Quantum Query Complexity

PCMI Graduate Summer School 2023
Instructor: Yassine Hamoudi. Teaching assistant: Angelos Pelecanos.
Course page: https://yassine-hamoudi.github.io/pcmi2023/

Problem Session 2

The polynomial method

Problem 1 (Miscellaneous)

Question 1. What is the exact degree $\operatorname{deg}(f)$ of the functions OR, Parity and Majority?
Question 2. Recall the definition of the block sensitivity $\operatorname{bs}(f)$ from the last problem session. Give an example of a function f such that $\operatorname{bs}(f) \neq \operatorname{deg}(f)$.
Question 3. Show that $D(f) \geq \operatorname{deg}(f)$ and $R(f) \geq \widetilde{\operatorname{deg}}(f)$ for all $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Problem 2 (Symmetrization)

This problem studies some applications to the symmetrization technique.
Question 1. We showed in the course that any T-query quantum algorithm computing the OR function gives rise to a univariate polynomial $P_{\text {sym }}$ such that $\operatorname{deg}\left(P_{\text {sym }}\right) \leq 2 T, P_{\text {sym }}(0) \in[0,1 / 3]$ and $P_{\text {sym }}(k) \in[2 / 3,1]$ for all $k \in\{1, \ldots, n\}$. Show that any such polynomial must be of degree $\Omega(\sqrt{n})$ by using the next inequality due to Ehlich, Zeller and Rivlin, Cheney:
Let $a, b, c \in \mathbb{R}_{\geq 0}, k \in \mathbb{N}$ and $P: \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial such that $P(i) \in[a, b]$ for all integers $i \in\{0,1, \ldots, k\}$ and $\left|P^{\prime}(x)\right| \geq c$ for some real $x \in[0, k]$. Then, $\operatorname{deg}(P) \geq \sqrt{c k /(b-a)}$.

Recall the definition of the Parity function: $\operatorname{Parity}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus \cdots \oplus x_{n}$ and the upper bound Q (Parity) $\leq n / 2$ proved in the last problem session. We aim at showing a matching lower bound

Question 2.1. Consider the Sign : $\mathbb{N} \rightarrow\{0,1\}$ function defined as $\operatorname{Sign}(k)=(-1)^{k}$. Show that any multilinear polynomial P approximating Parity gives rise to some univariate polynomial Q such that $\operatorname{deg}(Q) \leq \operatorname{deg}(P)$ and $|Q(k)-\operatorname{SigN}(k)| \leq 1 / 3$ for all $k \in\{0, \ldots, n\}$.

Question 2.2. Show that any polynomial Q satisfying the above constraints must be of degree at least n. Conclude that $\widetilde{\operatorname{deg}}($ Parity $)=n$ and $Q(f)=n / 2$.

For the next two questions, try to reuse the result $\widetilde{\operatorname{deg}}(\mathrm{OR})=\Omega(\sqrt{n})$ shown in question 1 .
Question 3.1. Consider the $\operatorname{Palindrome}(x)$ function that evaluates to 1 if and only if $x_{i}=$ x_{n-i} for all i. Show that $\widetilde{\operatorname{deg}}($ Palindrome $)=\Omega(\sqrt{n})$.
Question 3.2. Show that $\widetilde{\operatorname{deg}}(f)=\Omega(\sqrt{\operatorname{bs}(f)})$ for any $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Problem 3 (Dual polynomial)

Recall the primal-dual programs introduced in the course:

$\min _{\epsilon, P}$	ϵ
s.t.	$\|P(x)-f(x)\| \leq \epsilon \quad \forall x \in\{-1,1\}^{n}$
	$\operatorname{deg}(P)<d$

$$
\begin{array}{ll}
\max _{\phi} & \sum_{x \in\{-1,1\}^{n}} \phi(x) \cdot f(x) \\
\text { s.t. } & \sum_{x}|\phi(x)|=1 \\
& \sum_{x} \phi(x) \cdot P(x)=0 \quad \forall P, \operatorname{deg}(P)<d
\end{array}
$$

Question 1. Show that the two programs are indeed linear by converting them into standard form.

Question 2. Give a dual polynomial for Parity witnessing that $\widetilde{\operatorname{deg}}($ Parity $)=n$.

Problem 4 (Distinguishing distributions)

In this problem, we look at the task of distinguishing between two distributions over $\{0,1\}^{n}$ given queries to an input x drawn from one of the two distributions. We let \mathcal{U} denote the uniform distribution over $\{0,1\}^{n}$. We say that a distribution D over $\{0,1\}^{n}$ is k-wise independent if for all subsets $S \subseteq\{1, \ldots, n\}$ of size $|S| \leq k$, the marginal distribution $D_{\mid S}$ is uniform over $\{0,1\}^{|S|}$.

Question 1. Show that no randomized query algorithm can distinguish between \mathcal{U} and a k-wise independent distribution D if it makes less than $k+1$ queries.

Question 2. By using the polynomial method, show that no quantum query algorithm can distinguish between \mathcal{U} and a $2 k$-wise independent distribution D if it makes less than $k+1$ queries.
${ }^{1}$ This type of application of the polynomial method can be generalized to other problems that are relevant in cryptography, such as Polynomial Interpolation ${ }^{1}$.

[^0]
[^0]: 1 "Quantum Interpolation of Polynomials". D. Kane, S. Kutin. QIC., 2011.

