Quantum Query Complexity

PCMI Graduate Summer School 2023
Instructor: Yassine Hamoudi. Teaching assistant: Angelos Pelecanos.
Course page: https://yassine-hamoudi.github.io/pcmi2023/

Problem Session 3

The recording and adversary methods

Problem 1 (Recording method \& Final condition)

Recall the Search problem that asks to find a value i such that $x_{i}=1$ using queries to a uniformly random input $x \in\{0, \ldots, n-1\}^{n}$. The progress measure Δ_{t} was defined as the probability that the record contains a solution $x_{i}=1$ after t queries. The goal of the next questions is to show that the progress must be large for an algorithm to succeed.

Question 1. For any integer T, show that no randomized algorithm can succeed (i.e. output i such that $x_{i}=1$) with probability larger than $\Delta_{T}+1 / n$ after T queries. Deduce a lower bound on the randomized query complexity of Search.

Define $\Pi_{\text {rec }}$ to be the operator that projects onto $\operatorname{span}\left\{\left|x_{1}, \ldots, x_{n}\right\rangle \otimes|i, b\rangle: 1 \in\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ and $\Pi_{\text {succeed }}$ to be the operator that projects onto $\operatorname{span}\left\{\left|x_{1}, \ldots, x_{n}\right\rangle \otimes|i, b\rangle: x_{i}=1\right\}$. Recall that the quantum progress after T queries is $\Delta_{T}=\| \Pi_{\mathrm{rec}}\left|\psi_{\mathrm{rec}}^{T}\right\rangle \|^{2}$ and the probability to succeed is $\| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \|^{2}$.

Question 2.1. Compute the norm $\| \Pi_{\text {succeed }}\left(S^{\otimes n}\left|x_{1}, \ldots, x_{n}\right\rangle\right) \otimes|i, b\rangle \|$ when $x_{i}=\varnothing, x_{i}=1$ and $x_{i} \in\{0, \ldots, n-1\} \backslash\{1\}$.

Question 2.2. Using the relation $\left|\psi^{T}\right\rangle=\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{\text {rec }}^{T}\right\rangle$, show that $\| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \| \leq \sqrt{\Delta_{T}}+$ $O(1 / \sqrt{n})$.

Question 2.3. Deduce a lower bound on the quantum query complexity of SEARCh.

Problem 2 (Recording method \& Collision finding)

The Collision problem asks to find a pair of values $i \neq j$ such that $x_{i}=x_{j}$ using queries to a uniformly random input $x \in\{0, \ldots, n-1\}^{n}$.

Question 1. Give a classical algorithm showing that the randomized query complexity of Collision is at most $O(\sqrt{n})$.

Consider the progress measure Δ_{t} defined as the probability that the record contains a collision after t queries.

Question 2. Use the classical recording method to show that $\Delta_{t}=O\left(t^{2} / n\right)$ after t classical queries. Conclude that the randomized query complexity of Collision is at least $\Omega(\sqrt{n})$.

Question 3. Show that after t quantum queries, the state $\left|\psi_{\text {rec }}^{t}\right\rangle$ (defined in the recording query model) is always supported onto basis states $|x\rangle \otimes|i, b\rangle$ such that $\left|\left\{j: x_{j} \neq \varnothing\right\}\right| \leq t$.

Question 4. Use the quantum recording method to show that $\Delta_{t}=O\left(t^{3} / n\right)$ after t quantum queries, where Δ_{t} is the probability that the record register in $\left|\psi_{\mathrm{rec}}^{t}\right\rangle$ contains a collision.

©

The quantum query complexity of the Collision problem was first established ${ }^{1}$ using a rather complex polynomial symmetrization method.

Problem 3 (Combinatorial view on the adversary method)

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, choose two sets $V_{0} \subseteq\{x: f(x)=0\}, V_{1} \subseteq\{x: f(x)=1\}$ and a bipartite graph G over $\left(V_{0}, V_{1}\right)$. For each $1 \leq i \leq n$, define G_{i} to be the subgraph of G obtained by keeping the edges (x, y) for which $x_{i} \neq y_{i}$. Let $m_{0}, m_{1}, \ell_{0, i}, \ell_{1, i}$ be integers such that each left (resp. right) vertex in G has degree at least m_{0} (resp. m_{1}) and each left (resp. right) vertex in G_{i} has degree at most $\ell_{0, i}$ (resp. $\ell_{1, i}$) for each i.

Question 1. Let E (resp. E_{i}) be the set of edges in G (resp. G_{i}). Show that the deterministic query complexity of f is at least $D(f) \geq \min _{1 \leq i \leq n} \frac{|E|}{\left|E_{i}\right|}$. Deduce that $D(f)=\Omega\left(\min _{1 \leq i \leq n} \frac{m_{0}}{\ell_{0, i}}+\frac{m_{1}}{\ell_{1, i}}\right)$.
Question 2. Use the quantum adversary method to show that $Q(f)=\Omega\left(\min _{1 \leq i \leq n} \sqrt{\frac{m_{0} m_{1}}{\ell_{0, i} \ell_{1, i}}}\right)$.
Hint: You can use the following inequality (which is a special case of a more general result ${ }^{2}$):

The spectral norm of a $(0,1)$-matrix A is at most $\|A\| \leq \max _{i, j}\left\|A_{i, .}\right\| \cdot\left\|A_{., j}\right\|$ where $A_{i,}$ (resp. $\left\|A_{\cdot, j}\right\|$) is the i-th row (resp. j-th column) of A.

Question 3. Consider the k - $\operatorname{Threshold}(x)$ function that evaluates to 1 if and only the Hamming weight of $x \in\{0,1\}^{n}$ is at least $|x| \geq k$. Use the above method to show that $D(f)=\Omega(\max \{n-k+1, k\})$ and $Q(f)=\Omega(\sqrt{(n-k+1) k})$.

Question 4. Consider the Connectivity function that takes as input the adjacency matrix $x \in\{0,1\} \begin{gathered}\binom{n}{2}\end{gathered}$ of an undirected n-vertex graph and that outputs 1 if it is connected. Use the above method to show that D (Connectivity $)=\Omega\left(n^{2}\right)$ and Q (CONNECTIVITY) $=\Omega\left(n^{3 / 2}\right)$.
Hint: You can take $V_{0}=\left\{x \in\{0,1\}^{\binom{n}{2}}\right.$: x represents two disjoint cycles $\}$ and $V_{1}=\{x \in$ $\{0,1\}^{\binom{n}{2}}: x$ represents an n-cycle graph $\}$.

[^0]
[^0]: ${ }^{1}$ "Quantum Lower Bounds for the Collision and the Element Distinctness Problems". S. Aaronson and Y. Shi. J. $A C M, 2004$.

 2 "The Spectral Norm of a Nonnegative Matrix". R. Mathias. Linear Algebra Appl., 1990.

