
Quantum query complexity

Lecture 1
Introduction & The hybrid method

Materials: https://yassine-hamoudi.github.io/pcmi2023/

Focus of this course

A lower bound statement:

Proving that quantum algorithms cannot be too fast

“Any quantum algorithm that solves problem must run in time at least ”X T

1/ Formalizing the model of computation Quantum query model

Challenges:

2/ Finding methods for proving lower bounds

Why should we care about lower bounds?

• Understand the limits of quantum algorithms

➡ For which problems is it hopeless to find efficient algorithms?

• Design security proofs in cryptography

➡ Which protocols take a long time to break, even by quantum adversaries?

• Can give insights into new algorithms (cf Lecture 5)

Focus of this course

The quantum query model

We only count the number of queries to the input

(the internal computation of the algorithm is “for free”).

Input

(a.k.a. decision tree complexity)
Classical query complexity

x1 x2 xnx3 …

Algorithm

queries

x1 < x2?

We can model the computation by a decision tree:

yes no

x2 < x3?
yes no

(1,2,3) x1 < x3?

x3 < x1?

yes no

(1,3,2) (3,1,2)

yes no

(2,1,3)x2 < x3?
yes no

(2,3,1) (3,2,1)

Height =

query complexity

of that algorithm

(a.k.a. decision tree complexity)
Classical query complexity

Sorting 3 numbers using comparison queries

Example: Any classical sorting algorithm must do comparison queries.Ω(n log n)

• This is often the “right model” to capture the difficulty of a problem

(a.k.a. decision tree complexity)
Classical query complexity

• The queries give us a grasp on what the algorithm has learnt about the input

For (most of) the course we will focus on computing boolean functions

f : {0,1}n → {0,1}
with Boolean evaluation queries

i ↦ xi

on -bit inputs .n x ∈ {0,1}n

Examples:
OR: if and only if f(x) = 0 x = (0,0,…,0)
PARITY: f(x) = x1 ⊕ … ⊕ xn

MAJORITY: if and only if f(x) = 1 x1 + … + xn ≥ n/2

j ?
xj = 1

f(x)

…

i ?

xj = 0

xi = 1 xi = 0

… …

(a.k.a. decision tree complexity)
Classical query complexity

Deterministic query complexity

• We say that a decision tree computes if for all
its evaluation path ends at a leaf labeled by .

f : {0,1}n → {0,1} x ∈ {0,1}n

f(x)

• The deterministic query complexity of is the smallest
height over the decision trees computing .

D(f) f : {0,1}n → {0,1}
f

Fact: D(f) ≤ n

(a.k.a. decision tree complexity)
Classical query complexity

Randomized query complexity

The algorithm has access to randomness and is allowed for a small error probability.

Definition 1

Decision tree + coin nodes

… …
Proba. 1/2 Proba. 1/2

Definition 2

Fix all the randomness “in advance”

= 1/ Fix a (deterministic) decision tree for

each random seed

Dr

r ∈ {0,1}*
2/ On input , sample and run

the corresponding decision tree
x r ∼ {0,1}*

Dr

(a.k.a. decision tree complexity)
Classical query complexity

Randomized query complexity

• We say that a randomized decision tree computes if for all its evaluation path
ends at a leaf labeled by with probability at least .

f x
f(x) 2/3

• The randomized query complexity of is the smallest height over the
randomized decision trees computing .

R(f) f
f

Fact: R(f) ≤ D(f) ≤ n

We use the circuit model instead of the decision tree formalism.

Quantum query complexity

Ox
| i⟩
|0⟩

| i⟩
|xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩

 are arbitrary unitary operators that don’t depend on the input U0, …, UT x

 is the oracle gate:Ox Ox
| i⟩
|1⟩

| i⟩
|1 ⊕ xi⟩

Ox | i, b⟩ = | i, b ⊕ xi⟩

Technically, could act on a larger Hilbert space:U0, …, UT

Quantum query complexity

Ox Ox Ox
|0⟩
|0⟩

We omit this aspect of the model in the lectures (easy to handle)

Extra

workspace

|0⟩
|0⟩

|0⟩
⋮

U0 U1 UT

Output

(In fact, finding lower bounds that are sensitive to the workspace size is a major research problem)

Quantum query complexity

• We say that a quantum circuit computes if for all it outputs with
probability at least .

f x f(x)
2/3

• The quantum query complexity of is the smallest number of oracle
gates over the quantum circuits computing .

Q(f) f
f

Fact: Q(f) ≤ R(f) ≤ D(f) ≤ n

Adversary methodsPolynomial methods

Hybrid

Positive

Negative

Multiplicative
Laurent polynomials

Symmetrization

Recording

Two main families of quantum lower bounds

Dual polynomials Spectral

… …

Lecture 1

Lecture 2

Lecture 3

Lectures 4-5

Completely bounded forms

The hybrid method

Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Fix and denote the state of the algorithm after queries to :x ∈ {0,1}n t x

|ψ0
x ⟩ |ψ1

x ⟩ |ψT
x ⟩

Intuition 1: if then should be far from f(x) ≠ f(y) |ψT
x ⟩ |ψT

y ⟩

Intuition 2: distinguishing from requires querying some indices where x y xi ≠ yi

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩

qt
i = ∥(| i⟩⟨i | ⊗ Id) |ψ t

0⃗
⟩ |∥2

We define the query weight on index at time to be:i t

In the proof, we only focus on the “hardest” inputs denoted by:n + 1

OR function: if and only if f(x) = 0 x = (0,0,…,0)

0⃗ = (0,0,…,0) 1⃗ = (1,0,…,0) 2⃗ = (0,1,0,…,0) ⃗n = (0,0,…,1)…

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩

qt
i = ∥(| i⟩⟨i | ⊗ Id) |ψ t

0⃗
⟩ |∥2

Lemma 1: ∥|ψ0
0⃗
⟩ − |ψ0

⃗i
⟩∥ = 0 (initial condition)

Lemma 2: if the algorithm succeeds wp∥|ψT
0⃗
⟩ − |ψT

⃗i
⟩∥ ≥ 1/3 ≥ 2/3 (final condition)

Lemma 3: ∥|ψ t+1
0⃗

⟩ − |ψ t+1
⃗i

⟩∥ ≤ ∥|ψ t
0⃗
⟩ − |ψ t

⃗i
⟩∥ + qt

i
(evolution)

For all :i ≠ 0

Theorem: Q(OR) ≥ n /3

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩

