Monoidal Structures on GL(2)-Modules and Abstractly Automorphic Representations

Gal Dor

Tel-Aviv University

March 04, 2021

Introduction

- L-functions are important objects.
- When the L-functions are equal: get deep connections across mathematics.
 - Modularity Theorem ⇒ Fermat's Last Theorem.
- In this talk: only automorphic L-functions.

• L-functions are built as GCDs of classes of zeta integrals.

- L-functions are built as GCDs of classes of zeta integrals.
- Two common ways to associate L-functions to representation of $\mathrm{GL}(2)$:
 - Godement–Jacquet zeta integrals uses pairs of vectors,
 - Jacquet–Langlands zeta integrals uses single vectors.
- Both constructions give the same L-function.

- L-functions are built as GCDs of classes of zeta integrals.
- Two common ways to associate L-functions to representation of GL(2):
 - Godement-Jacquet zeta integrals uses pairs of vectors,
 - Jacquet–Langlands zeta integrals uses single vectors.
- Both constructions give the same L-function.
 - This talk: also give same class of zeta integrals!

- L-functions are built as GCDs of classes of zeta integrals.
- Two common ways to associate L-functions to representation of GL(2):
 - Godement–Jacquet zeta integrals uses pairs of vectors,
 - Jacquet–Langlands zeta integrals uses single vectors.
- Both constructions give the same L-function.
 - This talk: also give same class of zeta integrals!
 - Exotic multiplicative structure on *p*-adic and automorphic representations.

Introduction

- L-functions are built as GCDs of classes of zeta integrals.
- Two common ways to associate L-functions to representation of GL(2):
 - Godement–Jacquet zeta integrals uses pairs of vectors,
 - Jacquet–Langlands zeta integrals uses single vectors.
- Both constructions give the same L-function.
 - This talk: also give same class of zeta integrals!
 - Exotic multiplicative structure on p-adic and automorphic representations.
- Part of PhD thesis, under supervision of J. Bernstein. Relevant part recently uploaded to arXiv as [Dor20].

Overview

Introduction

p-adic representations

Godement-Jacquet vs. Jacquet-Langlands

Symmetric monoidal structure

Apology

Global theory

Notation

• Let F be a local field, $\operatorname{char} F \neq 2$. Let $G = \operatorname{GL}_2(F)$.

Notation

- Let F be a local field, char $F \neq 2$. Let $G = GL_2(F)$.
- Category Mod(G) of smooth G-modules:
 - For $V \in Mod(G)$, each $v \in V$ is *smooth*, i.e. fixed by some neighborhood of unity.
 - Contragradient duality $V \mapsto \widetilde{V}$: smooth vectors in dual vector space.

Notation

- Let F be a local field, char $F \neq 2$. Let $G = GL_2(F)$.
- Category Mod(G) of smooth G-modules:
 - For $V \in Mod(G)$, each $v \in V$ is *smooth*, i.e. fixed by some neighborhood of unity.
 - Contragradient duality $V \mapsto \widetilde{V}$: smooth vectors in dual vector space.
- An irreducible G-module is generic iff it has a Kirillov model.

L-functions à la Godement–Jacquet

- Recipe:
 - 1. Matrix coefficient β :

$$\beta(g) = \langle v', \pi(g) \cdot v \rangle.$$

L-functions à la Godement-Jacquet

- Recipe:
 - 1. Matrix coefficient β :

$$\beta(g) = \langle v', \pi(g) \cdot v \rangle.$$

2. Test function $\Psi \in S(M_2(F))$.

L-functions à la Godement–Jacquet

- Recipe:
 - 1. Matrix coefficient β :

$$\beta(g) = \langle v', \pi(g) \cdot v \rangle.$$

- 2. Test function $\Psi \in S(M_2(F))$.
- 3. Integrate:

$$Z_{\mathrm{GJ}}(\Psi, \beta, s) = \int_{\mathrm{GL}_2(F)} \Psi(g) \beta(g) |\det(g)|^{s+\frac{1}{2}} d^{\times}g.$$

• Get meromorphic zeta integral. Use GCD.

L-functions à la Jacquet-Langlands

- Recipe:
 - 1. Kirillov model $W: V \times F \to \mathbb{C}$.
 - Unique up to scalar if it exists.

L-functions à la Jacquet-Langlands

- Recipe:
 - 1. Kirillov model $W: V \times F \to \mathbb{C}$.
 - Unique up to scalar if it exists.
 - 2. Test vector $v \in V$.

L-functions à la Jacquet-Langlands

- Recipe:
 - 1. Kirillov model $W: V \times F \to \mathbb{C}$.
 - Unique up to scalar if it exists.
 - 2. Test vector $v \in V$.
 - 3. Integrate:

$$Z_{\mathrm{JL}}(W,v,s) = \int_{F^{\times}} W_v(y) |y|^{s-\frac{1}{2}} \,\mathrm{d}^{\times}y.$$

• Get meromorphic zeta integral. Use GCD.

Known that GJ=JL by computation. Want a nice, conceptual proof.

Known that GJ=JL by computation. Want a nice, conceptual proof.

- Space of GJ zeta integrals:
 - Data: $v' \in \widetilde{V}$, $v \in V$, $\Psi \in S(M_2(F))$, some redundancy.

$$\widetilde{V} \otimes_{G} S(M_{2}(F)) \otimes_{G} V$$

Known that GJ=JL by computation. Want a nice, conceptual proof.

- Space of GJ zeta integrals:
 - Data: $v' \in \widetilde{V}$, $v \in V$, $\Psi \in S(M_2(F))$, some redundancy.

$$\widetilde{V} \otimes_{G} S(\mathsf{M}_{2}(F) \times F^{\times}) \otimes_{G} V$$

• (Fixed over-counting of redundancies by adding F^{\times} .)

Known that GJ=JL by computation. Want a nice, conceptual proof.

GJ vs. JL •000

- Space of GJ zeta integrals:
 - Data: $v' \in \widetilde{V}$, $v \in V$, $\Psi \in S(M_2(F))$, some redundancy.

$$\widetilde{V} \otimes_{G} S(\mathsf{M}_{2}(F) \times F^{\times}) \otimes_{G} V$$

- (Fixed over-counting of redundancies by adding F^{\times} .)
- Space of JL zeta integrals:
 - Data: Kirillov model, $v \in V$.

$$GJ = JL$$

Claim

For generic irreducible V, the two spaces are canonically isomorphic:

$$\widetilde{V} \otimes_G S(M_2(F) \times F^{\times}) \otimes_G V \cong V.$$

- (Up to choice of Kirillov model.)
- Moreover isomorphism respects zeta integrals.

$$GJ = JL$$

Claim

For generic irreducible V, the two spaces are canonically isomorphic:

$$\widetilde{V} \otimes_G S(M_2(F) \times F^{\times}) \otimes_G V \cong V.$$

- (Up to choice of Kirillov model.)
- Moreover isomorphism respects zeta integrals.
- Remarkable non-linear in V!

Triality

• The space $\widetilde{V} \otimes_G S(\mathsf{M}_2(F) \times F^{\times}) \otimes_G V$ is a G-module.

Triality

- The space $\widetilde{V} \otimes_G S(\mathsf{M}_2(F) \times F^{\times}) \otimes_G V$ is a G-module.
- So $Y = S(M_2(F) \times F^{\times})$ should have a third, hidden G-action.

Triality

- The space $\widetilde{V} \otimes_G S(\mathsf{M}_2(F) \times F^{\times}) \otimes_G V$ is a G-module.
- So $Y = S(M_2(F) \times F^{\times})$ should have a third, hidden G-action.

Claim

Hidden action exists: Y is a $G \times G \times G$ -module.

• Related to the theta correspondence.

- Related to the theta correspondence.
- Choose symplectic space $U = F \cdot e_1 \oplus F \cdot e_2$ of dim U = 2.

- Related to the theta correspondence.
- Choose symplectic space $U = F \cdot e_1 \oplus F \cdot e_2$ of dim U = 2.
- Let

$$\operatorname{GL}_2(F)^{3,\det=1} = \{g_1, g_2, g_3 \in \operatorname{GL}_2(F) \mid \det(g_1 g_2 g_3) = 1\}$$
$$\hookrightarrow \operatorname{Sp}(U \otimes U \otimes U).$$

- Related to the theta correspondence.
- Choose symplectic space $U = F \cdot e_1 \oplus F \cdot e_2$ of dim U = 2.
- Let

$$\operatorname{GL}_2(F)^{3,\det=1} = \{g_1, g_2, g_3 \in \operatorname{GL}_2(F) \mid \det(g_1 g_2 g_3) = 1\}$$
$$\hookrightarrow \operatorname{Sp}(U \otimes U \otimes U).$$

• Have Weil representation $S(U \otimes U \otimes e_2) = S(M_2(F))$.

- Related to the theta correspondence.
- Choose symplectic space $U = F \cdot e_1 \oplus F \cdot e_2$ of dim U = 2.
- Let

$$\operatorname{GL}_2(F)^{3,\det=1} = \{g_1, g_2, g_3 \in \operatorname{GL}_2(F) \mid \det(g_1g_2g_3) = 1\}$$
$$\hookrightarrow \operatorname{Sp}(U \otimes U \otimes U).$$

- Have Weil representation $S(U \otimes U \otimes e_2) = S(M_2(F))$.
- Compact induction of $S(M_2(F))$ from $\mathrm{GL}_2(F)^{3,\det=1}$ to $\mathrm{GL}_2(F)^3$ gives Y.

From tri-modules to functors

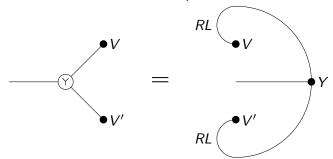
Tri-modules are strange. How can we make sense of them?
 Where have we seen them before?

From tri-modules to functors

- Tri-modules are strange. How can we make sense of them?
 Where have we seen them before?
- Think of it as a bi-functor:

$$V \bigcirc V' = V \otimes_G Y \otimes_G V'$$

• Saw stuff like this before: tensor products.



Additional structure

Claim

There is an essentially unique extension of \bigcirc to a symmetric monoidal structure on Mod(G).

Additional structure

Claim

There is an essentially unique extension of \bigcirc to a symmetric monoidal structure on Mod(G).

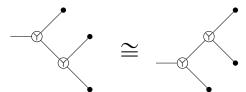
- Means:
 - there is a unit 1_Y,
 - 💮 is symmetric,
 - 💮 is associative.

Additional structure

Claim

There is an essentially unique extension of \bigcirc to a symmetric monoidal structure on Mod(G).

- Means:
 - there is a unit 1,
 - (Ÿ) is symmetric,
 - (Y) is associative.



The unit

• Unit is given by Whittaker space:

$$\mathbb{1}_{\mathsf{Y}} = \left\{ f : \operatorname{GL}_2(F) \to \mathbb{C} \,\middle|\, \begin{array}{l} f \text{ is locally const and} \\ \operatorname{compact supp \ mod} \ \mathit{U}_2(F), \end{array} \right.$$

$$f\left(\begin{pmatrix} 1 & u \\ & 1 \end{pmatrix} g \right) = e(u) \cdot f(g) \right\}.$$

The unit

• Unit is given by Whittaker space:

$$\mathbb{1}_{\mathsf{Y}} = \left\{ f : \operatorname{GL}_2(F) \to \mathbb{C} \,\middle|\, \begin{array}{l} f \text{ is locally const and} \\ \operatorname{compact supp \ mod} \ \mathit{U}_2(F), \end{array} \right.$$

$$f\left(\begin{pmatrix} 1 & u \\ & 1 \end{pmatrix} g \right) = e(u) \cdot f(g) \right\}.$$

- Important takeaway:
 - Irreducible V has dim $\mathsf{Hom}(\mathbb{1}_{\scriptscriptstyle Y},V)=0,1$, exactly if V is generic.
 - Choice of map $\mathbb{1}_{Y} \to V$ is same data as Kirillov model.

Representations as algebras

• GJ vs JL is now

$$V\otimes \mathsf{Hom}(\mathbb{1}_{\scriptscriptstyle{Y}},V)=V \textcircled{\Im}\mathbb{1}_{\scriptscriptstyle{Y}} \otimes \mathsf{Hom}(\mathbb{1}_{\scriptscriptstyle{Y}},V) \to V \textcircled{\Im}V$$
 is an isomorphism.

Representations as algebras

• GJ vs JL is now

$$V \otimes \mathsf{Hom}(\mathbb{1}_{\scriptscriptstyle{Y}}, V) = V \bigcirc \mathbb{1}_{\scriptscriptstyle{Y}} \otimes \mathsf{Hom}(\mathbb{1}_{\scriptscriptstyle{Y}}, V) \to V \bigcirc V$$

is an isomorphism.

- Turns out generic V are commutative algebras (in fact, idempotents).
- Follows because $\mathbb{1}_{Y} \rightarrow V$ is surjective.

Intuition

• For any group *G*, have a product of *G*-modules given by diagonal action:

$$V, V' \mapsto V \otimes V'$$
.

• Complicated interaction with decomposition to irreducibles.

Intuition

• For any group G, have a product of G-modules given by diagonal action:

$$V, V' \mapsto V \otimes V'$$
.

- Complicated interaction with decomposition to irreducibles.
- For any commutative group G, have another product of G-modules given by relative tensor product:

$$V, V' \mapsto V \otimes_G V'$$
.

• This product respects the irreducible representations of G.

Intuition

• For any group *G*, have a product of *G*-modules given by diagonal action:

$$V, V' \mapsto V \otimes V'$$
.

- Complicated interaction with decomposition to irreducibles.
- For any *commutative* group *G*, have another product of *G*-modules given by relative tensor product:

$$V, V' \mapsto V \otimes_G V'$$
.

- This product respects the irreducible representations of *G*.
- New product \odot behaves like second case, despite $\mathrm{GL}_2(F)$ not being commutative.

Apology

- Global theory deserves a whole lecture on its own.
- We will give a sample instead...

Notation

- Let F be a global function field, $\operatorname{char} F \neq 2$. Let $\mathbb{A} = \mathbb{A}_F$, $G = \operatorname{GL}_2(\mathbb{A})$.
- Category Mod(G) of smooth G-modules.

Notation

- Let F be a global function field, $\operatorname{char} F \neq 2$. Let $\mathbb{A} = \mathbb{A}_F$, $G = \operatorname{GL}_2(\mathbb{A})$.
- Category Mod(G) of smooth G-modules.
 - Warning: the category is huge, mostly unimportant!
 - Good only as an ambient space for the automorphic representations to live in.

Notation

- Let F be a global function field, char $F \neq 2$. Let $\mathbb{A} = \mathbb{A}_F$, $G = GL_2(\mathbb{A}).$
- Category Mod(G) of smooth G-modules.
 - Warning: the category is huge, mostly unimportant!
 - Good only as an ambient space for the automorphic representations to live in.
- An irreducible $(\pi, V) \in Mod(G)$ is automorphic iff it is a subquotient of $\widetilde{\mathscr{S}}$, where

$$\mathscr{S} = S(\mathrm{GL}_2(F)\backslash \mathrm{GL}_2(\mathbb{A})).$$

Global theory

Monoidal structure

- Fix $e: \mathbb{A}/F \to \mathbb{C}^{\times}$.
- Space $Y = S(M_2(\mathbb{A}) \times \mathbb{A}^{\times})$ is a $G \times G \times G$ -module via Weil representation.

$$V(\widehat{Y})V' = V \otimes_G Y \otimes_G V'.$$

Monoidal structure

- Fix $e: \mathbb{A}/F \to \mathbb{C}^{\times}$.
- Space $Y = S(M_2(\mathbb{A}) \times \mathbb{A}^{\times})$ is a $G \times G \times G$ -module via Weil representation.

$$V(\widehat{Y})V' = V \otimes_G Y \otimes_G V'.$$

Unit is global Whittaker space,

$$\begin{split} \mathbb{1}_{\scriptscriptstyle Y} &= \left\{ f : \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C} \,\middle|\, \substack{f \text{ is locally const and} \\ \operatorname{compact supp mod } U_2(\mathbb{A})}, \right. \\ & \left. f\left(\begin{pmatrix} 1 & u \\ & 1 \end{pmatrix} g \right) = e(u) \cdot f(g) \right\}. \end{split}$$

Global theory

Algebra of automorphic functions

Let

$$\mathfrak{I} \subseteq \mathcal{S}(\mathrm{GL}_2(F) \backslash \mathrm{GL}_2(\mathbb{A}))$$

be the space of smooth compactly supported functions, orthogonal to all characters $\chi(\det(g))$.

Algebra of automorphic functions

Let

$$\mathfrak{I} \subseteq \mathcal{S}(\mathrm{GL}_2(F)\backslash \mathrm{GL}_2(\mathbb{A}))$$

be the space of smooth compactly supported functions, orthogonal to all characters $\chi(\det(g))$.

• The theta functional can be used to construct a product

$$\mathfrak{I}(\widehat{Y})\mathfrak{I} \to \mathfrak{I}.$$

- The product makes I into a commutative (?)-algebra.
 - Unit map $\mathbb{1}_{\forall} \to \mathbb{I}$ is contragradient to sending an automorphic form to its Whittaker function.

Abstractly automorphic representations

Abstractly automorphic representations

- Have an \bigcirc -algebra of automorphic forms \Im . First question: what are its modules?
- Have a category of J-modules in the symmetric monoidal category Mod(G):

$$\mathsf{Mod}^{\mathrm{aut}}(G)$$
,

"abstractly automorphic representations".

• Being abstractly automorphic is a property.

- Being abstractly automorphic is a property.
- For irreducible representations:
 - abstractly automorphic ← automorphic.

- Being abstractly automorphic is a property.
- For irreducible representations:
 - abstractly automorphic \iff automorphic.
- Examples: $\mathscr{S} = S(GL_2(F)\backslash GL_2(\mathbb{A}))$, J.

- Being abstractly automorphic is a property.
- For irreducible representations:
 - abstractly automorphic \iff automorphic.
- Examples: $\mathscr{S} = S(GL_2(F)\backslash GL_2(\mathbb{A})), \Im.$
- Closed under: limits, colimits, subquotients, contragradients, etc.

- Being abstractly automorphic is a property.
- For irreducible representations:
 - abstractly automorphic \iff automorphic.
- Examples: $\mathscr{S} = S(GL_2(F)\backslash GL_2(\mathbb{A})), \Im.$
- Closed under: limits, colimits, subquotients, contragradients, etc.
- Decomposes into cuspidal and Eisenstein components, the same way p-adic representations do.

- Being abstractly automorphic is a property.
- For irreducible representations:
 - abstractly automorphic automorphic.
- Examples: $\mathscr{S} = S(\operatorname{GL}_2(F)\backslash \operatorname{GL}_2(\mathbb{A})), \Im.$
- Closed under: limits, colimits, subquotients, contragradients, etc.
- Decomposes into cuspidal and Eisenstein components, the same way p-adic representations do.
- ... And many more properties!

Questions?

References

Gal Dor.

Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm{GL}(2)$.

arXiv e-prints, page arXiv:2011.03313, November 2020.

Abstract

Consider the function field F of a smooth curve over \mathbb{F}_q , with $q \neq 2$. L-functions of automorphic representations of $\mathrm{GL}(2)$ over F are important objects for studying the arithmetic properties of the field F. Unfortunately, they can be defined in two different ways: one by Godement–Jacquet, and one by Jacquet–Langlands. Classically, one shows that the resulting L-functions coincide using a complicated computation.

Each of these L-functions is the GCD of a family of zeta integrals associated to test data. I will categorify the question, by showing that there is a correspondence between the two families of zeta integrals, instead of just their L-functions. The resulting comparison of test data will induce an exotic symmetric monoidal structure on the category of representations of $\mathrm{GL}(2)$.

It turns out that an appropriate space of automorphic functions is a commutative algebra with respect to this symmetric monoidal structure. I will outline this construction, and show how it can be used to construct a category of automorphic representations.