L(v))

We emphasize that we are not aware of any direct proof of Corollary 3.3; it seems necessary to first show

the matrix bound of Lemma 3.2, and then project down to scalars. Given Corollary 3.4, standard counting

arguments based on Galton-Watson branching processes lead to the LLL convergence conditions.

3.2 General matrix bounds

We now turn to a more general construction of wdags to explain flaw resamplings, which will be used in all

the formal proofs later in the paper. We say that f is dominated by H if AfAH
~1 � AH

~1; recall that this

means that e⊤σAfAH
~1 ≤ e⊤σAH

~1 for all states σ.

To get tight bounds for distributional properties or parallel algorithms, we need to “locally” explain

the history of a given resampling. In order to do so, we use a more refined way to generate wdags.

Consider a trajectory T . For each finite t ≤ length(T ), we can generate a corresponding wdag GT
t =

GenWitness(Q,T, t) which provides the history of a resampling at time t. Again, the main idea is to build

the tree backward in time for s = t, . . . , 1; if the current wdag GT
t does not dominate flaw fs, we should

add a vertex labeled fs. For a variety of technical reasons in our analysis, we may also want to add a node

labeled fs, even if fs is dominated; this explains the role of Q (more details will be provided later). Note

that choice of Q does not affect Algorithm 2 itself, only the analysis.

8



Algorithm 3 Forming witness GT
t = GenWitness(Q,T, t)

1: Initialize GT
t to contain a single vertex labeled ft

2: for s = t− 1, . . . , 1 do

3: if fs ∈ Q(GT
t ) or fs is not dominated by GT

t then

4: Add to GT
t a node vs labeled fs, with an edge from vs to each vj such that L(vj) ∼ fs

We write GT
[s,t] to be the wdag GT

t just after iteration s, so that GT
[s,t] is derived from GT

[s+1,t] by adding

(or not) a vertex labeled fs. In this case we have GT
t = GT

[1,t] and GT
[t,t] is a singleton node labeled ft. We

also write for convenience that GT
t is the empty graph if t = 0 or t > length(T ).

There are three possible choices for Q that we will use. The default rule Q0, which is used for most

convergence and distributional results, is defined by setting f ∈ Q0(G) if and only if G has a source

node labeled f . When analyzing parallel algorithms, we will use an alternative rule Q1 defined by setting

f ∈ Q1(H) if and only H contains a source node labeled g ∼ f . Finally, for some distributional bounds, we

use the trivial rule Q2 defined by Q2(G) = F , i.e. we always add a node at every step. For the remainder

of this paper, we assume that Q = Q0 or Q = Q1 unless specifically stated otherwise.

We say that a wdag H appears if H ∼= GenWitness(Q, T̂ , t) for any value t. For a given rule Q, we

denote by HQ the set of all non-empty wdags G which can be produced as G = GenWitness(Q,T, t) for any

search strategy S and corresponding trajectory T during the evolution of Algorithm 2. Note the following

important characterization:

Proposition 3.5. Any wdag in HQ has a single sink node.

Proof. Consider forming GT
t = GenWitness(Q,T, t). Suppose that at step s of Algorithm 3, the flaw fs is

unrelated to GT
[s+1,t]. So Afs commutes with AL(v) for every v ∈ GT

[s+1,t]; by Proposition 3.1, this implies

that Af,s commutes with AGT
[s+1,t]

, and so we have

e⊤σAfsAGT
[s+1,t]

~1 = e⊤σAGT
[s+1,t]

Afs
~1

Since matrix Afs is stochastic, this is at most e⊤σAGT
[s+1,t]

~1. So fs is dominated by GT
[s+1,t]. Also, since fs

is unrelated to GT
[s+1,t], the latter does not have a source node labeled g ∼ fs. Hence, for either rule Q0 or

rule Q1, we would not add a new vertex vs to GT
[s,t].

Thus, whenever we add a vertex vs to GT
t , it has an edge to an already-existing node of GT

t . In particular,

GT
t never gets an additional sink node (aside from the node corresponding to ft).

In light of Proposition 3.5, we define HQ(f) to be the set of wdags H ∈ HQ with sink(H) = {f}, and

note that H =
⋃

f HQ(f). If Q is understood, we write simply H and H(f). We again show the following

key result:

Lemma 3.6. For a given wdag H , the probability that H appears (in the sense of Section 3.2) is at most

µ⊤AH~1.

We need a few preliminary results to prove Lemma 3.6.

Proposition 3.7. Consider some wdag G. If GenWitness(Q,T, t) = G for a trajectory T = (f1, f2, . . . , )
with t ≥ 1, then the wdag G′ = GenWitness(Q,T ′, t − 1) for the shifted trajectory T ′ = S(T ) is uniquely

determined according to the following rule:

• If G contains a unique source node v labeled f1, then G′ = GT
t − v

9



• Otherwise, G′ = G and f1 is dominated by GT
t

Proof. If t = 1, then GT
t consists of a single node labeled f1 and GT ′

t−1 is the empty wdag, and this satisfies

the first condition. So let us suppose that t > 1, in which case Algorithm 3 obtains GT
t by possibly adding

a node v1 labeled f1 to G′ = GT ′

t−1. If Algorithm 3 adds node v1 to G′, then f1 is the label of a source node

v of GT
t , and G′ = GT

t − v. If Algorithm 3 does not add such node, then GT
t = G′. Since Q = Q0 or

Q = Q1, we know that G′ does not have a source node labeled f1, and also f1 must be dominated by G′.

Since G′ = GT
t , these imply that f1 is dominated by GT

t = G as well.

Proposition 3.8. Let H be a wdag, and tmax be a non-negative integer. If we run Algorithm 2 starting with

state σ, then Pr
(

⋃tmax
t=1 GT̂

t
∼= H

)

≤ e⊤σ AH
~1.

Proof. Define EH,tmax to be the event that GT̂
t
∼= H for some t ≤ tmax during the execution of the search

algorithm A. By conditioning on the random seed used by the flaw choice strategy S (if any), we may

assume that the search strategy S is deterministic. We prove the claim by induction on tmax.

If H is the empty wdag, the RHS is one and the statement is vacuous. So, suppose that H is non-empty.

Now if tmax = 0 or σ is flawless, then EH,tmax is impossible and again this is vacuous. So let us suppose that

tmax ≥ 1, and that S selects a flaw g to resample in σ. We can now view the evolution of A as a two-part

process: we first resample g, reaching state σ′ with probability Ag[σ, σ
′]. We then execute a new search

algorithm A′ starting at state σ′, wherein the flaw selection rule S ′ on history (σ′, σ2, . . . , σr) is the same as

the choice of S on history (σ, σ′, σ2, . . . , σr).

Suppose now that EH,tmax holds for A, i.e. GT̂
t
∼= H for some t ≤ tmax. Note that the actual trajectory

T̂ ′ for A′ is given by T̂ ′ = S(T̂ ). Thus, by Proposition 3.7, one of the two conditions must hold: (i) either

H has a unique source node labeled v and GT̂ ′

t−1
∼= H − v; or (ii) H has no such node and GT̂ ′

t−1
∼= H and g

is dominated by H .

In the first case, there must also hold EH−v,tmax−1 for A′. By induction hypothesis, this has probability

at most e⊤σ′AH~1 conditional on a fixed σ′. Summing over σ′, we get a total probability of

∑

σ′

Ag[σ, σ
′]e⊤σ′AH−v~1 = e⊤σAgAH−v~1 = e⊤σ AH~1

In the second case, there must also hold EH,tmax−1 for A′. By induction hypothesis, this has probability

at most e⊤σ′AH
~1 conditional on a fixed σ′. Summing over σ′, we get a total probability of

∑

σ′

Ag[σ, σ
′]e⊤σ′AH

~1 = e⊤σAgAH
~1

Since g is dominated by H , this is at most e⊤σAH
~1, again completing the induction.

Proof of Lemma 3.6. Suppose that we start the search at state τ . In order for H to appear, we must have

GT̂
t
∼= H for some integer t. By countable additivity of the probability measure, we have

Pr(H appears) = Pr
(

∞
⋃

t=0

GT̂
t
∼= H

)

= lim
tmax→∞

Pr
(

tmax
⋃

t=0

GT̂
t
∼= H

)

By Proposition 3.8, each term in this limit is at most e⊤τ AH~1, so the limit is also at most e⊤τ AH~1. Integrating

over τ , we get a total probability of
∑

τ µ[τ ]e
⊤
τ AH~1 = µ⊤AH~1.

We now summarize how Lemma 3.6 governs the behavior of Algorithm 2.

10



Proposition 3.9. For a trajectory T and values 0 ≤ t′ < t ≤ length(T ) we have GT
t 6= GT

t′

Proof. We show this by induction on t′. When t′ = 0, this is clear since GT
t′ is empty and GT

t is not. For the

induction step, suppose t′ > 0 and GT
t′ = GT

t . Let T ′ = S(T ). By Proposition 3.7, both GT ′

t−1 and GT ′

t′−1

are updated in the same manner depending on the flaw f1. Thus, GT ′

t−1 = GT ′

t′−1. But this contradicts the

induction hypothesis.

Proposition 3.10. The expected number of steps taken in Algorithm 2 is at most
∑

H∈HQ
µ⊤AH

~1. In

particular, if this sum converges, then Algorithm 2 terminates with probability one.

Proof. Suppose we run Algorithm 2 resulting in trajectory T̂ . For each finite value t ≤ length(T̂ ), consider

the wdag Ht = GT̂
t . This wdag Ht clearly appears, and by Proposition 3.9, all such wdags Ht are distinct.

As a result, we have length(T̂ ) ≤
∑

H∈H[[H appears]]. Taking the expectation of both sides and applying

Lemma 3.6 gives

E[length(T̂ )] ≤
∑

H∈HQ

Pr(H appears) ≤
∑

H∈HQ

µ⊤AH
~1

As we show in Appendix A, under some natural conditions the T-commutativity property is necessary

in order to obtain Lemma 3.6.

4 Estimating weights of wdags

The statement of Lemma 3.6 in terms of matrix products is very general and powerful, but difficult for

calculations. In order to use it for calculating algorithm runtime (as in Proposition 3.10), or other algorithm

properties, we need to bound the sums of the form

∑

H∈HQ

µ⊤AH
~1

There are two, quite distinct, issues that arise in this calculation. First, for a given fixed wdag H , we

need to estimate µ⊤AH~1; second, we need to bound the sum of these quantities over H ∈ HQ. The second

issue is at the heart of the probabilistic and algorithmic conditions for the LLL. As discussed by Moser &

Tardos [22], it can be viewed in terms of the evolution of certain Galton-Watson branching processes.

The first issue is not as familiar, since most previous analyses of local search algorithms have focused on

scalar-valued weights. As discussed in [3], these prior estimates can be viewed in terms of spectral bounds

on the matrices Af . (We emphasize that this approach, in terms of the flaw charges γf is only an expedient

to bounding the matrix products µ⊤AH
~1; for some applications, it is possible to take advantage of higher-

dimensional information to get more detailed bounds [3].) In this method, we define a quantity called the

charge γf for each flaw f as follows.1

γf = max
τ∈Ω

∑

σ∈f

µ(σ)

µ(τ)
Af [σ, τ ] (3)

The following result of [18] illustrates the connection between this measure and the Lopsided Lovász Local

Lemma (LLLL):

1The work [3] provides a more general definition of charge and distortion, where the “benchmark” probability distribution can be
different from the initial probability distribution µ. This can be useful in showing convergence of Algorithm 2 for non-commutative
resampling oracles. However, this more general definition does not seem to give useful bounds for distributional properties and
parallel algorithms in the context of commutative resampling oracles. Hence, we adopt the simpler definitions here.

11



Theorem 4.1 ([18]). Given a family of flaws F and measure µ over Ω, then for each set S ⊆ F − Γ(f) we

have µ
(

f |
⋂

g∈S g
)

≤ γf , where the γf are the charges of the algorithm as defined in (3).

Moreover, as shown in [2], the charge γf captures the compatibility between the actions of the algorithm

for resampling flaw f and the measure µ. To see this, define the distortion associated with f as

df := max
τ∈Ω

∑

σ∈f
µ(σ)A[σ,τ ]

µ(f)

µ(τ)
= max

τ∈Ω

µ⊤Afeτ
µ(τ)µ(f)

≥ 1, (4)

i.e., the maximum possible inflation of a state probability (relative to its probability under µ) incurred by (i)

sampling a state σ ∈ f according to µ; and then (ii) resampling flaw f at σ. Now observe from (3) that

γf = max
τ∈Ω

1

µ(τ)

∑

σ∈f

µ(σ)Af [σ, τ ] = df · µ(f). (5)

A resampling oracle R with df = 1 for all f , is called a regenerating oracle [16], as it perfectly removes the

conditional of the resampled flaw. Such regenerating oracles can be used capture applications of the more

standard versions of the LLLL. (This is equivalent to satisfying Eq. (1).)

For a wdag H , let us define the scalar values

w(H) =
∏

v∈H

γL(v)

We get the following estimate for µ⊤AH
~1 in terms of w(H):

Theorem 4.2. For any event E ⊆ Ω we have µ⊤AHeE ≤ µ(E) · w(H). In particular, with E = Ω, we

have µ⊤AH~1 ≤ w(H).

Proof. From definition of γf , it can be observed that µ⊤Af � γfµ
⊤ for any f . In particular, µ⊤Af ·θ ≤ γfθ

for any vector θ. Now, by Proposition 3.1, we can write AH = Af1 . . . Aft where f1, . . . , ft are the labels

of the nodes of H . We thus have:

µ⊤AHeE = µ⊤Af1 . . . AfteE ≤ µ⊤γf1Af2 . . . Aft ≤ · · · ≤ γf1 . . . γftµ
⊤eE = w(H)µ(E)

Corollary 4.3. For a regenerating oracle, a wdag H appears with probability at most w(H) =
∏

v∈H µ(L(v)).

In light of Theorem 4.2, we define for any flaw f the key quantity

ΦQ(f) =
∑

H∈HQ(f)

w(H).

We write Φ(f) alone if Q is clear from context. With these notations, we have the following crisp

corollaries of our previous estimates:

Corollary 4.4. 1. Any given wdag H appears with probability at most w(H).

2. The expected number of resamplings of any flaw f is at most ΦQ(f).

3. The expected runtime of Algorithm 2 is at most
∑

f ΦQ(f).

4. If ΦQ(f) <∞ for all f , then Algorithm 2 terminates with probability one.

12



The main way to bound ΦQ(f) is to inductively bound sums
∑

H∈W w(H), where W is defined as the

collection of all possible wdags, not just those which could be produced as ĜT . We define W(I) to be the

collection of all wdags H with sink(H) = I . The sum over W is tractable because of the fundamental

observation that if G ∈ W(I) has sink nodes v1, . . . , vt, then G′ = G − v1 − · · · − vt is a smaller wdag

in W(J) for J ⊆
⋃

f∈I Γ(f). Shearer’s criterion for the LLL [24] essentially boils down to using this

recursion to show that
∑

H∈W w(H) < ∞. For some probability spaces, such as the variable LLLL, we

may have additional structural restrictions on the wdags.

Some related useful quantities are Ψ(I) =
∑

H∈W(I) w(H) and Ψ(I) =
∑

J⊆I Ψ(J). For a flaw f ,

we write Ψ(f) as shorthand for Ψ({f}). Note that ΦQ(f) ≤ Ψ(f) for any Q. A useful and standard

formula (see e.g., [16, Claim 59]) is that for any stable set I we have Ψ(I) ≤
∏

f∈I Ψ(f) and Ψ(I) ≤
∏

f∈I(1 + Ψ(f)).
We summarize a few bounds on these quantities, based on versions of LLL criteria, as follows:

Proposition 4.5. 1. (Symmetric criterion) Suppose that γf ≤ p and |Γ(f)| ≤ d for parameters p, d with

epd ≤ 1. Then Ψ(f) ≤ eγf ≤ ep for all f .

2. (Neighborhood bound) Suppose that every f has
∑

g∈Γ(f) γg ≤ 1/4. Then Ψ(f) ≤ 4γf for all f .

3. (Asymmetric criterion) Suppose there is some function x : F → [0, 1) with the property that

∀f γf ≤ x(f)
∏

g∈Γ(f)

(1− x(g)).

Then Ψ(f) ≤ x(f)
1−x(f) for all f .

4. (Cluster-expansion criterion) Suppose there is some function η : F → [0,∞) with the property that

∀f η(f) ≥ γf ·
∑

I⊆Γ(f)
I stable

∏

g∈I

η(g)

Then Ψ(f) ≤ η(f) for all f .

5. (Clique-bound criterion) Suppose that the dependency graph is covered by a collection V of cliques,

i.e. f ∼ g iff there exists v ∈ V with f, g ∈ v, and suppose there is some function ζ : V → [0,∞)
with the property that

∀v ∈ V ζ(v) ≥ 1 +
∑

f∈v

γf
∏

u∈V :f∈u

ζ(u)

Then Ψ(f) ≤
∏

u∈V :f∈u ζ(u) for all f .

Proof. For completness, we briefly sketch the proofs. For the cluster-expansion criterion, we use an induc-

tion on wdag depth to show that the total weight of all wdags H ∈W(I) is at most
∏

f∈I η(f).
For the clique-bound criterion, apply the cluster-expansion criterion using function η(f) = γf

∏

v∈V :f∈v ζ(v).

For the asymmetric criterion, apply the cluster-expansion criterion using function η(f) = x(f)
1−x(f)

For the neighborhood bound criterion, apply the asymmetric criterion using x(f) = 2γf for all f .

For the symmetric criterion, apply the cluster-expansion criterion using function η(f) = eγf .

To emphasize the connection between various LLL-type bounds, our analysis of wdags, and the behavior

of Algorithm 2, we record the following results:

13



Proposition 4.6. Let R denote the expected runtime of Algorithm 2. Under the conditions of Proposition 4.5,

we have the following bounds on R:

1. If the symmetric criterion holds, then R ≤ e
∑

f γf ≤ O(|F|/d).

2. If the neighborhood-bound criterion holds, then R ≤ 4
∑

f γf ≤ O(|F|).

3. If the asymmetric criterion holds, then R ≤
∑

f
x(f)

1−x(f)

4. If the cluster-expansion criterion holds, then R ≤
∑

f η(f).

5. If the clique-bound criterion holds, then R ≤
∑

v∈V ζ(v).

5 Distributional properties

The most important consequence of commutativity is that it leads to good bounds on the distribution of the

output of Algorithm 2. Heuristically, these states should be similar in distribution to the initial distribution

µ. We also obtain bounds on the intermediate states of Algorithm 2; as discussed in [13], these can be useful

for algorithmic applications with exponentially many flaw, as implementing a step of Algorithm 2 requires

finding searching the state σ to find a flaw which is currently true on σ, if any.

Consider an event E, which is an arbitrary subset of Ω, and let us define P (E) to be the probability

that E occurs at any time during the evolution of Algorihm 2. We will show an upper bound on P (E); this

immediately also bounds the probability that E holds on the terminal state of Algorithm 2. To analyze this,

we consider adding a new flaw fE , with an arbitrary resampling rule (e.g. to do nothing). We also modify

the flaw-selection strategy S to always select to resample E, if available. For this expanded set of flaws FE ,

we define fE ∼ g for all existing flaws g ∈ F ; as a consequence of this trivial definition of ∼ for fE , the

new resampling oracle we obtain remains T-commutative.

Let us define HE to be the set of wdags which are produced as GenWitness(Q0, T, t) where event E
holds at time t but not at times 0, . . . , t−1. To avoid confusion, all other quantities H, w(H), γf ,Ψ(I),W(I)
etc. should be interpreted in terms of the original flaw set F .

The following is our fundamental observation for distributional bounds:

Proposition 5.1. P (E) ≤
∑

H∈HE µ⊤AH
~1.

Proof. Suppose Algorithm 2 (with respect to the original search strategy S) first reaches a state in E at some

time t + 1, with corresponding trajectory T̂ = (f1, . . . , ft). Note that Algorithm 2 with search strategy S
agrees with Algorithm 2 with the new search strategy S ′ at previous times 0, . . . , t. The resulting wdag

H = GenWitness(Q0, T, t + 1) is in HE . Thus, whenever E is true in the execution of Algorithm 2 on

search strategy S , there is H ∈ HE which appears for search strategy S ′. By Lemma 3.6, for any fixed such

H this has probability at most µ⊤AH~1

To obtain a more legible bound, we need a few additional defintiions. For event E and state σ ∈ E,

define Γ̃(E, σ) to be the set of flaws f ∈ F which can cause E to occur via state σ, i.e. f maps some state

σ′ /∈ E to σ ∈ E. We also define Γ̃(E) =
⋃

σ∈E Γ̃(E, σ), i.e. the set of flaws which can cause E. We say

that a set I ⊆ Γ̃(E) of flaws is orderable for E if there is an enumeration I = {g1, . . . , gr} such that

∀i = 1, . . . , r AgiAgi+1 . . . AgreE 6� Agi+1 . . . AgreE (6)

We denote by I(E) the collection of stable sets which are orderable for E.

With these notations, we get the following crisper bound:

14



Theorem 5.2. P (E) ≤
∑

I∈I(E)

∑

H∈W(I) µ
⊤AHeE .

Proof. Consider H ∈ HE with sink node v labeled fE which is generated as H = GenWitness(Q0, T, t)
for some trajectory T of the search strategy S ′. For i = 1, . . . , t let Hi = GT

[i,t]−v, and so that H1 = G−v.

We claim by induction on s that sink(Hs) is orderable to E for all s ≤ t. The base case is s = t; this

holds since sink(Hs) = ∅. The induction step holds immediately if Hs−1 = Hs, so suppose that Hs−1 has

a new sink node labeled fs. Thus fs is unrelated to Hs. Letting G′ = GT
[s,t] = Hs ∪ {v}, we then have for

any state σ:

e⊤σAfsAG′~1 = e⊤σAHsAfE~1 = e⊤σAHsAfsAfE~1 = e⊤σAHsAfseE

We first claim that fs ∈ Γ̃(E). For, if not, then fs only maps states already in E to E, and so e⊤τ AfseE ≤
e⊤τ eE for any state τ . Thus, we would have e⊤σAHsAfseE ≤ e⊤σ AHseE , and so e⊤σAfsAG′~1 ≤ e⊤σ AG′~1. In

particular, fs would be dominated by G′. Also, fs 6= L(u) for any source node v of GT
[s,t]. So, by rule Q0,

we would not add node labeled fs to GT
[s,t]. Hence Hs−1 = Hs, contradicting our assumption that we add a

new sink node to Hs−1.

Next, let I = sink(Hs); by induction hypothesis, I is orderable to E. Enumerate I = {g1, . . . , gr} to

satisfy Eq. (6). We next claim that sink(Hs−1) = I ∪ {fs} remains orderable for E. For, if not, then by

considering the ordering {fs, g1, . . . , gr} for I ∪ {fs}, then for all states σ it would hold that

e⊤σAfsAg1 . . . AgreE ≤ e⊤σ Ag1 . . . AgreE (7)

Letting V denote the sink nodes of Hs, we have AG′ = AHs−V AV AfE . Then, for any state σ, we have

e⊤σAfsAG′~1 = e⊤σ AfsAHs−VAV AfE
~1 = e⊤σ AfsAg1 . . . AgrAHs−V eE

By Eq. (7), this is at most e⊤σAg1 . . . AgrAHs−veE = e⊤σAG′~1. So again fs is dominated by G′ = GT
[s,t],

and we would not add node labeled fs to GT
[s,t]. This concludes the induction.

Thus, the wdag H1 = G− v is in W(I) where I = sink(H1) is orderable to E. To get the upper bound

on P (E), we take a union bound over possible choices for such H1; by Proposition 5.1, we have

P (E) ≤
∑

I∈I(E)

∑

H∈W(I)

µ⊤AHAfE
~1

Since fE only maps states in E, this is at most
∑

I∈I(E)

∑

H∈W(I) µ
⊤AHeE .

Using our scalar bounds from Section 4, this gives two immediate corollaries:

Corollary 5.3. P (E) ≤ µ(E)
∑

I∈I(E)Ψ(I).

Corollary 5.4. P (E) ≤ µ(E)Ψ(Γ̃(E)).

We note that Iliopoulos [17] had previously shown a bound similar to Corollary 5.4, but it had three

additional technical restrictions: (i) it only worked for commutative resampling oracles, not T-commutative

resampling oracles; (ii) it additionally required the construction of a commutative resampling oracle for the

event E itself; and (iii) if the resampling oracle is not regenerating, it gives a strictly worse bound.

The following result shows how to apply Theorem 5.2 and Corollary 5.4 with common LLL criteria.

The proofs are immediate from bounds on Ψ shown in Proposition 4.5.

Proposition 5.5. Under four criteria of Proposition 4.5, we have the following estimates for P :

1. If the symmetric criterion holds, then P (E) ≤ µ(E) · ee|Γ̃(E)|p.

15



2. If the neighborhood-bound criterion holds, then P (E) ≤ µ(E) · e4
∑

f∈Γ̃(E) γf .

3. If function x satisfies the asymmetric criterion, then P (E) ≤ µ(E) ·
∏

f∈Γ̃(E)
1

1−x(f) .

4. If function η satisfies the cluster-expansion criterion, then P (E) ≤ µ(E) ·
∑

I∈I(E)

∏

g∈I η(g).

For some probability spaces, Theorem 5.2 and Corollary 5.3 yield tighter bounds than standard LLL

distributional estimates. For example, we can recover a result of [12] for the permutation setting, where the

underlying probability space Ω is the uniform distribution on permutations on n letters, and each flaw has

the form g1 ∩ · · · ∩ gr, where each gi is an atomic event of the form πxi = yi, and where the dependency

graph is given by f ∼ g if f ∩ g = ∅. We then get the following distributional result:

Theorem 5.6 ([12]). In the permutation LLL setting, consider an event E = g1 ∩ · · · ∩ gr where each gi is

an atomic event. We have

P (E) ≤
(n− r)!

n!

r
∏

i=1

(

1 +
∑

f∈F :f∼gi

Ψ(f)
)

The work [12] showed this using an ad-hoc analysis based on a variant of witness trees; as we discuss

in Appendix B, this bound is recovered automatically from Corollary 5.3.

5.1 Alternate distributional properties for injective oracles

A number of resampling oracles have an additional useful property that we refer to as injectivity.2 We say

that R is injective if for every flaw f and state σ there is at most one state σ′ with Af [σ
′, σ] > 0. In this

case, there is a different type of distributional bounds available which can be stronger than Theorem 5.3 for

“complex” events (i.e., events which are composed from simpler events).

Most known resampling oracles, including virtually all of the commutative ones, are injective. For

example, it holds for the variable LLLL, for the uniform distribution of permutations, the uniform distri-

bution on matchings of Kn, and the uniform distribution on hamiltonian cycles of Kn [11]. Throughout

Section 5.1, we assume R is injective.

For a wdag H , we say that a wdag G is a prefix of H if G is a subgraph of H and for each directed edge

(u, v) ∈ H , where v ∈ G, we also have u ∈ G. If H 6∼= G we say it is a strict prefix. For a state E ⊂ Ω,

we define A(E) to be the collection of all pairs (H,σ) such that σ ∈ E and no strict prefix H ′ of H has

e⊤EAH−H′eσ > 0. We have the following characterization of A(E):

Proposition 5.7. If (H,σ) ∈ A(E) then sink(H) ⊆ Γ̃(E, σ).

Proof. Let v be a sink node of H . Then, consider prefix H ′ = H − v and note that AH−H′ = Af . By

definition of E-minimality, there is exactly one state τ that can map to σ to f . This state τ is not in E.

Hence, we have f ∈ Γ̃(E, σ).

With this definition, we will show the following bound; note that, due Proposition 5.7, this bound is at

least as strong as Corollary 5.4.

Theorem 5.8. P (E) ≤
∑

(H,σ)∈A(E) µ
⊤AHeσ

To show the Theorem 5.8, consider a trajectory T ending in a state ρ. We define EH,σ to be the event

that there is some time t > 0 such that H is a prefix of G = GenWitness(Q2, T̂ , t) and AG−H [σ, ρ] > 0.

2In previous papers [1, 3, 21] this property was referred to as atomicity. We use the terminology “injectivity” to distinguish it
from our later discussion of “atomic” events.

16



Proposition 5.9. Let T = (g, f2, f3, . . . , ) be a trajectory and let T ′ = S(T ). If event EH,σ holds for T ,

then one of the following two conditions must hold: (i) H has a source node labeled g and event EH−v,σ

holds for T̂ ′; or (ii) H has no source node labeled g, and g is unrelated to H , and event EH,σ′ holds for T̂ ′

where state σ′ satisfies Ag[σ, σ
′] > 0.

Proof. Suppose that H is a prefix of some G = GenWitness(Q2, T, t). Since Q2 always add nodes, G has

a unique source node v labeled g. Also, the wdag G′ = GenWitness(Q2, T
′, t− 1) satisfies G′ = G− v.

If H has a source node u labeled g as well, then wdag H ′ = H − u is a prefix of G′ = G− v. Also, we

have AG′−H′ [σ, ρ] = AG−H [σ, ρ] > 0. Thus, the event EH′,σ occurs in the trajectory T ′.

On the other hand, suppose H has no such source node. We claim that g must be unrelated to H . For, if

H contained some node u with L(u) ∼ g, then this would also correspond to some node u of G. There is a

directed path in G from v to u, so by definition of prefix v would also be in H .

So the wdag H ′ = H is a prefix of G′ = G−v. Now let σ′ denote the unique state with AG′−H [σ′, ρ] >
0, if any such state exists. By definition, the event EH,σ′ would hold for trajectory T ′. In addition, we also

would have 0 < e⊤σAG−Heρ = e⊤σ AgAG′−Heρ ≥ e⊤σAgeσ′ ; thus, Ag[σ, σ
′] > 0.

We have the key estimate:

Lemma 5.10. If Algorithm 2 starts at state τ , then event EH,σ occurs with probability at most e⊤τ AHeσ.

Proof. We will show by induction on tmax that the probability that EH,σ occurs within tmax steps is at most

e⊤τ AHeσ. Taking the limit as tmax → ∞ will then give the claimed result. The base cases where either

tmax = 0 or when τ is flawless are clear. For the induction step, suppose that we have fixed a deterministic

resampling rule S which selects flaw g in τ , and suppose that we resample state τ to τ ′, LetA be the original

search algorithm starting at τ and let A′ be the new search algorithm starting at τ ′.
Suppose that H has a source node v labeled g. By Proposition 5.9, the event EH−v,σ occurs in A′.

Summing over τ ′, we thus get the bound

Pr(EH,σ) ≤
∑

τ ′

Ag[τ, τ
′] Pr(EH−v,σ holds for A′ starting at τ ′)

By induction hypothesis, this is at most

∑

τ ′

Ag[τ, τ
′]e⊤τ ′AH−veσ = e⊤τ AgAH−veσ = e⊤τ AHeσ

as desired.

In the second case, suppose that H does not contain a source node labeled g. By Proposition 5.9, then g
is unrelated to H . Also, EH,σ′ must hold for A′ for some state σ′ with Ag[σ, σ

′] > 0. We therefore integrate

over τ ′ and take a union bound over all possible states σ′ to get:

Pr(EH,σ holds on A) ≤
∑

τ ′

σ′:Ag[σ,σ′]>0

Pr( EH,σ′ holds on A′ starting at state τ ′)

From the induction hypothesis and the fact that matrices Ag and AH commute, this implies that

Pr(EH,σ holds in A) ≤
∑

τ ′

σ′:Ag[σ,σ′]>0

Ag[τ, τ
′]e⊤τ ′AHeσ′ =

∑

σ′:Ag[σ,σ′]>0

e⊤τ AgAHeσ′ = e⊤τ AH

∑

σ′:Ag[σ,σ′]>0

Ageσ′

17



Let us define the vector x = e⊤τ AH , and we can write this as
∑

i x[i]
∑

σ′:Ag[σ,σ′]>0Ag[i, σ
′]. The term

i only contributes here if Ag[i, σ
′] > 0 and Ag[σ, σ

′] > 0. Since R is injective, this occurs only for i = σ.

So we have:
∑

i

x[i]
∑

σ′:Ag[σ,σ′]>0

Ag[i, σ
′] =

∑

σ′

x[σ]Ag[σ, σ
′]

which, by stochasticity, is precisely x[σ]. So overall, we have shown e⊤τ AH
∑

σ′∈V Ageσ′ = e⊤τ AHeσ,

which implies that Pr(EH,σ holds on A) ≤ e⊤τ AHeσ This completes the induction.

We now prove Theorem 5.8:

Proof of Theorem 5.8. Consider running the Algorithm 2 until it reaches a state in E or a flawless state. Sup-

pose it reaches a state ρ ∈ E at some time t. Then event Eρ,G has occured where G = GenWitness(Q2, T̂ , t).
Accordingly, we may select pair (H,σ) such that (i) σ ∈ E; (ii) event EH,σ holds; and (iii) H has minimal

size subject to the first two conditions.

We claim that (H,σ) ∈ A(E). For, if not, there would be some H ′ which is a strict prefix of H
and σ′ ∈ E with e⊤σ′AH−H′eσ > 0. In this case, we would have eσ′AG−H′eρ = e⊤σ′AH−H′AG−Heρ ≥
e⊤σ′AH−H′eσ · e

⊤
σAG−Heρ > 0. Also, H ′ is a prefix of H which is a prefix of G. So event EH′,σ′ also

occurs, contradicting minimality of H .

Thus, a necessary condition for reaching E is that EH,σ holds for some (H,σ) ∈ A(E). A union bound

over A(E) gives P (E) ≤
∑

(H,σ)∈A(E) Pr(EH,σ); by Lemma 5.10, each summand is at most µ⊤AHeσ .

As usual, we can use our scalar weights and Theorem 4.2 to get some simplified bound:

Corollary 5.11. We have the bounds

P (E) ≤
∑

(H,σ)∈A(E)

µ(σ)w(H) ≤
∑

σ∈E

µ(σ)Ψ(Γ̃(E, σ)) ≤ µ(E) ·max
σ∈E

Ψ(Γ̃(E, σ))

We also get a bound for disjunctive events:

Corollary 5.12. Let C be a collection of events in Ω and let E =
⋃

C∈C C . Then

P (E) ≤ µ(E) ·max
C∈C

Ψ(Γ̃(C))

Proof. For a state σ ∈ E, there must be event Cσ ∈ C holding on σ. Consider some g ∈ Γ̃(E, σ); there must

be a state τ /∈ E which gets mapped via g to σ. In particular, event Cσ is false on τ . So g ∈ Γ̃(Cσ). This

implies that Ψ(Γ̃(E, σ)) ≤ Ψ(Γ̃(Cσ)) and so Ψ(Γ̃(E, σ)) ≤ maxC∈C Ψ(Γ̃(C)). The result now follows

from Corollary 5.11.

We remark that a slightly weaker version of Corollary 5.12 had been shown in [12] for the variable LLL,

based on arguments specifically tailored to that space.

6 Parallel algorithms

Moser & Tardos [22] described a simple parallel version of their resampling algorithm, which can be sum-

marized as follows:

18



Algorithm 4 Parallel Moser-Tardos algorithm

1: Draw state X from distribution µ
2: while some bad-event is true on X do

3: Select some arbitrary MIS I of bad-events true on X
4: Resample, in parallel, all variables involved in events in I

A variety of parallel resampling algorithms have also been developed for other probability spaces

[14, 10]. One main benefit of the commutativity property is that it enables much more general parallel

implementations of Algorithm 2. As a starting point, [21] discussed a generic framework for parallelization

which we summarize as follows:

Algorithm 5 Generic parallel resampling framework

1: Initialize the state σ
2: while some flaw holds on σ do

3: Set V 6= ∅ to be the set of flaws currently holding on σ
4: while V 6= ∅ do

5: Select, arbitrarily, a flaw f ∈ V .

6: Update σ ← Rσ(σ).
7: Remove from V all flaws g such (i) σ /∈ g; or (ii) f ∼ g

Each iteration of the main loop (lines 2 – 7) is called a round. We emphasize this is a sequential

algorithm, which can be viewed as a version of Algorithm 2 with an unusual flaw-selection choice. Most

known parallel local search algorithms, including Algorithm 4, fall into this framework. Harris [11] further

showed a general method for simulating each round in parallel, for resampling oracles which satisfy a

property called obliviousness (see Section 7 for a formal definition).

One of the main results of [21] is that, when the resampling oracle is commutative, the total number of

rounds in Algorithm 5 is polylogarithmic with high probability. Thus, an RNC implementation of each round

gives an overall RNC search algorithm. We will now show that the same bound holds for T-commutative

resampling oracles, via bounding the weights of certain classes of wdags.

We define Vk to be the set of flaws V in round k, and we define Ik to be the set of flaws which are

actually resampled at round k (i.e. a flaw f selected at some iteration of line 5). Note that Ik is a stable

set. Let bk =
∑

i<k |Ii| be the total number of resamplings made before round k; thus b1 = 0, and when

“serialize” Algorithm 5 and view it as an instance of Algorithm 2, the resamplings in round k of Algorithm 5

correspond to the resamplings at iterations bk + 1, . . . , bk+1 of Algorithm 2.

Proposition 6.1. For all f ∈ Vk there exists g ∈ Ik−1 with f ∼ g.

Proof. First, suppose that f /∈ Vk−1. In this case, the only way f could become true at round k would be

that some g ∼ f was resampled at round k − 1, i.e. g ∈ Ik−1. Otherwise, suppose that f ∈ Vk−1. Then

either it was removed from Vk−1 due to resampling of some g ∼ f , or f became false during round k − 1.

In the latter case, note that in order to later become true at the beginning of round k, there must be some

other g′ ∈ Ik−1 resampled after g with g′ ∼ f .

We now show the claim by induction on k. For the base case k = 1, we can easily see that if f is

resampled at round 1 then the wdag with a singleton node labeled f appears.

For the induction step, suppose that Vk 6= ∅. So there is some f ∈ Vk. By our above claim, there must

be some g ∈ Ik−1 with g ∼ f . Now by induction hypothesis there is some wdag H with sink node labeled

g and depth k − 1 which appears. If we form a new dag H ′ by adding a sink node labeled f , we get a wdag

with depth k and sink node labeled f which appears.

19



Proposition 6.2. Consider running Algorithm 5 obtaining trajectory T̂ . Then, for each t in the range

bk + 1, . . . , bk the wdag GT̂
t = GenWitness(Q1, T̂ , t) has depth precisely k.

Proof. For each j = 1, . . . , k, let us define the corresponding wdag Hj = GT̂
[b1+1,t]. We show by backwards

induction on j the following properties hold:

• The depth of Hj is precisely k − j + 1

• The nodes v ∈ Hj with depth k − j + 1 correspond to resamplings in round j

The base case j = k is clear, since then Hj consists of a singleton node corresponding to the resampling

at time t in round k.

For the induction step, observe that we form Hj from Hj+1 by adding nodes corresponding to re-

samplings in Ij . By induction hypothesis, Hj+1 has depth k − j + 1. Since Ij is a stable set, we have

depth(Hj) ≤ 1 + depth(Hj+1) and furthermore the nodes at maximal depth correspond to resamplings in

Ij . By induction hypothesis, this implies that depth(Hj−1) ≤ k − j + 1 and that nodes v ∈ Hj with depth

k− j+1 correspond to resamplings in round j. So we just need to show that there is at least one such node.

Consider any node v of Hj+1 with depth k − (j + 1) + 1 and L(v) = g; by induction hypothesis this

corresponds to a resampling in round j+1. By Proposition 6.1, we have g ∼ fs for some time s in round j.

Let H ′ = GT̂
[s+1,t]. If v is no longer a source node in GT̂

[s+1,t], then the node w with an edge to v would be a

node of Hj of depth k − j + 1, as desired.

Otherwise, suppose that v is such a source node. Since g = L(v) ∼ fs, our definition of Q1 ensures

that Algorithm 3 will add a node labeled fs as a source node, which will have an edge to v. So fs has depth

k − j + 1 in Hj .

This completes the induction. The stated bound then holds since GT̂
t = GT̂

[bj+1,t] for j = 1.

Proposition 6.3. For any f ∈ F and index k ≥ 1, we have Pr(f ∈ Vk) ≤
∑

H∈HQ1
(f)

depth(H)=k

µ⊤AH
~1..

Proof. As we have discussed, Algorithm 5 can be viewed as an instantiation of Algorithm 2 with a flaw

selection rule S . For a fixed f , let us define a new flaw selection rule Sf as follows: it agrees with S up to

round k; it then selects f to resample at round k if it is true. The behavior of Algorithm 2 for S and Sf is

identical up through the first bk−1 resamplings. Furthermore, we have f ∈ Vk for Algorithm 5 if and only if

Algorithm 2 selects f for resampling at iteration bk + 1.

Consider the resulting wdag GenWitness(Q1, T̂ , bk+1); by Proposition 6.2 it has depth k. Furthermore,

it has a sink node labeled f . Finally, since it is produced from a trajectory corresponding to a flaw selection

rule S , it is in HQ1 . Thus, if f ∈ Vk, then there is some H ∈ HQ1(f) with depth(H) = k which appears.

To bound the probability of f ∈ Vk, we take a union bound over all such H and apply Lemma 3.6

Corollary 6.4. 1.
∑

k E[|Vk|] ≤
∑

f ΦQ1(f)

2. For any integer t ≥ 1, the probability that Algorithm 5 runs for more than 2t rounds is at most
∑

H∈HQ1
:depth(H)≥t w(H)/t.

Proof. By Theorem 4.2 and Proposition 6.3, we have E[|Vk|] ≤
∑

H∈HQ1
,depth(H)=k w(H) for each k.

Using this bound, we first compute

∑

k

E[|Vk|] ≤
∑

k

∑

H∈HQ1
depth(H)=k

w(H) =
∑

H∈HQ1

w(H) =
∑

f

ΦQ1(f)

20



For the second claim, let us define the random variable Y =
∑

k≥t |Vk|. We then have:

E[Y ] =
∑

k≥t

E[|Vk|] ≤
∑

H∈HQ1
depth(H)=k

w(H)

Now, if Algorithm 5 reaches iteration 2t, then necessarily Vk 6= ∅ for k = t, . . . , 2t, and so Y ≥ t. By

Markov’s inequality applied to Y , we thus get

Pr(Alg reaches round 2t+ 1) ≤ Pr(Y ≥ t) ≤ E[Y ]/t ≤
∑

H∈HQ1
depth(H)≥t

w(H)/t

The usual strategy to bound the sum over wdags H with depth(H) ≥ t in Corollary 6.4 is to use an

“inflated” weight function defined as

wǫ(H) = w(H)(1 + ǫ)|H| =
∏

v∈H

(

(1 + ǫ)γL(v)

)

and corresponding sum

Wǫ =
∑

H∈HQ1

wǫ(H),

for some ǫ > 0. This gives the following results:

Proposition 6.5. With probability at least 1− δ, Algorithm 5 terminates in O( log(1/δ+ǫWǫ)
ǫ ) rounds and has

∑

k |Vk| ≤ O(Wǫ/δ). Furthermore, if the resampling oracle is regenerating and satisfies the computational

requirements given in [11] for input length n, then with probability 1 − 1/poly(n) the algorithm of [11]

terminates in O( log
4(n+ǫWǫ)

ǫ ) time on an EREW PRAM.

Proof. We show only the first result; the second depends on numerous definitions and results of [11].

For the bound on
∑

k |Vk|, we simply use Corollary 6.4(1) and Markov’s inequality. For the bound on

the number of rounds, we calculate

∑

H∈HQ1
depth(H)≥t

w(H) =
∑

H∈HQ1
depth(H)≥t

wǫ(H)(1 + ǫ)−|H| ≤ (1 + ǫ)−t
∑

H∈HQ1

wǫ(H) = (1 + ǫ)−tWǫ

By Corollary 6.4(2), we thus need (1+ǫ)−tWǫ/t ≤ δ to ensure termination by round 2t with probability

at least δ. Straightforward analysis shows that this holds for t = O( log(1/δ+ǫWǫ)
ǫ ).

Bounding Wǫ is very similar to bounding
∑

H w(H) = W0, except with a small “slack” in the charges.

More specifically, we need to satisfy Proposition 4.5 except with the charges γf replaced with inflated values

(1+ǫ)γf . For example, using standard estimates (see [8, 21, 3]) we can get the following simplified bounds:

Proposition 6.6. 1. Suppose that the resampling oracle is regenerating and that the vector of probabil-

ities p(1 + ǫ) still satisfies the LLLL criterion. Then Wǫ/2 ≤ O(m/ǫ). In particular, Algorithm 5

terminates after O( log(m/δ)
ǫ ) rounds with probability 1− δ.

2. Suppose that γf ≤ p and |Γ(f)| ≤ d such that epd(1 + ǫ) ≤ 1. Then Wǫ/2 ≤ O(m/ǫ). Algorithm 5

terminates after O( log(m/δ)
ǫ ) rounds with probability at least 1− δ.

21



7 Compositional properties for resampling oracles

In many applications, the flaws and their resampling oracles are built out of a collection of simpler, “atomic”

events. For example, in the permutation LLL setting, these would be events of the form πx = y. In [11],

Harris described a generic construction for this type of composition when the atomic events satisfy an

additional property referred to as obliviousness. Let us now review this construction, and how it works with

T-commutativity.

Consider a set A of events, along with a resampling oracle R and a dependency relation ∼. The set

A should be thought of as “pre-flaws”, that is, it has all the structural algebraic properties of a resampling

oracle, but does not necessarily satisfy any convergence condition such as the LLLL. If we run the local

search algorithm with this set of flawsA, the algorithm will likely not converge.

It is allowed, but not required, to have f ∼ f for a pre-flaw f . This will make a significant difference in

determining the dependency relation for the composed flaws. Recall that in our framework a flaw f always

should have f ∼ f .

For the compositional construction, it is necessary to define explicitly how the resampling oracle Rf

uses the random seed. We suppose that σ′ ← Rf (σ) is generated by first drawing a random seed r from

some probability space Rf , and then setting σ′ = F (σ, r) for some deterministic function F . For brevity,

we write this as σ′ = rσ. With this notation, we can state the definition:

Definition 7.1 (Oblivious resampling oracle [11]). The resampling oracle R is called oblivious [11] if for

every pair f, g ∈ A with f 6∼ g and for each r ∈ Rf , one of the following two properties holds:

• For all σ ∈ f ∩ g we have rσ ∈ g

• For all σ ∈ f ∩ g we have rσ 6∈ g

Let us now suppose that this condition holds. For each f ∈ A and g1, . . . , gs ∈ A with gi 6∼ f , we

define Rf ;g1,...,gs to be the set of values r ∈ Rf such that rσ ∈ g1 ∩ · · · ∩ gt. With some abuse of notation,

we also use Rf ;g1,...,gs to refer to the probability distribution of drawing r from Rf , conditioned on having

r in the set Rf ;g1,...,gs . Note that in light of Definition 7.1 this is well-defined irrespective of σ.

For a stable set E ⊆ A, we define 〈E〉 to be the intersection of the events in E, i.e., 〈E〉 =
⋂

f∈E f .

From A, one can construct an enlarged set of events

A = {〈E〉 | E a stable subset of A}

We define the relation ∼ on A by setting 〈E〉 ∼ 〈E′〉 iff either (i) E = E′ or (ii) there exist f ∈ E, f ′ ∈ E′

with f ∼ f ′. We also define a corresponding resampling oracle R on A which will satisfy all its required

structural properties. The intent is to choose the flaw set F to be some arbitrary subset of A.; as before, A
does not necessarily satisfy any LLLL convergence criterion.

To determine R, consider some g = 〈E〉 for a stable set E, with some arbitrary enumeration E =
{f1, . . . , ft}. We define Rg to be the probability distribution on tuples r = (r1, . . . , rt) wherein each ri is

drawn independently from Rfi;fi+1,...,fs , and we set rσ = rt . . . r1σ.

Theorem 7.2 ([11]). Suppose that R is an oblivious resampling oracle for A, which is not necessarily

T-commutative. Then:

• R is an oblivious resampling oracle for A.

• The relation ∼ is a dependency relation for A.

• If the resampling oracle R onA is regenerating, then the resampling oracle onA is also regenerating.

22



• If the resampling oracle R on A is injective, then the resampling oracle on A is also injective.

It would seem reasonable that if A is commutative in the sense of Kolmogorov, then A would be as

well. Unfortunately, we do not know how to show such a result. We can show, however, that if A is T-

commutative, then A is as well, plus inheriting further nice properties. This is a good illustration of how the

new definition of commutativity is easier to work with, beyond its advantage of greater generality.

Proposition 7.3. Suppose that A is oblivious but not necessarily T-commutative. For a given flaw g = 〈E〉,
let us suppose that, in order to define Rg, we have enumerated the stable-set E as E = {f1, . . . , ft}. Then

Ag = cgAf1 . . . Aft where scalar cg is given by

c =

t
∏

i=1

1

Prri∼Rfi
(ri ∈ Rfi ; fi+1, . . . , ft)

Proof. By definition of Rg , we have Ag[σ, σ
′] = Pr(rt . . . r1σ = σ′), where each ri is drawn independently

from Rfi;fi+1,...,ft . Let us define Si = Rfi;fi+1,...,ft and σi = ri . . . r1σ for i = 0, . . . , t (where σ0 = σ). By

enumerating over possible values for σ1, . . . , σt, we get:

Ag[σ, σ
′] =

∑

σ1,...,σt

σt=σ′

t
∏

i=1

Pr
ri∼Si

(riσi−1 = σi) (8)

Now, suppose that σi /∈ fj for some j > i. In this case, the term Prri∼Si
(riσi−1 = σi) in Eq. (8) must

be zero, since ri ∈ Si ⊆ Rfi;fj . So we may restrict the sum to terms with σi ∈ fi+1 ∩ · · · ∩ ft for all

i = 0, . . . , t. For each such term, we have

Pr
ri∼Si

(riσi−1 = σi) =
Prri∼Ri

(riσi−1 = σi ∧ ri ∈ Si)

Prri∼Ri
(ri ∈ Si)

=
Prri∼Ri

(riσi−1 = σi)

Prri∼Ri
(ri ∈ Si)

=
Afi [σi−1, σ]

Prri∼Ri
(ri ∈ Si)

Substituting into Eq. (8), we get:

Ag[σ, σ
′] =

∑

σ1,...,σt

σt=σ′

Af1 [σ0, σ1] . . . , Aft [σt−1, σt]
∏t

i=1 Prri∼Ri
(ri ∈ Si)

=

∑

σ1,...,σt

σt=σ′
Af1 [σ0, σ1] . . . , Aft [σt−1, σt]

∏t
i=1 Prri∼Ri

(ri ∈ Si)

= (cAf1 . . . Aft)[σ, σ
′]

Proposition 7.4. If A is T-commutative and oblivious, then the transition matrix Ag for a flaw g = 〈E〉
does not depend on the enumeration of E.

Proof. Let E = {f1, . . . , ft}. By Proposition 7.3, we have Ag = cA′
g, where A′

g = Af1 . . . Aft . Since the

matrices Afi all commute, A′
g does not depend on the enumeration of E. Furthermore, since matrix Ag is

stochastic, the constant c can be uniquely determined from A′
g, i.e. choose an arbitrary state σ ∈ g and let

c = 1∑
σ′ A′

g[σ,σ
′] .

Theorem 7.5. If the resampling oracle is T-commutative and oblivious on A, then it is also T-commutative

on A.

Proof. Let g = 〈E〉 and g′ = 〈E′〉 for stable sets E,E′ such that g 6∼ g′. So f 6∼ f ′ for all f ∈ E and

f ′ ∈ E′. By Proposition 7.3 we have

AgAg′ = cgcg′
(

∏

f∈E

Af

∏

f ′∈E′

Af ′

)

, Ag′Ag = cg′cg

(

∏

f ′∈E′

Af ′

∏

f∈E

Af

)

for scalar constants cg, cg′ .
All these matrices Af , Af ′ commute with each other, so both quantities are equal.

23



A Necessity of T-commutativity for Lemma 3.6

Consider a set of events B∗ with a dependency relation ∼. We say that B∗ is complete if for each σ ∈ Ω
there exists a flaw hσ = {σ} ∈ B∗, and with hσ ∼ g for all g ∈ B∗. Note that this definition is satisfied

if B∗ is generated by atomic events corresponding to permutations, perfect matchings of hypergraphs, or

spanning trees.

We show now that if T-commutativity fails in a complete set of events, even for a single pair of flaws,

then some wdags may appear with probability arbitrarily higher than their weight.

Theorem A.1. Let B∗ be a complete set of regenerating oracles which contains a pair f, g ∈ B∗ with f ≁ g
and AfAg 6= AgAf . Then for any C > 0 there exists a set of flaws B ⊆ B∗ with |B| = 3, wdag H with a

single sink and a flaw resampling strategy S such that the probability that H appears in the execution of the

algorithm is at least C · w(H) = C ·
∏

v∈H µ(L(v)).

Proof. Consider states σ, τ with AfAg[σ, τ ] 6= AgAf [σ, τ ]. Denote x = AfAgeτ and y = AgAfeτ , then

x[σ] 6= y[σ]. Assume w.l.o.g. that x[σ] < y[σ]. Note that µ⊤AfAg = µ⊤AgAf = γfγg · µ
⊤ since the

oracles are regenerating, and therefore µ⊤x = µ⊤y = γfγg · µ[τ ] = γfγgγh.

Consider the following strategy S given a current state σ1: (i) if σ1 6= σ then prioritize flaws f, g, h at

steps 1,2,3 respectively; (ii) if σ1 = σ then prioritize flaws g, f, h at steps 1,2,3 respectively. We say that the

run succeeds if the sequence of addessed flaws is (f, g, h) in the first case and (g, f, h) in the second case.

Clearly, the probability of success equals e⊤σ1
AfAgeτ = e⊤σ1

x in the first case and e⊤σ1
AgAfeτ = e⊤σ1

y in the

second case. If σ1 is distributed according to µ then the probability of success is

p = µ[σ] · e⊤σ y +
∑

σ1∈Ω−{σ}

µ[σ1] · e
⊤
σ1
x = µ[σ] · (e⊤σ y − e⊤σ x) +

∑

σ1∈Ω

µ[σ1] · e
⊤
σ1
x

= µ⊤x+ µ[σ] · (y[σ]− x[σ]) > γfγgγh

Furthermore, if the run succeeds then the last state is distributed according to µ (since step 3 resamples h at

state τ , and the oracles are regenerating).

Now consider the trajectory T which repeats the sequence f, g, h for n times, and the corresponding

wdag H = GT
3n which has a single sink node labeled h. Let Sn be the strategy S repeated cyclically. From

the previous paragraph, the probabality that the run starting with some distribution µ produces H is given

by cµ · p
n−1, where cµ depends only on the initial distribution. Note that w(H) = (γfγgγh)

n. Choosing n
sufficiently large now gives the claim.

B Distributional bound for permutation LLLL: Proof of Theorem 5.6

Consider the setting where Ω is the set of permutations on n letters andA is the set of atomic events πx = y,

which we also write 〈x, y〉. The resampling oracle here, for such an event, is to update the state π ← (y z)π,

where z is uniformly drawn [n].
Throughout this section, let us fix event E = 〈C〉, for a stable set C . Consider a stable set I ⊆ A. We

can form a bipartite graph GI,E as follows: the left vertices correspond to C (we call these C-nodes), and

the right vertices correspond to I (we call these I-nodes). There is an edge from (x, y) to (x′, y′) if x = x′

or y = y′. (In this case, for brevity, we write (x, y) ∼ (x′, y′).) Since I and C are stable, the graph GI,E

has degree at most two. (Each (x′, y′) on the left may have an edge to some node (x′, y) and to an a node of

the form (x, y′), but no other nodes). So, GI,E decomposes into paths and cycles.

We define the active conditions Active(I) as follows. First, for each I-node (x′, y′), we have (x′, y′) ∈
Active(I). Next, consider some maximal path starting and ending at C-nodes (which we call a C-path). The

24



path can be written (in one of its two orientations) as (x1, y1), (x1, y2), (x2, y2), . . . , (xk, yk−1), (xk, yk). In

this case, we also have an active condition (xk, y1) in Active(I). (It is possible that k = 1 here, in which

case (x1, y1) is an isolated C-node of GI,E .) We say that a permutation π satisfies I if πx = y for all

(x, y) ∈ Active(I). We also write a(I) = |Active(I)|.
The explanation for active conditions comes from the following observation:

Proposition B.1. Consider a state π ∈ Ω. If π does not satisfy I , then e⊤πAIeE = 0. Otherwise, we have

e⊤πAIeE =
(n − |C|)!

n|I|(n − a(I))!

Proof. We show this by induction on |I|. In the base case I = ∅, AI is the identity, and note that Active(I)
is simply the set C . In this case, e⊤πAIeE is simply the indicator function that π ∈ E, which holds iff

πx = y for all (x, y) ∈ Active(I) iff πx = y for all (x, y) ∈ C .

For the induction step, let us first show that e⊤πAIeE = 0 if π does not satisfy I . First, suppose that

πx 6= y for some f = 〈x, y〉 ∈ I . In this case, we can write AI = AfAI−f . Since e⊤πAf = 0, we clearly

have e⊤πAIeE = 0.

Next, suppose that πx1 6= yk where (x1, y1), (x1, y2), (x2, y2), . . . , (xk, yk−1), (xk, yk) is a path starting

at C-node (x1, y1) and ending at (xk, yk). If k = 1, then none of the flaws f ∈ I are neighbors of event

(x1, y1), and in particular if (x1, y1) is false on π then it is also false after resampling them all. So in this

case, again if πx1 6= yk then e⊤πAIeE = 0.

So let us assume that k > 1, and hence we know (x1, y2) is an I-node. Thus, as discussed above, we

must have πx1 = y2 . We can write AI = AfAI−feE where f = 〈x1, y2〉, and so

e⊤πAIeE =
∑

π′

Af [π, π
′]e⊤π′AI−feE .

Consider some possible state π′ here which can be obtained from π by resampling f . By induction

hypothesis, the summand is zero unless π′ satisfes I−f . Removing f from I changes the active conditions:

now (x1, y1) becomes an isolated node in GI−f,E , and there is a new maximal path starting at (x2, y2) which

gives rise to an active condition (xk, y2).
We know that π′ = (y1 z1)π for some value z1. We also know that πx1 = y2, π

′x1 = y1. This means

that we must have z1 = y2 and hence π′ = (y1 y2)π. Also, π′ must satisfy the active conditions π′xk = y2.

Hence πxk = (y1 y2)π
′xk = (y1 y2)y2 = y1 as desired.

So we have shown that the desired bound holds if π does not satisfy I . Suppose now that π satisfies I .

There are a number of possible cases here:

1. Suppose as before that GI,E has a maximal path (x1, y1), (x1, y2), (x2, y2), . . . , (xk, yk−1), (xk, yk)
starting and ending at C-nodes and k > 1. In this case, by the above argument, letting f = 〈x1, y2〉,
we have again:

e⊤πAIeE =
∑

π′

Af [π, π
′]e⊤π′AI−feE.

Since π satisfies πxk = y1 and πx1 = y2, there is precisely one possible term π′ here, corresponding

to π′ = (y1 y2)π, which satisfies Active(I − f). So by induction hypothesis we have

e⊤πAIeE = Af [π, π
′]

(n− |C|)!

n|I−f |(n− a(I − f))!

Here, a(I − f) = a(I) and Af [π, π
′] = 1/n. So this is

(n−|C|)!

n|I|(n−a(I))!
, as claimed.

25



2. Suppose that GI,E contains a cycle, or contains a maximal path which begins at an I-node and termi-

nates in a C-node. There are many different sub-cases here, including dependency on the whether the

x-coordinates or y-coordinates change first. All these cases are completely analogous; for simplicity

of exposition, we will consider just one of these cases.

Suppose that GI,E contains a maximal path of the form (x1, y2), (x2, y2), . . . , (xk−1, yk), (xk, yk)
where (x1, y2) is an I-node and (xk, yk) is a C-node Letting f = 〈x1, y2〉 ∈ I , we have in this case:

e⊤πAIeE =
∑

π′

Af [π, π
′]e⊤π′AI−feE.

Consider π′ = (y2 z2)π. By induction hypothesis, π′ must satisfy Active(I − f). Removing f
destroys the active condition (x1, y2) but adds a new active condition (xk, y2) corresponding to the

maximal path (x2, y2), . . . , (xk, yk). This is the only condition that could possibly be affected in π′.

There is exactly one value z2 which satisfies this condition. as π′xk = y2 iff (y2 z2)πxk = y2 iff

πxk = z2. As a(I − f) = a(I) again, the calculation is precisely analogous to the previous case.

3. Suppose that GI,E has a maximal path (x1, y1), (x1, y2), . . . , (xk−1, yk), (xk, yk), (xk, yk) where

(x1, y1) and (xk, yk) are I-nodes. Letting f = 〈x1, y1〉 ∈ I , we have again:

e⊤πAIeE =
∑

π′

Af [π, π
′]e⊤π′AI−feE.

Removing this f destroys an active condition (x1, y1) and adds no new ones. Furthermore, in order

for π′ = (y1 z1)π to satisfy an active condition (x, y) ∈ Active(I − f), we must have z1 6= y (as

currently πx = y. Thus, there are precisely n− a(I − f) choices for z1.

By induction hypothesis, for each such choice of π′, the value of e⊤π′AI−feE is
(n−|C|)!

n|I−f |(n−a(I−f))!
=

(n−|C|)!

n|I|−1(n−a(I)+1)!
. Summing over the n− a(I) + 1 choices for z1, we get a total probability of

(n− a(I) + 1) ·
1

n
·

(n− |C|)!

n|I|−1(n− a(I) + 1)!
=

(n− |C|)!

n|I|(n− a(I))!

Proposition B.2. If f ∈ I , then e⊤πAfAIeE = 1
ne

⊤
πAIeE for any state π.

Proof. Let f = 〈x, y〉, and consider state π. If πx 6= y, then both LHS and RHS are equal to zero (since

(x, y) is an active condition of I). Suppose that π satisfies πx = y, and we resample π to π′ = (y z)π. We

can write

e⊤πAfAIeE =
∑

π′

Af [π, π
′]e⊤π′AIeE .

By Proposition B.1, the summand is non-zero only if π′ satisfies Active(I), and in particular satisfies

π′x = y. This occurs only if z = y in which case π′ = π with summand 1
ne

⊤
πAIeE .

Proposition B.3. Consider a stable set I = {〈F1〉, . . . , 〈Fk〉} ofA and let J = F1 ∪ · · · ∪Fk. For any state

π, we have

e⊤πAIeE = n|J |
k
∏

i=1

(n− |Fi|)!

n!
e⊤πAJeE

26



Proof. We show this by induction on k. Let us define fi = 〈Fi〉 for each i. Case k = 0 holds vacuously.

For the induction step, let I ′ = {〈F1〉, . . . , 〈Fk−1〉} and J ′ = F1 ∪ · · · ∪Fk−1. By induction hypothesis, we

can write

e⊤πAIeE = e⊤πAfkAI′eE = e⊤π n
|J ′|Afk

k−1
∏

i=1

(n− |Fi|)!

n!
AJ ′eE

Let us write Fk = {g1, . . . , gt}. By Proposition 7.3, we have Afk = cAg1 . . . Agt = cAFk
, where the

scalar constant c is given by

c =
t
∏

i=1

1

Prr∈Rgi
(r ∈ Rgi ; gi+1, . . . , gt)

=
nt(n− t)!

n!

Thus, we have

e⊤πAIeE = e⊤π n
|J ′|AJ ′

k−1
∏

i=1

(n− |Fi|)!

n!
·
nt(n− t)!

n!
AFk

eE

We have J = J ′ ∪ Fk, and AJ ′AFk
= AJ

∏

g∈Fk∩J ′ Ag and t = |Fk+1|, so we can write this as:

e⊤πAIeE = nt+|J ′|
k
∏

i=1

(n− |Fi|)!

n!
e⊤π

(

∏

g∈Fk∩J

Ag

)

AJeE (9)

By Proposition B.2, we have e⊤πAgAJeE = 1
nAJeE for each g ∈ Fk ∩ J ′. Hence, we have

e⊤πAJ

∏

g∈Fk∩J

AgeE = n−|Fk∩J
′|e⊤πAJeE ,

and substituting back into Eq. (9), we have:

e⊤πAIeE = nt+|J ′|−|Fk∩J
′|

k
∏

i=1

(n− |Fi|)!

n!
e⊤πAJ

To finish the induction, observe that t+ |J ′| − |Fk ∩ J ′| = |Fk|+ |J
′| − |Fk ∩ J ′| = |Fk ∪ J ′| = |J |.

Proposition B.4. Consider a stable set I ⊆ A and some f ∈ A with f 6∼ I . Let I ′ = I ∪{f}. Then exactly

one of the two conditions holds: (i) a(I ′) = a(I) and there is a C-path with ane endpoint g ∼ f ; or (ii)

a(I ′) = a(I) + 1 and Active(I) ⊆ Active(I ′).

Proof. Suppose that f = 〈x, y〉 and let I ′ = I ∪ {f}. Every active condition corresponding to a I-node in

GI,E is preserved in GI′,E , plus there will be one new active condition corresponding to (x, y).
The only way that GI′,E could gain an additional active condition, beyond this one, is if (x, y) partici-

pates in a C-path. In this case, GI,E would contain C-paths with endpoints (x′′, y′′), (x, y′) and (x′, y), (x′′′, y′′′)
respectively. Then the two active conditions (x, y′′) and (x′′′, y) are removed in Active(I), replaced by two

new active conditions (x, y) and (x′′′, y′′) in Active(I ′). So a(I ′) = a(I).
The only way that GI′,E could lose an active condition would be if GI,E has a C-path with an endpoint

g ∼ f . We have already discussed what occurs if there are two such paths. If there is just one, then this is

the only additional active condition lost in I ′, and so a(I ′) = a(I).
In other cases, we have Active(I ′) = Active(I) ∪ {(x, y)} and the result holds.

Proposition B.5. Let I = {〈F1〉, . . . , 〈Fk〉} be a stable set in A and let f = 〈Fk+1〉 ∈ A where f 6∼ I .

Consider the stable sets J = F1 ∪ · · · ∪ Fk and J ′ = J ∪ Fk+1 of A. If a(J ′) = a(J) + |J ′ − J |, then f is

dominated by I in A.

27



Proof. Consider stable set I ′ = I ∪{f} = {〈F1〉, . . . , 〈Fk+1〉}. We want to show that e⊤πAI′eE ≤ e⊤πAIeE
for any state π. By Proposition B.3, this is equivalent to showing that

n|J ′|
k+1
∏

i=1

(n− |Fi|)!

n!
e⊤πAJ ′eE ≤ n|J |

k
∏

i=1

(n− |Fi|)!

n!
e⊤πAJeE

If we define t = |J ′ − J |, and divide common terms, this is equivalent to showing that:

e⊤πAJ ′eE
e⊤πAJeE

≤
n!

nt(n− |Fk+1|)!
(10)

By Proposition B.4, the only way to have a(J ′) = a(J) + t is to have Active(J) ⊆ Active(J ′). In this

case, by Proposition B.1, we have e⊤πAJ ′eE = 0 = e⊤πAJeE if π does not satisfy J . If π does satisfy J ,

then by Proposition B.4 we have e⊤πAJeE = (n−|C|)!

n|J|(n−a(J))!
and also

e⊤πAJ ′eE ≤
(n− |C|)!

n|J ′|(n− a(J ′))!
=

(n− |C|)!

n|J |+t(n− a(J)− t)!

Overall, we have

e⊤πAJ ′eE
e⊤πAJeE

≤

(n−|C|)!

n|J|+t(n−a(J)−t)!

(n−|C|)!

n|J|(n−a(J))!

=
(n− a(J))!

nt(n− a(J)− t)!
≤

n!

nt(n− t)!
≤

n!

nt(n− |Fk+1|)!

which satisfies Eq. (10).

Proposition B.6. For any stable set I ∈ I(E), there is an injective function φI : I → C which satisfies the

property that g ∼ φI(g) for all g ∈ I .

Proof. By definition, I can be ordered as I = {〈F1〉, . . . , 〈Fk〉} such that each 〈Fi〉 is not dominated

by {F1, . . . , Fi−1}. Let us define Ji = F1 ∪ · · · ∪ Fi for each i. By Proposition B.5, we must have

a(Ji) 6= a(Ji−1) + |Fi| for each value i, as otherwise Fi would be dominated by {〈F1〉, . . . , 〈Fi−1〉}.
By Proposition B.4, there must be some gi ∈ Fi − Ji−1 with a(Ji ∪ {gi}) = a(Ji) and so the graph

GJi,E has a C-path P ending at a node f ∼ gi. This path P corresponds to some a C-path P ′, which is

a subsequence of P , in the graph G{g1,...,gi−1},E , and so also have a({g1, . . . , gi−1}) = a({g1, . . . , gi}).
Since a(∅) = |C|, this implies that a({g1, . . . , gi}) = |C| for all i.

Let H = {g1, . . . , gk}. Now, all the paths in graph GH,E must be C-paths. For any such C-path of the

form h1, gi1 , h2, gi2 , . . . , gis , hs+1, we can select φI(gi1) = h1, . . . , φI(gis) = hh+1.

We can now show Theorem 5.6. Let C = {g1, . . . , gt}. First, we have µ(E) = (n−t)!
n! . Next, consider

enumerating a set I ∈ I(E). By Proposition B.6, we can choose, for each g ∈ C , to either include some

corresponding preimage f = φ−1
I (g) in I , or not include it. Let us write Ig = ∅ if there is no such f , or

Ig = {f} for such f . Thus I =
⋃

g∈C Ig. Overall, this shows that

∑

I∈I(E)

Ψ(I) ≤
∑

Ig1 ,...,Igt

Ψ(Ig1 ∪ · · · ∪ Igt) ≤
∑

Ig1 ,...,Igt

Ψ(Ig1) · · ·Ψ(Igt)

where the last inequality follows from log-subadditivity of Ψ. This can be written as
∏t

i=1

∑

Igi
Ψ(Igi).

The case of Igi = ∅ contributes 1, and the case of Igi = {f} contributes Ψ(f).

28



References

[1] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the Lovász local

lemma. Journal of the ACM, 63(3):Article #22, 2016.

[2] Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov. A local lemma for focused stochastic

algorithms. SIAM Journal on Computing, 48(5):1583–1602, 2019.

[3] Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the Lovász local lemma: Point to

set correlations and their algorithmic applications. In Proc. 60th Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS), pages 725–744, 2019.

[4] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms for the

Lovász local lemma. SIAM Journal on Computing, 42(6):2132–2155, 2013.

[5] Antares Chen, David G. Harris, and Aravind Srinivasan. Partial resampling to approximate covering

integer programs. Random Structures & Algorithms, pages 69–93, 2021.

[6] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local lemma and

graph coloring. Distributed Computing, 30(4):261–280, 2017.

[7] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related

questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th

birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.

[8] Bernhard Haeupler and David G. Harris. Parallel algorithms and concentration bounds for the Lovász

local lemma via witness DAGs. ACM Transactions on Algorithms (TALG), 13(4):Article #25, 2017.

[9] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the Lovász local

lemma. Journal of the ACM, 58(6):Article #28, 2011.

[10] David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the lopsided Lovász local

lemma. ACM Transactions on Algorithms, 13(1):Article #17, 2016.

[11] David G. Harris. Oblivious resampling oracles and parallel algorithms for the Lopsided Lovász Local

Lemma. In Proc. 30th annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pages 841–860,

2019.

[12] David G. Harris. New bounds for the Moser-Tardos distribution. Random Structures & Algorithms,

57(1):97–131, 2020.

[13] David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the Moser-Tardos

distribution. ACM Transactions on Algorithms, 13(3):Article #33, 2017.

[14] David G. Harris and Aravind Srinivasan. A constructive Lovász Local Lemma for permutations. The-

ory of Computing, 13(1):Article #17, 2017.

[15] David G. Harris and Aravind Srinivasan. The Moser–Tardos framework with partial resampling. Jour-

nal of the ACM, 66(5):Article #36, 2019.

[16] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via resam-

pling oracles. SIAM Journal on Computing, 49(2):394–428, 2020.

29



[17] Fotis Iliopoulos. Commutative algorithms approximate the LLL-distribution. Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques, 2018.

[18] Fotis Iliopoulos and Alistair Sinclair. Efficiently list-edge coloring multigraphs asymptotically opti-

mally. In Proc. 14th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2319–

2336, 2020.

[19] Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proc. 43rd annual ACM

Symposium on Theory of Computing (STOC), pages 235–244, 2011.

[20] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. A sharper local lemma with improved applica-

tions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques, pages 603–614. 2012.

[21] Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. SIAM Journal on

Computing, 47(6):2029–2056, 2018.

[22] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma. Journal

of the ACM, 57(2):Article #11, 2010.

[23] Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM Journal on Discrete

Mathematics, 28(2):911–917, 2014.

[24] J.B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.

30


	1 Introduction
	1.1 Overview of our approach
	1.2 Outline of the paper

	2 Background and Basic Definitions
	2.1 The new commutativity definition

	3 Witness DAGs and matrix bounds
	3.1 Warm-up: Proving bounds for fast convergence
	3.2 General matrix bounds

	4 Estimating weights of wdags
	5 Distributional properties
	5.1 Alternate distributional properties for injective oracles

	6 Parallel algorithms
	7 Compositional properties for resampling oracles
	A Necessity of T-commutativity for Lemma 3.6
	B Distributional bound for permutation LLLL: Proof of Theorem 5.6

