Quantum query complexity

Lecture 2 The polynomial method

Materials: https://yassine-hamoudi.github.io/pcmi2023/

Focus of this lecture

Lower bounds based on the analysis of Boolean functions

- degree polynomial P such that $P(x) \approx f(x)$.
- Lower bounds on the degree of polynomials

• Any quantum algorithm computing f can be transformed into a bounded

Boolean analysis

<u>Multilinear polynomial</u>: $P(x_1, ..., x_n) = \sum_{S \subseteq \{1,...,n\}} a_S \prod_{i \in S} x_i$ where a_S are real coefficients

$\underline{\text{Degree: } \deg(P) = \max_{a_S \neq 0} |S|}$

We are interested in the approximation of Boolean functions $f: \{0,1\}^n \to \mathbb{R}$ by multilinear polynomials

Boolean analysis

<u>Fact</u>: For any $f: \{0,1\}^n \to \mathbb{R}$, there exists a unique multilinear polynomial P_f such that $P_f(x) = f(x)$ We denote $\deg(f) = \deg(P_f)$.

<u>Definition:</u> A multilinear polynomial P approximates f if

 $|P(x) - f(x)| \le 1/3$ and $P(x) \in [0,1]$

<u>Definition</u>: The approximate degree of f is deg(f) = min deg(P)*P* approx. *f*

for all $x \in \{0,1\}^n$.

Example: f = AND

(Exact) degree

 $P_f(x) = x_1 x_2 \cdots x_n$ $\deg(f) = n$

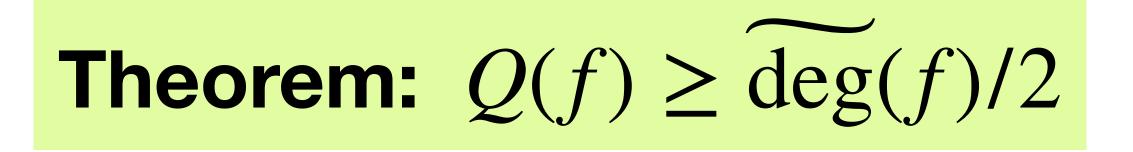
Boolean analysis

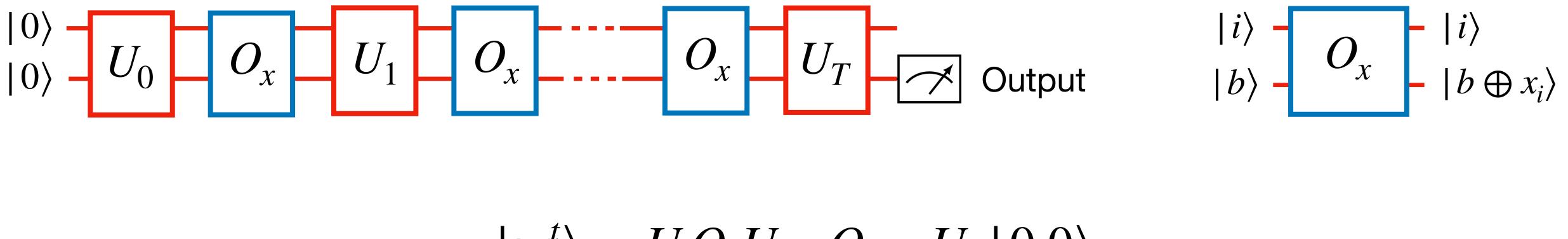
Approximate degree

$$\widetilde{\deg}(f) = O(\sqrt{n})$$

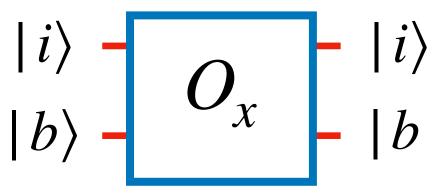
$$\uparrow$$
Plug $z = x_1 + \ldots + x_n$ into the (univariate) Chebyshev polynomiate $T_d(z)$ of degree $d \approx \sqrt{n}$

Fundamental theorem





<u>Proposition</u>: Fix a quantum algorithm making T queries. Let $p(x) \in [0,1]$ denote the probability that it outputs 1 on input x. Then $deg(p) \leq 2T$.



 $|\psi_{x}^{t}\rangle = U_{t}O_{x}U_{t-1}O_{x}...U_{0}|0,0\rangle$

Symmetrization

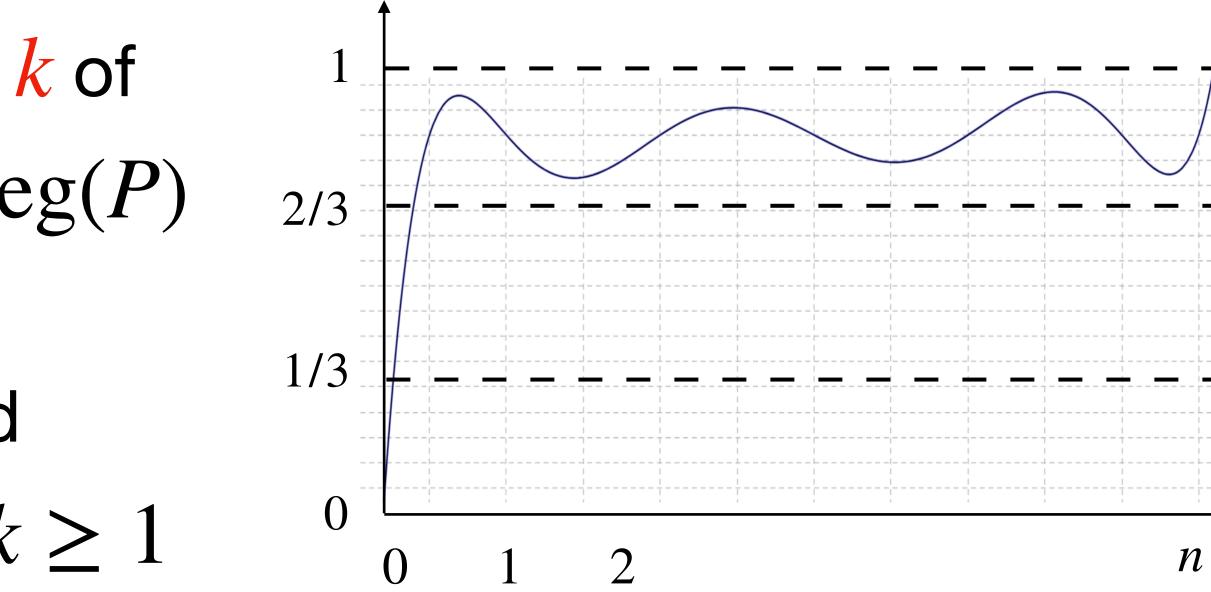
Multivariate polynomials are often hard to analyze directly.

 Symmetrization is a technique to reduce the number of variables, without increasing the degree $(\deg(f_{sym}) \le \deg(f))$.

• Reduced the problem of lower bounding the query cpx Q(f) to lower bounding the approximate degree deg(f) of *n*-variable functions.

<u>OR function:</u> f(x) = 0 if and only if $x = (0,0,\ldots,0)$

- Partition $\{0,1\}^n$ into n + 1 buckets: $B_k = \{x : x_1 + ... + x_n = k\}$
- Fix any polynomial P approximating f and define $P_{svm}(k) = E_{x \sim B_{\mu}}P(x)$
- Lemma 1: P_{sym} is a polynomial in k of degree $deg(P_{sym}) \le deg(P)$
- Lemma 2: $P_{\text{sym}}(0) \in [0, 1/3]$ and $P_{\text{sym}}(k) \in [2/3, 1] \text{ for } k \ge 1$



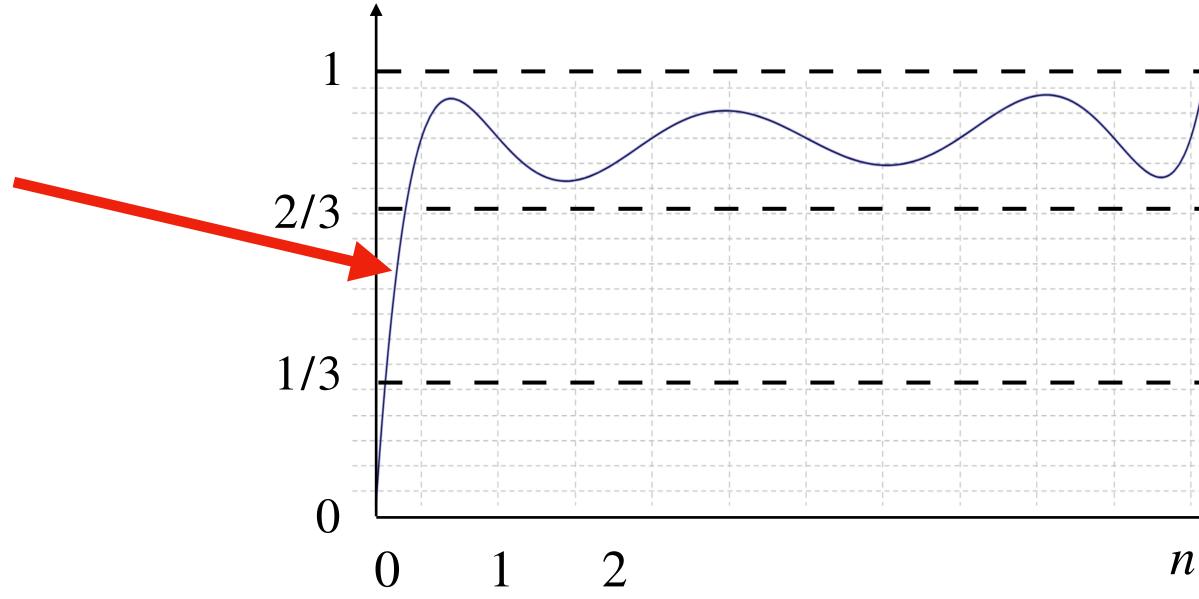
<u>OR function:</u> f(x) = 0 if and only if $x = (0,0,\ldots,0)$

- Partition $\{0,1\}^n$ into n + 1 buckets: $B_k = \{x : x_1 + ... + x_n = k\}$

Any polynomial that "jumps" this way must have degree $\Omega(\sqrt{n})$

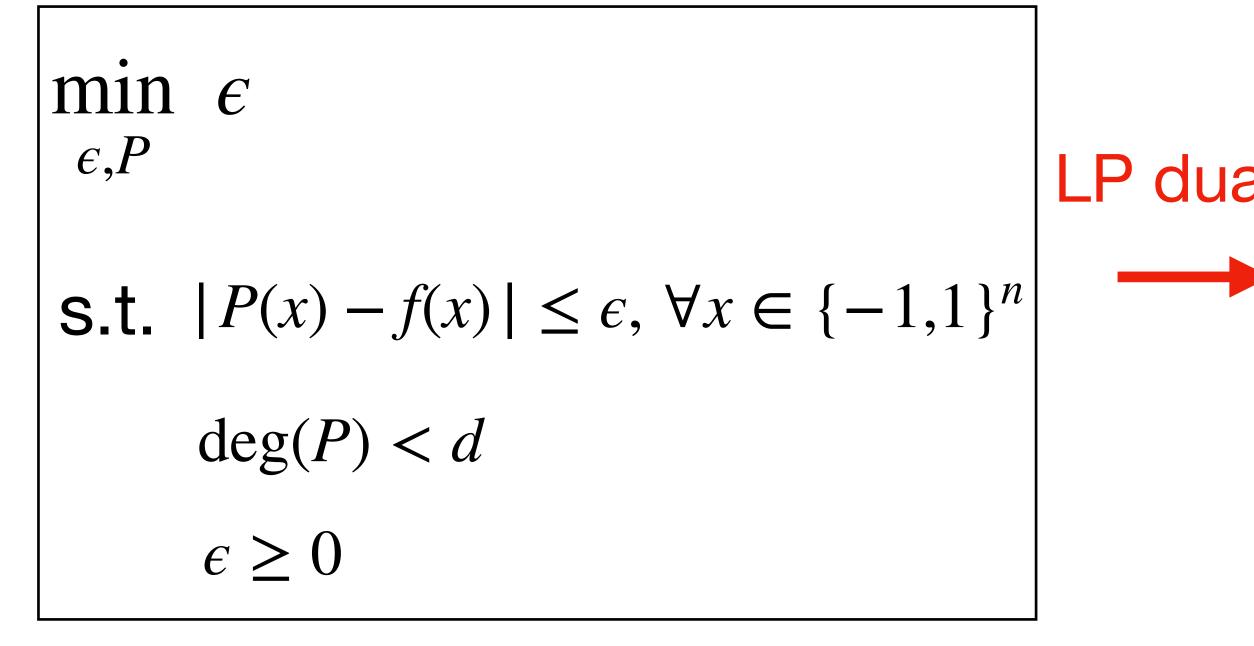
 $Q(\text{OR}) \ge \text{deg}(\text{OR})/2 = \Omega(\sqrt{n})$

• Fix any polynomial P approximating f and define $P_{sym}(k) = E_{x \sim B_{\mu}}P(x)$



Dual polynomials

For convenience, we express Boolean functions as $f: \{-1,1\}^n \to \{-1,1\}$

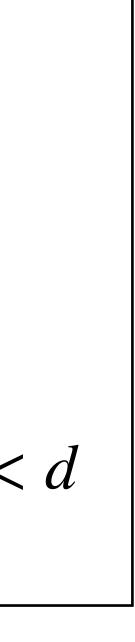


"Best approximation of f by a polynomial of degree < d"

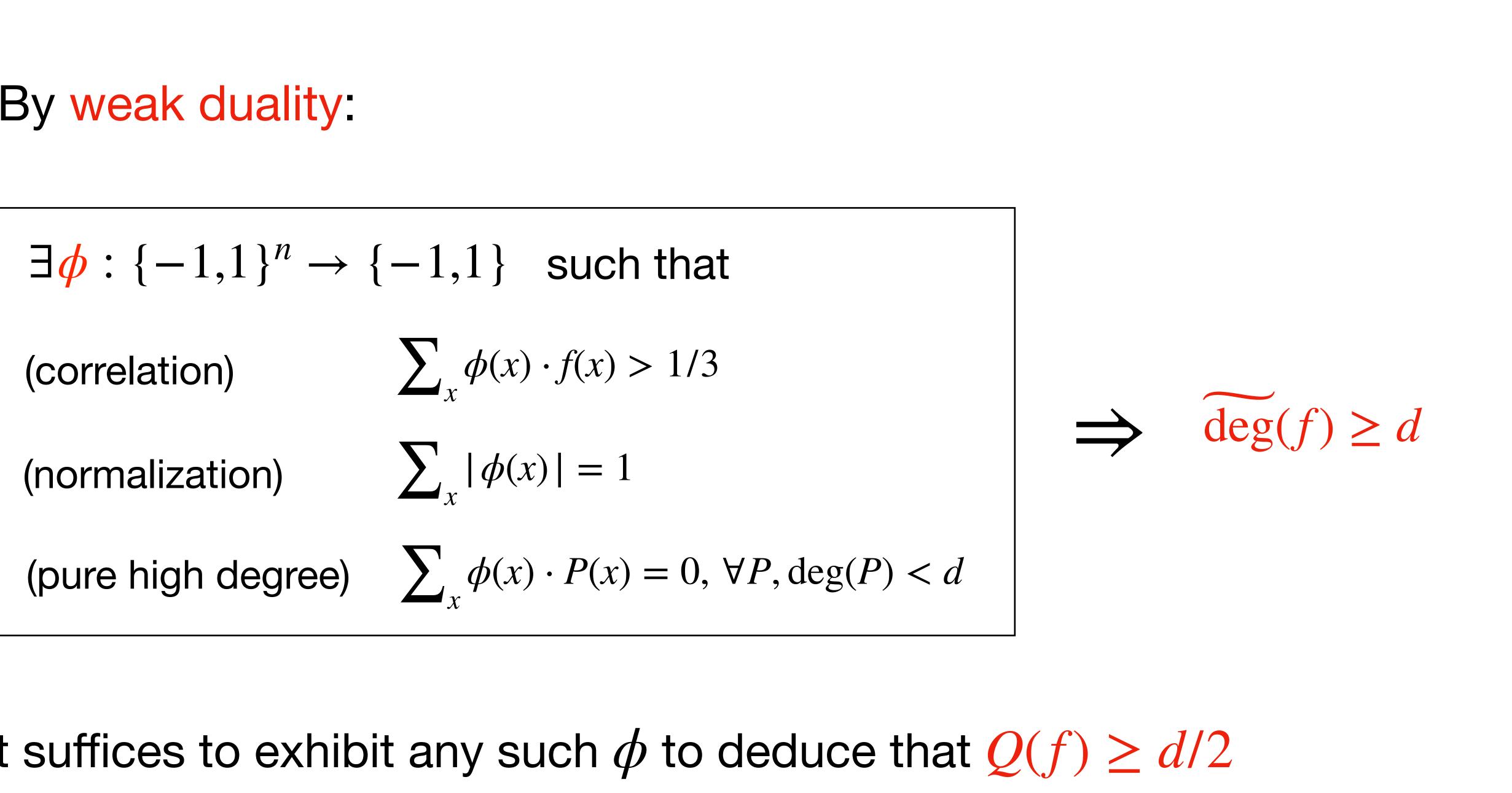
ality

$$\begin{array}{l}
\max_{\phi} \sum_{x} \phi(x) \cdot f(x) \\
\text{s.t.} \quad \sum_{x} |\phi(x)| = 1 \\
\sum_{x} \phi(x) \cdot P(x) = 0, \forall P, \deg(P) < 0
\end{array}$$

"Best correlation of f with a polynomial having no monomial of degree < d"



By weak duality:



It suffices to exhibit any such ϕ to deduce that $Q(f) \geq d/2$