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ABSTRACT. We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for

an increasing family F of subsets of a finite set V . The full conjecture implies equivalence of the “Fractional

Expectation-Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan,

and the (stronger) “Expectation-Threshold Conjecture” of the second author and G. Kalai. The conjecture under

discussion here says there is a fixed L such that if, for a given F , p ∈ [0, 1] admits λ : 2V → R+ with∑
S⊆F λS ≥ 1 ∀F ∈ F

and ∑
S λSp

|S| ≤ 1/2

(a.k.a. F is weakly p-small), then p/L admits such a λ taking values in {0, 1} (F is (p/L)-small). Talagrand showed

this when λ is supported on singletons and suggested, as a more challenging test case, proving it when λ is

supported on pairs. The present work provides such a proof.

1. INTRODUCTION

Given a finite set V , write 2V for the power set of V and, for p ∈ [0, 1], µp for the product measure on 2V

given by µp(S) = p|S|(1− p)|V \S|. An F ⊆ 2V is increasing if B ⊇ A ∈ F ⇒ B ∈ F . For G ⊆ 2V we use 〈G〉
for the increasing family generated by G, namely {B ⊆ V : ∃A ∈ G, B ⊇ A}.

We assume throughout that F ⊆ 2V is increasing and not equal to 2V , ∅. Then µp(F)(=
∑
{µp(S) : S ∈

F}) is strictly increasing in p, and we define the threshold, pc(F), to be the unique p for which µp(F) = 1/2.
(This is finer than the original Erdős–Rényi notion, according to which p∗ = p∗(n) is a threshold for F = Fn
if µp(F) → 0 when p � p∗ and µp(F) → 1 when p � p∗. That pc(F) is always an Erdős–Rényi threshold
follows from [2].)

Thresholds have been a—maybe the—central concern of the study of random discrete structures (random
graphs and hypergraphs, for example) since its initiation by Erdős and Rényi [4], with much of that effort
concerned with identifying (Erdős–Rényi) thresholds for specific properties (see [1, 6])—though it was not
observed until [2] that every sequence of increasing properties admits such a threshold.

The main concern of this paper is the relation between the following two notions of M. Talagrand [8, 9,
10]. (Our focus is Conjecture 1.4 and our main result is Theorem 1.6; we will come to these following some
motivation.)

Say F is p-small if there is a G ⊆ 2V such that

〈G〉 ⊇ F (1)
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(that is, each member of F contains a member of G) and∑
S∈G

p|S| ≤ 1/2, (2)

and set q(F) = max{p : F is p-small}. Say F is weakly p-small if there is a λ : 2V → R+ (:= [0,∞)) such that∑
S⊆F

λS ≥ 1 ∀F ∈ F (3)

and ∑
S

λSp
|S| ≤ 1/2, (4)

and set qf (F) = max{p : F is weakly p-small}. As in [5] we refer to q(F) and qf (F) (respectively) as the
expectation-threshold and fractional expectation-threshold of F . (Note the former is used slightly differently in
[7].) Notice that

q(F) ≤ qf (F) ≤ pc(F). (5)

(The first inequality is trivial and the second holds since, for λ as in (3), (4) and Y drawn from µp,

µp(F) ≤
∑
F∈F

µp(F )
∑
S⊆F

λS ≤
∑
S

λSµp(Y ⊇ S) =
∑
S

λSp
|S| ≤ 1/2.) (6)

In particular, each of q, qf is a lower bound on pc, and these turn out to be easily understood (and to agree
up to constant) in many cases of interest; see [5]. The next two conjectures—respectively the main conjecture
(Conjecture 1) of [7] and a sort of LP relaxation thereof suggested by Talagrand [10, Conjecture 8.3]—say
that these bounds are never far from the truth.

Conjecture 1.1. There is a universal K such that for every finite V and increasing F ⊆ 2V ,

pc(F) ≤ Kq(F) log |V |.

Conjecture 1.2. There is a universal K such that for every finite V and increasing F ⊆ 2V ,

pc(F) ≤ Kqf (F) log |V |.

Talagrand [10, Conjecture 8.5] also proposes the following strengthening of Conjecture 1.2, in which `(F) is
the maximum size of a minimal member of F .

Conjecture 1.3. There is a universal K > 0 such that for every finite V and increasing F ⊆ 2V ,

pc(F) < Kqf (F) log `(F).

Conjecture 1.3 is proved in [5], to which we also refer for discussion of the very strong consequences that
originally motivated Conjecture 1.1, but follow just as easily from Conjecture 1.2.

Turning, finally, to the business at hand, we are interested in the following conjecture of Talagrand [10,
Conjecture 6.3], which says that the parameters q and qf are in fact not very different.

Conjecture 1.4. There is a fixed L such that, for any F , q(F) ≥ qf (F)/L.
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(That is, weakly p-small implies (p/L)-small.) This of course implies equivalence of Conjectures 1.2 and 1.1,
as well as of Conjecture 1.3 and the corresponding strengthening of Conjecture 1.1; in particular, in view
of [5], Conjecture 1.4 would now supply a proof of Conjecture 1.1. (Post-[5] this implication is probably the
best motivation for Conjecture 1.4, but the authors have long been interested in the conjecture for its own
sake, as it would be a striking instance of a broad, natural class of examples where the passage from an
integer problem to its fractional counterpart has only a minor effect on behavior.)

The following mild reformulation of Conjecture 1.4 will be convenient.

Conjecture 1.5. There is a fixed J such that for any V, p ∈ [0, 1] and λ : 2V \ {∅} → R+,

{U ⊆ V :
∑
S⊆U

λS ≥
∑
S

λS(Jp)
|S|} (7)

is p-small.

As Talagrand observes, even simple instances of Conjecture 1.4 are not easy to establish. He suggests
two test cases, which in the formulation of Conjecture 1.5 become:

(i) V =
(
[n]
2

)
= E(Kn) and (for some k) λ is the indicator of {copies of Kk in Kn};

(ii) λ is supported on 2-element sets.

(He does prove Conjecture 1.5 for λ supported on singletons; see Proposition 2.1 for a quantified version
that will be useful in what follows.)

The quite specific (i) above was treated in [3]. Here we dispose of the much broader (ii):

Theorem 1.6. Conjecture 1.5 holds when supp(λ) ⊆
(
V
2

)
; in other words, there is a J such that for any graph

G = (V,E), p ∈ [0, 1] and λ : E → R+,

{U ⊆ V : λ(G[U ]) ≥ J2λ(G)p2} (8)

is p-small (where G[U ] is the subgraph induced by U ).

(We could of course take G = Kn, but find thinking of a general G more natural.)

It seems not impossible that the ideas underlying Theorem 1.6 can be extended to give Conjecture 1.4 in
full, but we don’t yet see this.

The rest of the paper is devoted to the proof of Theorem 1.6. The most important part of this turns out to
be a version of the “unweighted” case (that is, with λ taking values in {0, 1}), though deriving Theorem 1.6
from this still needs some ideas; a precise statement (Theorem 2.2) is given in Section 2, following a few
preliminaries. Section 3 then proves Theorem 1.6 assuming Theorem 2.2, and the proof of Theorem 2.2
itself is given in Section 4.

2. ORIENTATION

We use [n] for {1, 2, . . . , n}, 2X for the power set of X , and
(
X
r

)
for the family of r-element subsets of X ,

and recall from above that 〈A〉 is the increasing family generated by A ⊆ 2X . For a set X and p ∈ [0, 1],
Xp is the “p-random” subset of X in which each x ∈ X appears with probability p independent of other
choices. We assume throughout that p has been specified and often omit it from our notation.
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ForA ⊆ 2V , the cost ofA (w.r.t. our given p) is C(A) =
∑
S∈A p

|S|. We sayA covers B ⊆ 2V if 〈A〉 ⊇ B, set

C∗(B) = min{C(A) : A covers B},

and say B can be covered at cost γ if C∗(B) ≤ γ. So “B p-small” is the same as C∗(B) ≤ 1/2, and each of
Conjecture 1.5, Theorem 1.6 says (roughly) that the collection of subsets U of V for which

∑
S⊆U λS is much

larger than the “natural” value, E[
∑
S⊆Vp λS ] =

∑
λSp

|S|, admits such a “cheap” cover. Talagrand’s proof
for singletons, to which we turn next, provides a first, simple illustration of this, and what we do in the rest
of the paper amounts to producing such a cover for the collection in (8).

Singletons. In the above language, Talagrand’s result for λ supported on singletons becomes:

Proposition 2.1. For all ζ : V → R+ and J > 2e,

C∗({U ⊆ V : ζ(U) ≥ Jζ(V )p}) < 2e/(J − 2e). (9)

(The dependence on J is best possible up to constants; e.g. take |V | = J , p = J−2 and ζ ≡ 1. The switch
from λ to ζ will be convenient when we come to use the proposition; see (17).)

Proof. We may take V = [n] and assume ζ is non-increasing (and positive) and Jp ≤ 1 (since the statement
is trivial when Jp > 1). Define R by

1

Rp
=

⌈
1

Jp

⌉
=: a.

We claim that the collection

A =
⋃
k≥1

(
[ak]

k

)
covers the family in (9); this gives the proposition since the l.h.s. of (9) is then at most

C(A) =
∑
k≥1

(
ak

k

)
pk <

∑
k≥1

( e
R

)k
<

e

R− e
<

2e

J − 2e

(the last inequality holding since Jp ≤ 1 implies R > J/2.)

To see that the claim holds, observe that its failure implies the existence of some U = {u1 < u2 < · · · <
u`} ⊆ [n] with ζ(U) ≥ Jζ(V )p such that |U ∩ [ak]| < k for all k > 0. But then ui > ia for all i ∈ [`], yielding
the contradiction

ζ(V ) >

`−1∑
i=0

∑
j∈[a]

ζ(j + ia) ≥ aζ(U) ≥ ζ(V ). �

Toward doubletons. Graphs here are always simple and are mainly thought of as sets of edges; thus |G| is
|E(G)|. We use ∇G(v) or ∇v for {e ∈ E(G) : v ∈ e}; so the degree of v is dv = |∇v|. (We also use NG(v) for
the neighborhood of v in G.)

The following convention will be helpful. Given a graphG on V , we associate with eachU ⊆ V a “weighted
subset” D(U) = DG(U) of E(G) that assigns to each e the weight |e ∩ U |/2. (We also use Dv or DG(v) for
D({v}).) We then have (or define), for any λ : G→ R+,

λ(D(U)) = 1
2

∑
v∈U λ(∇v)
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(e.g. |D(U)| = 1
2

∑
v∈U dv). Notice that

Eλ(G[Vp]) = Eλ(D(Vp))p

(e.g. E|G[Vp]| = E|D(Vp)|p), so λ(D(U))p is a natural benchmark against which to measure λ(G[U ]).

As mentioned at the end of Section 1, the heart of our argument deals with the unweighted case of
Theorem 1.6, where we are given some (simple) graph G on V , and the collection in (8) becomes the set of
U ’s for which G[U ] is atypically large. It is here that we are concerned with the production of covers, which
are then available for use in the weighted case.

For the derivation of Theorem 1.6, we will decompose G into subgraphs G1, G2, . . . so that the λ-values
of the edges within a Gi are roughly equal, and show that for each “heavy” U (meaning one with large
λ(G[U ]), as in (8)), there is some i for which Gi[U ] is large. We then plan to appeal to the unweighted
case to cover, for each i, the U ’s that are “heavy” for Gi—a plan made delicate by the need to sum the
contributions of many Gi’s to the l.h.s. of (2).

To deal with this we need a little more than the unweighted version of Theorem 1.6, as follows. Define

C∗J(µ, T ) (10)

to be the infimum of those γ’s for which, for every p and (simple) graph G (on V ) with |G|p2 ≤ µ,

{U ⊆ V : |G[U ]| ≥ max{T, J |DG(U)|p}} (11)

can be covered at cost γ.

The technical-looking requirement involving DG is a crucial feature of our argument: for derivation of
Theorem 1.6, we will need cost bounds that improve as the “target” T grows, even if T/µ does not, which
need not be the case without this extra condition (e.g. it’s not hard to see that if G is the union of (Kp)−1

disjoint copies of K1,m, and T = mp = Kµ, then, no matter how large m is, {U ⊆ V : |G[U ]| ≥ T}—or the
smaller {U ⊆ V : G[U ] ∼= K1,mp}—cannot be covered at cost less than 1/K). License to use the condition
will be provided by the reduction to unweighted in Section 3.

Our central result is:

Theorem 2.2. For any µ and T = cJ2µ with

c ≥ 256e/J , J ≥ 8e (12)

and J1 = J/(8e),

C∗J(µ, T ) ≤ 32c−1 min{J−21 , J
−
√
T/16

1 }. (13)

(Here and throughout we don’t worry about getting good constants, trying instead to keep the argument
fairly clean.) As already mentioned, the proof of Theorem 2.2 is given in Section 4, following the derivation
of Theorem 1.6, to which we now turn.

3. PROOF OF THEOREM 1.6

Here we assume Theorem 2.2 and prove the following quantified version of Theorem 1.6.
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Theorem 3.1. For any graph G on V, λ : G→ R+ and

R ≥ 4096
√
2e, (14)

the set
U0 = {U ⊆ V : λ(G[U ]) ≥ R2λ(G)p2}

can be covered at cost O(1/R).

Proof. We take G,λ,R to be as in the theorem, use D(U) for DG(U) (defined in Section 2), and assume
throughout that

U ∈ U0.

We first observe that it is enough to prove the theorem assuming

the only positive values taken by λ are θi := 2−i, i = 1, 2, . . . , (15)

with (14) slightly weakened to

R ≥ 4096e. (16)

Then for a general λ (which we may of course scale to take values in [0, 1]) and λ′ given by

λ′S = max{θi : θi ≤ λS},

U0 as in the theorem is contained in the corresponding collection with λ and R2 replaced by λ′ and R2/2

(which supports (16)), since U ∈ U0 implies 2λ′(G[U ]) > λ(G[U ]) ≥ R2λ(G)p2 ≥ R2λ′(G)p2. So we assume
from now on that λ and R are as in (15) and (16) (respectively).

Note also that Proposition 2.1, with ζ(v) = λ(Dv) (for which we have ζ(V ) =
∑
ζ(v) = 1

2

∑
λ(∇v) =

λ(G) and ζ(U) = λ(D(U))), says that the set

{U ⊆ V : λ(D(U)) ≥ Rλ(G)p} (17)

admits a cover of cost less than 6/R. So we specify such a cover as a first installment on G and it then
becomes enough to show that

U∗ := {U ∈ U0 : λ(D(U)) < Rλ(G)p}

can be covered at cost O(1/R); in fact we will show

C∗(U∗) = O(R−2). (18)

We assume from now on that U ∈ U∗.

Set Gi = {e ∈ G : λ(e) = θi}. For (18) we first show that, for each U ∈ U∗, some Gi[U ] must be “large,”
meaning U belongs to Ui, defined in (25), and then bound the costs of the Ui’s using Theorem 2.2.

From this point we use Di(U) for DGi(U). We observe that for any H ⊆ G,

λ(H) =
∑
i

θi|H ∩Gi|,

and abbreviate

wi = λ(Gi) = θi|Gi|, w = λ(G) =
∑

wi.

Given U , define L = L(U), K = K(U), Li = Li(U) and Ki = Ki(U) by

λ(D(U)) = Lwp,
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λ(G[U ]) = KLwp2,

|Di(U)| = Li|Gi|p, (19)

and

|Gi[U ]| = KiLi|Gi|p2. (20)

Then

Lwp =
∑

θi|Di(U)| =
∑

Liwip (21)

and

KLwp2 =
∑

θi|Gi[U ]| =
∑

KiLiwip
2.

Since U ∈ U0, we have ∑
KiLiwi ≥ R2w, (22)

while U ∈ U∗ gives

L < R. (23)

Note also that, with

I = I(U) = {i : Ki > R/2},

we have ∑
{KiLiwi : i ∈ I} > R2w/2, (24)

as follows from (22) and (using (21) and (23))∑
{KiLiwi : i 6∈ I} ≤ (R/2)Lw < R2w/2.

Now let Ei = |Gi|p2 (= E|Gi[Vp]|) and, for integer α,

Eα = {i : Ei ∈ (2α−1, 2α]}.

We arrange the i’s in an array, with columns indexed by α’s (in increasing order) and column α consisting of
the indices in Eα, again in increasing order. (So wi’s within a column decrease as we go down. Note column
lengths may vary.) Define Bβ to be the set of indices in row β.

· · · α− 1 α α+ 1 · · ·

1
...

β i
...

TABLE 1. i is the βth smallest index in Eα (when |Eα| ≥ β).

Set yi = θi2
α/p2 (for i ∈ Eα) and y =

∑
i≥1 yi, noting that

yi/2 < wi ≤ yi.

Set

c∗β = (3/2)β−1R2/16 (β ≥ 1)
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and ci = c∗β if i ∈ Bβ . Let w∗β and y∗β be (respectively) the sums of the wi’s and yi’s over i ∈ Bβ , and notice
that

y∗β+1 ≤ y∗β/2 for β ≥ 1

(since i = Bβ+1 ∩ Eα—where we abusively use i for {i}—implies i > j := Bβ ∩ Eα, whence 2yi ≤ yj).

Claim 3.2. For each U ∈ U∗ there is an i ∈ I(U) with Ki(U)Li(U) > ci.

Proof. With
∑? denoting summation over I(U), we have (using (24) at the end)∑?

ciwi ≤
∑

c∗βw
∗
β ≤

∑
c∗βy
∗
β

≤ y∗1(c
∗
1 + c∗2/2 + c∗3/2

2 + · · · )

≤ y(c∗1 + c∗2/2 + c∗3/2
2 + · · · )

≤ (R2/4)y < (R2/2)w <
∑?

Ki(U)Li(U)wi.

�

It follows that if, for each i, Gi covers

Ui := {U ⊆ V : i ∈ I(U); Ki(U)Li(U) > ci}, (25)

then ∪Gi covers U∗; so we have

C∗(U∗) ≤
∑
i

C∗(Ui). (26)

On the other hand, if (α, β) is the pair corresponding to i (that is, i is the βth entry in column α of our array),
then (see (10), (11) for C∗J )

C∗(Ui) ≤ C∗R/2(2
α, Tα,β),

where Tα,β = max{c∗β2α−1, 1} (since |Gi|p2 = Ei ≤ 2α, while U ∈ Ui implies, using (19), (20) and i ∈ I(U),

|Gi[U ]| = Ki(U)Li(U)|Gi|p2
{

> ci|Gi|p2 > c∗β2
α−1

= Ki|Di(U)|p > (R/2)|Di(U)|p).

So, with α and β ranging over integers and positive integers respectively, (18) will follow from∑
C∗R/2(2

α, Tα,β) = O(R−2). (27)

Proof of (27). For Tα,β = 1 we bound C∗R/2(2
α, Tα,β) by 2α, using the trivial

C∗J(µ, 1) ≤ µ (28)

(since {{x, y} : xy ∈ G} itself covers the set in (11)), which—since Tα,β = 1 iff 2α ≤ 32R−2(2/3)β−1—bounds
the contribution of such pairs to the sum in (27) by∑

β

∑
α:Tα,β=1

2α ≤ 64R−2
∑
β

(2/3)β−1 = 3 · 64R−2. (29)

For Tα,β > 1 we use Theorem 2.2 with T = Tα,β (= c∗β2
α−1), µ = 2α, J = R/2, and (thus)

c = T/(µJ2) = c∗β/(2J
2) = (3/2)β−1/8.

Note that (16) gives J ≥ 8e and c ≥ 256e/J , so (12) holds.

8



(Here, finally, we see the role of C∗J mentioned in the paragraph following (11): for a given β we may
be summing over many α’s with the same T/µ, so it’s crucial that we have cost bounds that shrink with T
when this ratio is held constant.)

For each integer s ≥ 0 let Ts = {(α, β) : Tα,β ∈ (2s, 2s+1]}. For each β ≥ 1 there is a unique α such that
(α, β) ∈ Ts, and every (α, β) with Tα,β > 1 is in some Ts. Let f(s) = min{J−21 , J−2

s/2−4

1 }. Then for fixed s,
we have (see (13))∑

(α,β)∈Ts

C∗J(2
α, Tα,β) ≤

∑
β

32c−1f(s) =
∑
β

256

(
2

3

)β−1
f(s) < 3 · 256f(s), (30)

and summing over all s we get∑
Tα,β>1

C∗J(2
α, Tα,β) <

∑
s≥0

768f(s) =
∑
s≥0

768min{J−21 , J−2
s/2−4

1 } = O(J−21 ). (31)

Finally, combining (31) and (29) gives (27). �

4. PROOF OF THEOREM 2.2

Aiming for simplicity, we just bound the cost in (13) assuming

T = 22k+3

for some positive integer k and

c = T/(µJ2) ≥ 64e/J, (32)

showing that in this case

C∗J(µ, T ) ≤ 8c−1J−2
k−1−1

1 . (33)

Before proving this, we show it implies Theorem 2.2, which, since C∗J(µ, t) is decreasing in t, just requires
showing that the r.h.s. of (13) bounds C∗J(µ, T0) for some T0 ≤ T .

If T < 32 this follows from the trivial (28), since µ = T/(cJ2) < 32c−1J−21 , matching the bound in (13).
Suppose then that T ≥ 32 and let T0 = c0J

2µ be the largest integer not greater than T of the form 22k+3

(with positive integer k). We then have c0 > c/4 (supporting (32)) and 2k−1 >
√
T0/8 >

√
T/16, and it

follows that the bound on C∗J(µ, T0) given by (33) is less than the bound in (13).

Proof of (33). We have |G|p2 ≤ µ, T = 22k+3 (= cJ2µ with J as in (12) and c as in (32)), and, with

U := {U ⊆ V : |G[U ]| > max{T, J |DG(U)|p}}, (34)

want to show that C∗(U) is no more than the bound in (33).

Here, finally, we come to specification of a cover, G. Each member of G will be a disjoint union of stars
(a.k.a. a star forest), where for present purposes a star at v in W (⊆ V ) is some {v} ∪ S ⊆W with S ⊆ NG(v).
(Where convenient we will also refer to this as the “star (v, S).”) We say such a star is good if

|S| ≥ Jdvp/4. (35)

Given a positive integer L, we define

Lv = max{L, dJdvp/4e} (36)

and say a star (v, S) is L-special if |S| = Lv .

9



For positive integers b and L, let G(b, L) (⊆ 2V ) consist of all disjoint unions of b L-special stars in G. We
will specify a particular collection C of pairs (b, L) and set

G = ∪{G(b, L) : (b, L) ∈ C}.

Theorem 2.2 is then given by the following two assertions.

Claim 4.1. G covers U .

Claim 4.2. C(G) is at most the bound in (33).

Set (with i ∈ [k] throughout) Li = 2i−1 and

δi = max{2−(i+2), 2i−k−3} ≥ 1/(8Li), (37)

and notice that ∑
δi ≤

∑
2−(i+2) +

∑
2i−k−3 ≤ 1/2. (38)

Let
bi = δi4

−iT ≥ 2k−i. (39)

Finally, set
C = {(bi, Li) : i ∈ [k]}.

Proof of Claim 4.1. We are given U ∈ U and must show it contains a member of G. Let U0 = U and for
j = 1, . . . until no longer possible do: let (vj , Sj), with Sj = NG(vj) ∩ Uj−1, be a largest good star in Uj−1,
and set dj = |Sj | and Uj = Uj−1 \ ({vj} ∪ Sj).

The passage from Uj−1 to Uj deletes at most d2j edges that contain vertices of Sj of Uj−1-degree at most
dj ; any other edge deleted in this step contains u ∈ Sj with Uj−1-degree less than Jdup/4 (or u, having
Uj−1-degree greater than dj , would have been chosen in place of vj); and of course each vertex u of the final
Uj has Uj-degree less than Jdup/4. We thus have

|G[U ]| ≤
∑
j

d2j +
∑
v∈U

Jdvp/4 ≤
∑
j

d2j + |G[U ]|/2

(using the second bound in (34)), so ∑
j

d2j ≥ |G[U ]|/2 ≥ T/2. (40)

Set

Bi =

{
{j : dj ∈ [2i−1, 2i)} if i ∈ [k − 1],
{j : dj ≥ 2k−1} if i = k.

(It may be worth noting that, while the dj ’s are decreasing, the degrees corresponding to Bi increase with
i.) In view of (40), either |Bk| ≥ 1 or (using (38))∑

i∈[k−1]

|Bi|4i ≥ T/2 ≥
∑

i∈[k−1]

δiT =
∑

i∈[k−1]

bi4
i.

Since bk = 1, it follows that for some i ∈ [k] we have

|Bi| ≥ bi. (41)

On the other hand, since j ∈ Bi implies |Sj | ≥ Lvi (= max{Li, dJdvp/4e}), the set
⋃
{Sj ∪ {vj} : j ∈ Bi}

contains some W ∈ G(bi, Li)(⊆ G) whenever i is as in (41). This completes the proof of Claim 4.1. �
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Proof of Claim 4.2. We first bound the costs, say C(b, L), of the collections G(b, L). Given (b, L), set

qv = p

(
edvp

Lv

)Lv
.

Then qv bounds the total cost of the set of L-special stars at v (using
(
dv
Lv

)
≤ (edv/L

v)L
v

), and it follows that

C(b, L) ≤
∑{∏

v∈B
qv : B ∈

(
V
b

)}
. (42)

For a given value of ϕ :=
∑
v∈V qv , the r.h.s. of (42) is largest when the qv’s are all equal (this just uses

xy ≤ [(x+ y)/2]2), whence

C(b, L) ≤
(
|V |
b

)(
ϕ

|V |

)b
≤
(eϕ
b

)b
. (43)

Recalling (36), we have

qv ≤ dvp2 ·
e

L

(
4e

J

)L−1
,

so (since |G|p2 ≤ µ)

ϕ ≤ 2µ · e
L

(
4e

J

)L−1
. (44)

Now using (43) and (44), recalling that T = cJ2µ, Li = 2i−1, bi = δi4
−iT = δiT/(4L

2
i ) and J1 = J/(8e),

and for the moment omitting the subscript i, we have (with the final inequality (45) justified below)

C(b, L) ≤

[
2e2µ

L

4L2

δT

(
4e

J

)L−1]b

=

[
8e2L · 1

cJ2δ

(
4e

J

)L−1]b

=

[
c−1

L

2δ

(
4e

J

)L+1
]b

≤
[ c
4
· JL+1

1

]−b
. (45)

For (45), or the equivalent

2L+4δ ≥ L, (46)

it is enough to show 2L+1 ≥ L2 (since δ ≥ 1/(8L); see (37)), which is true for positive integer L.

Finally, returning to Claim 4.2 (and recalling that L and b in the display ending with (45) are really Li
and bi), we have

C(G) =
k∑
i=1

C(bi, Li) ≤
k∑
i=1

[ c
4
· JLi+1

1

]−bi
. (47)

We use bi ≥ 2k−i (see (39)) and Li = 2i−1 to bound the r.h.s. of (47) by

k∑
i=1

[
cJ2i−1+1

1

4

]−2k−i
=

k∑
i=1

J−2
k−1

1

[
cJ1
4

]−2k−i
=

k−1∑
j=0

( c
4
J2k−1+1
1

)−1 [cJ1
4

]1−2j
; (48)

but, since cJ1/4 ≥ 2 (using (32) and J1 = J/(8e)), the last expression in (48) is less than the bound
8c−1J−2

k−1−1
1 in (33). �
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