Quantum query complexity

Lecture 2
 The polynomial method

Materials: https://yassine-hamoudi.github.io/pcmi2023/

Focus of this lecture

Lower bounds based on the analysis of Boolean functions

- Any quantum algorithm computing f can be transformed into a bounded degree polynomial P such that $P(x) \approx f(x)$.
- Lower bounds on the degree of polynomials

Boolean analysis

Multilinear polynomial: $P\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq\{1, \ldots, n\}} a_{S} \prod_{i \in S} x_{i}$ where a_{S} are real coefficients

Degree: $\operatorname{deg}(P)=\max _{a_{s} \neq 0}|S|$

We are interested in the approximation of Boolean functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ by multilinear polynomials

Boolean analysis

Fact: For any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, there exists a unique multilinear polynomial P_{f} such that

We denote $\operatorname{deg}(f)=\operatorname{deg}\left(P_{f}\right)$.

$$
P_{f}(x)=f(x) \quad \text { for all } x \in\{0,1\}^{n}
$$

relax this condition

Definition: A multilinear polynomial P approximates f if

$$
|P(x)-f(x)| \leq 1 / 3 \quad \text { and } \quad P(x) \in[0,1] \quad \text { for all } x \in\{0,1\}^{n}
$$

Definition: The approximate degree of f is $\widetilde{\operatorname{deg}}(f)=\min _{P \text { approx. } f} \operatorname{deg}(P)$

Boolean analysis

Example: $f=$ AND

(Exact) degree

$$
\begin{aligned}
& P_{f}(x)=x_{1} x_{2} \cdots x_{n} \\
& \operatorname{deg}(f)=n
\end{aligned}
$$

Approximate degree

$$
\widetilde{\operatorname{deg}}(f)=O(\sqrt{n})
$$

Plug $z=x_{1}+\ldots+x_{n}$ into the (univariate) Chebyshev polynomial

$$
T_{d}(z) \text { of degree } d \approx \sqrt{n}
$$

Fundamental theorem

Theorem: $Q(f) \geq \widetilde{\operatorname{deg}}(f) / 2$

Proposition: Fix a quantum algorithm making T queries. Let $p(x) \in[0,1]$ denote the probability that it outputs 1 on input x. Then $\operatorname{deg}(p) \leq 2 T$.

$|i\rangle=-\begin{aligned} & |i\rangle \\ & |b\rangle-O_{x}-\left|b \oplus x_{i}\right\rangle\end{aligned}$

$$
\left|\psi_{x}^{t}\right\rangle=U_{t} O_{x} U_{t-1} O_{x} \ldots U_{0}|0,0\rangle
$$

Symmetrization

- Reduced the problem of lower bounding the query $\mathrm{cpx} Q(f)$ to lower bounding the approximate degree $\widetilde{\operatorname{deg}}(f)$ of n-variable functions.
- Multivariate polynomials are often hard to analyze directly.
- Symmetrization is a technique to reduce the number of variables, without increasing the degree $\left(\widetilde{\operatorname{deg}}\left(f_{\text {sym }}\right) \leq \widetilde{\operatorname{deg}}(f)\right)$.

OR function: $f(x)=0$ if and only if $x=(0,0, \ldots, 0)$

- Partition $\{0,1\}^{n}$ into $n+1$ buckets: $B_{k}=\left\{x: x_{1}+\ldots+x_{n}=k\right\}$
- Fix any polynomial P approximating f and define $P_{\text {sym }}(k)=E_{x \sim B_{k}} P(x)$

Lemma 1: $P_{\text {sym }}$ is a polynomial in k of degree $\operatorname{deg}\left(P_{\text {sym }}\right) \leq \operatorname{deg}(P)$

Lemma 2: $P_{\text {sym }}(0) \in[0,1 / 3]$ and

$$
P_{\text {sym }}(k) \in[2 / 3,1] \text { for } k \geq 1
$$

OR function: $f(x)=0$ if and only if $x=(0,0, \ldots, 0)$

- Partition $\{0,1\}^{n}$ into $n+1$ buckets: $B_{k}=\left\{x: x_{1}+\ldots+x_{n}=k\right\}$
- Fix any polynomial P approximating f and define $P_{\text {sym }}(k)=E_{x \sim B_{k}} P(x)$

Any polynomial that "jumps" this way must have degree $\Omega(\sqrt{n})$
$\Rightarrow Q(\mathrm{OR}) \geq \widetilde{\operatorname{deg}}(\mathrm{OR}) / 2=\Omega(\sqrt{n})$

Dual polynomials

For convenience, we express Boolean functions as

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

$\begin{aligned} \min _{\epsilon, P} & \epsilon \\ \text { s.t. } & \|P(x)-f(x)\| \leq \epsilon, \forall x \in\{-1,1\}^{\prime \prime} \\ & \operatorname{deg}(P)<d \\ & \epsilon \geq 0 \end{aligned}$	LP duality	$\begin{aligned} \max _{\phi} & \sum_{x} \phi(x) \cdot f(x) \\ \text { s.t. } & \sum_{x}\|\phi(x)\|=1 \\ & \sum_{x} \phi(x) \cdot P(x)=0, \forall P, \operatorname{deg}(P)<d \end{aligned}$

"Best approximation of f by a polynomial of degree $<d$ "
"Best correlation of f with a polynomial having no monomial of degree $<d^{\prime \prime}$

By weak duality:

$$
\begin{array}{ll}
\exists \phi:\{-1,1\}^{n} \rightarrow & \{-1,1\} \quad \text { such that } \\
\text { (correlation) } & \sum_{x} \phi(x) \cdot f(x)>1 / 3 \\
\text { (normalization) } & \sum_{x}|\phi(x)|=1 \\
\text { (pure high degree) } & \sum_{x} \phi(x) \cdot P(x)=0, \forall P, \operatorname{deg}(P)<d
\end{array} \Rightarrow \widetilde{\operatorname{deg}(f) \geq d}
$$

It suffices to exhibit any such ϕ to deduce that $Q(f) \geq d / 2$

