
Quantum query complexity

Lecture 2
The polynomial method

Materials: https://yassine-hamoudi.github.io/pcmi2023/ 



Focus of this lecture

Lower bounds based on the analysis of Boolean functions

• Any quantum algorithm computing   can be transformed into a bounded 

degree polynomial  such that .


• Lower bounds on the degree of polynomials

f

P P(x) ≈ f(x)



Boolean analysis

Multilinear polynomial:    where  are real coefficientsP(x1, …, xn) = ∑
S⊆{1,…,n}

aS∏
i∈S

xi aS

We are interested in the approximation of Boolean 

functions   by multilinear polynomialsf : {0,1}n → ℝ

Degree: deg(P) = max
aS≠0

|S |



Boolean analysis

Fact: For any , there exists a unique multilinear polynomial   such thatf : {0,1}n → ℝ Pf

Pf(x) = f(x)

We denote .deg( f ) = deg(Pf) relax this condition

Definition: The approximate degree of    is  f d̃eg( f ) = min
P approx. f

deg(P)

for all .x ∈ {0,1}n

Definition: A multilinear polynomial  approximates    ifP f

for all .x ∈ {0,1}n    and    |P(x) − f(x) | ≤ 1/3 P(x) ∈ [0,1]



Boolean analysis

Example:  f = AND


Pf(x) = x1x2⋯xn

deg( f ) = n

(Exact) degree Approximate degree

d̃eg( f ) = O( n)

Plug  into the 
(univariate) Chebyshev polynomial 

 of degree 

z = x1 + … + xn

Td(z) d ≈ n



Fundamental theorem



Proposition: Fix a quantum algorithm making  queries. Let  denote 

                      the probability that it outputs  on input . Then . 

T p(x) ∈ [0,1]
1 x deg(p) ≤ 2T

Theorem:  Q( f ) ≥ d̃eg( f )/2

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩



Symmetrization



• Reduced the problem of lower bounding the query cpx  to lower 
bounding the approximate degree  of -variable functions.

Q( f )
d̃eg( f ) n

• Multivariate polynomials are often hard to analyze directly.

• Symmetrization is a technique to reduce the number of variables, 
without increasing the degree ( ).d̃eg( fsym) ≤ d̃eg( f )



OR function:   if and only if f(x) = 0 x = (0,0,…,0)

• Fix any polynomial  approximating   and define P f Psym(k) = Ex∼Bk
P(x)

Lemma 1:   is a polynomial in  of 

                  degree 

Psym k
deg(Psym) ≤ deg(P)

Lemma 2:    and 

                   for 

Psym(0) ∈ [0,1/3]
Psym(k) ∈ [2/3,1] k ≥ 1

• Partition   into  buckets: {0,1}n n + 1 Bk = {x : x1 + … + xn = k}

0

1/3

2/3

1

0 1 2 n



OR function:   if and only if f(x) = 0 x = (0,0,…,0)

• Fix any polynomial  approximating   and define P f Psym(k) = Ex∼Bk
P(x)

• Partition   into  buckets: {0,1}n n + 1 Bk = {x : x1 + … + xn = k}

0
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1
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Any polynomial that “jumps” this 
way must have degree Ω( n)

⇒ Q(OR) ≥ d̃eg(OR)/2 = Ω( n)



Dual polynomials



For convenience, we express Boolean functions as  
f : {−1,1}n → {−1,1}

“Best approximation of  by a 
polynomial of degree ” 

f
< d

“Best correlation of  with a polynomial 
having no monomial of degree ” 

f
< d

s.t.

ϵ ≥ 0

deg(P) < d

|P(x) − f(x) | ≤ ϵ, ∀x ∈ {−1,1}n

ϵmin
ϵ,P LP duality

∑x
ϕ(x) ⋅ P(x) = 0, ∀P, deg(P) < d

∑x
ϕ(x) ⋅ f(x)

s.t. ∑x
|ϕ(x) | = 1

max
ϕ



∑x
ϕ(x) ⋅ P(x) = 0, ∀P, deg(P) < d

∑x
ϕ(x) ⋅ f(x) > 1/3

such that

∑x
|ϕ(x) | = 1

By weak duality:

d̃eg( f ) ≥ d⇒

∃ϕ : {−1,1}n → {−1,1}

(correlation)

(pure high degree)

(normalization)

It suffices to exhibit any such  to deduce that ϕ Q( f ) ≥ d/2


