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Abstract

The Stabbing Planes proof system [9] was introduced to model the reasoning carried out in

practical mixed integer programming solvers. As a proof system, it is powerful enough to sim-

ulate Cutting Planes and to refute the Tseitin formulas — certain unsatisfiable systems of linear

equations mod2 — which are canonical hard examples for many algebraic proof systems. In

a recent (and surprising) result, Dadush and Tiwari [26] showed that these short refutations of

the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes

proofs, refuting a long-standing conjecture. This translation raises several interesting ques-

tions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes.

This would allow for the substantial analysis done on the Cutting Planes system to be lifted to

practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of

these proofs is inherent to Cutting Planes.

In this paper we make progress towards answering both of these questions. First, we show

that any Stabbing Planes proof with bounded coefficients (SP∗) can be translated into Cutting

Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the

first exponential lower bounds on SP
∗. Using this translation, we extend the result of Dadush

and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of

linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari,

our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is

inherent. As a step towards this conjecture, we develop a new geometric technique for proving

lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower

bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas.

†Work done while at Institute for Advanced Study.
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1 Introduction

An effective method for analyzing classes of algorithms is to formalize the techniques used by the class

into a formal proof system, and then analyze the formal proof system instead. By doing this, theorists

are able to hide many of the practical details of implementing these algorithms, while preserving the

class of methods that the algorithms can feasibly employ. Indeed, this approach has been applied to

study many different families of algorithms, such as

• Conflict-driven clause-learning algorithms for SAT [42, 50, 62], which can be formalized using

resolution proofs [28].

• Optimization algorithms using semidefinite programming [35,52], which can often be formalized

using Sums-of-Squares proofs [6, 39].

• The classic cutting planes algorithms for integer programming [19,36], which are formalized by

cutting planes proofs [19, 20, 24].

In the present work, we continue the study of formal proof systems corresponding to modern integer

programming algorithms. Recall that in the integer programming problem, we are given a polytope

P ⊆ Rn and a vector c ∈ Rn, and our goal is to find a point x ∈ P ∩ Zn maximizing c · x. The

classic approach to solving this problem — pioneered by Gomory [36] — is to add* cutting planes to

P . A cutting plane for P is any inequality of the form ax ≤ ⌊b⌋, where a is an integral vector, b is

rational, and every point of P is satisfied by ax ≤ b. By the integrality of a, it follows that cutting

planes preserve the integral points of P , while potentially removing non-integral points from P . The

cutting planes algorithms then proceed by heuristically choosing “good” cutting planes to add to P to

try and locate the integral hull of P as quickly as possible.

As mentioned above, these algorithms can be naturally formalized into a proof system — the Cut-

ting Planes proof system, denoted CP — as follows [24]. Initially, we are given a polytope P , presented

as a list of integer-linear inequalities {aix ≤ bi}. From these inequalities we can then deduce new in-

equalities using two deduction rules:

• Linear Combination. From inequalities ax ≤ b, cx ≤ d, deduce any non-negative linear combi-

nation of these two inequalities with integer coefficients.

• Division Rule. From an inequality ax ≤ b, if d ∈ Z with d ≥ 0 divides all entries of a then

deduce (a/d)x ≤ ⌊b/d⌋.

A Cutting Planes refutation of P is a proof of the trivially false inequality 1 ≤ 0 from the inequalities

in P ; clearly, such a refutation is possible only if P does not contain any integral points. While Cutting

Planes has grown to be an influential proof system in propositional proof complexity, the original

cutting planes algorithms suffered from numerical instabilities, as well as difficulties in finding good

heuristics for the next cutting planes to add [36].

The modern algorithms in integer programming improve on the classical cutting planes method

by combining them with a second technique, known as branch-and-bound, resulting in a family of

optimization algorithms broadly referred to as branch-and-cut algorithms. These algorithms search for

integer solutions in a polytope P by recursively repeating the following two procedures: First, P is

split into smaller polytopes P1, . . . , Pk such that P ∩ Zn ⊆ ⋃

i∈[k] Pi (i.e. branching). Next, cutting

*Throughout, we will say that a cutting plane, or an inequality is added to a polytope P to mean that it is added to the set

of inequalities defining P .
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planes deductions are made in order to further refine the branched polytopes (i.e. cutting). In practice,

branching is usually performed by selecting a variable xi and branching on all possible values of xi; that

is, recursing on P ∩ {xi = t} for each feasible integer value t. More complicated branching schemes

have also been considered, such as branching on the hamming weight of subsets of variables [32],

branching using basis-reduction techniques [1, 2, 46], and more general linear inequalities [43, 48, 51].

However, while these branch-and-cut algorithms are much more efficient in practice than the clas-

sical cutting planes methods, they are no longer naturally modelled by Cutting Planes proofs. So, in

order to model these solvers as proof systems, Beame et al. [9] introduced the Stabbing Planes proof

system. Given a polytope P containing no integral points, a Stabbing Planes refutation of P proceeds

as follows. We begin by choosing an integral vector a, an integer b, and replacing P with the two

polytopes P ∩ {ax ≤ b− 1} and P ∩ {ax ≥ b}. Then, we recurse on these two polytopes, continuing

until all descendant polytopes are empty (that is, they do not even contain any real solutions). The ma-

jority of branching schemes used in practical branch-and-cut algorithms (including all of the concrete

schemes mentioned above) are examples of this general branching rule.

It is now an interesting question how the two proof systems — Cutting Planes and Stabbing Planes

— are related. By contrasting the two systems we see at least three major differences:

• Top-down vs. Bottom-up. Stabbing Planes is a top-down proof system, formed by performing

queries on the polytope and recursing; while Cutting Planes is a bottom-up proof system, formed

by deducing new inequalities from old ones.

• Polytopes vs. Halfspaces. Individual “lines” in a Stabbing Planes proof are polytopes, while

individual “lines” in a Cutting Planes proof are halfspaces.

• Tree-like vs. DAG-like. The graphs underlying Stabbing Planes proofs are trees, while the graphs

underlying Cutting Planes proofs are general DAGs: intuitively, this means that Cutting Planes

proofs can “re-use” their intermediate steps, while Stabbing Planes proofs cannot.

When taken together, these facts suggest that Stabbing Planes and Cutting Planes could be incompara-

ble in power, as polytopes are more expressive than halfspaces, while DAG-like proofs offer the power

of line-reuse. Going against this natural intuition, Beame et al. proved that Stabbing Planes can actu-

ally efficiently simulate Cutting Planes [9] (see Figure 1) — this simulation was later extended by Basu

et al. [7] to almost all types of cuts used in practical integer programming, including split cuts. Fur-

thermore, Beame et al. proved that Stabbing Planes is equivalent to the proof system tree-like R(CP),
denoted TreeR(CP), which was introduced by Krajı́ček [45], and whose relationship to Cutting Planes

was previously unknown.

This leaves the converse problem — of whether Stabbing Planes can also be simulated by Cutting

Planes — as an intriguing open question. Beame et al. conjectured that such a simulation was impossi-

ble, and furthermore that the Tseitin formulas provided a separation between these systems [9]. For any

graph G and any {0, 1}-labelling ℓ of the vertices of G, the Tseitin formula of (G, ℓ) is the following

system of F2-linear equations: for each edge e we introduce a variable xe, and for each vertex v we

have an equation
⊕

u:uv∈E

xuv = ℓ(v)

asserting that the sum of the edge variables incident with v must agree with its label ℓ(v) (note such

a system is unsatisfiable as long as
∑

v ℓ(v) is odd). On the one hand, Beame et al. proved that there

are quasi-polynomial size Stabbing Planes refutations of the Tseitin formulas [9]. On the other hand,
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Tseitin formulas had long been conjectured to be exponentially hard for Cutting Planes [24], as they

form one of the canonical families of hard examples for algebraic and semi-algebraic proof systems,

including Nullstellensatz [38], Polynomial Calculus [18], and Sum-of-Squares [39, 60].

In a recent breakthrough, the long-standing conjecture that Tseitin was exponentially hard for Cut-

ting Planes was refuted by Dadush and Tiwari [26], who gave quasi-polynomial size Cutting Planes

refutations of Tseitin instances. Moreover, to prove their result, Dadush and Tiwari showed how to

translate the quasipolynomial-size Stabbing Planes refutations of Tseitin into Cutting Planes refuta-

tions. This translation result is interesting for several reasons. First, it brings up the possibility that

Cutting Planes can actually simulate Stabbing Planes. If possible, such a simulation would allow the

significant analysis done on the Cutting Planes system to be lifted directly to branch-and-cut solvers. In

particular, this would mean that the known exponential-size lower bounds for Cutting Planes refutations

would immediately imply the first exponential lower bounds for these algorithms for arbitrary branch-

ing heuristics. Second, the translation converts shallow Stabbing Planes proofs into very deep Cutting

Planes proofs: the Stabbing Planes refutation of Tseitin has depth O(log2 n) and quasi-polynomial

size, while the Cutting Planes refutation has quasipolynomial size and depth. This is quite unusual

since simulations between proof systems typically preserve the structure of the proofs, and thus brings

up the possibility that the Tseitin formulas yield a supercritical size/depth tradeoff – formulas with

short proofs, requiring superlinear depth. For contrast: another simulation from the literature which

emphatically does not preserve the structure of proofs is the simulation of bounded-size resolution by

bounded-width resolution by Ben-Sasson and Wigderson [11]. In this setting, it is known that this

simulation is tight [15], and even that there exist formulas refutable in resolution width w requiring

maximal size nΩ(w) [5]. Furthermore, under the additional assumption that the proofs are tree-like,

Razborov [57] proved a supercritical trade-off between width and size.

1.1 Our Results

A New Characterization of Cutting Planes

Our first main result gives a characterization of Cutting Planes proofs as a natural subsystem of Stab-

bling Planes that we call Facelike Stabbing Planes. A Stabbing Planes query is facelike if one of the

sets P ∩ {ax ≤ b− 1} or P ∩ {ax ≥ b} is either empty or is a face of the polytope P , and a Stabbing

Planes proof is said to be facelike if it only uses facelike queries. Our main result is the following

theorem.

Theorem 1.1. The proof systems CP and Facelike SP are polynomially equivalent.

The proof of this theorem is inspired by Dadush and Tiwari’s upper bound for the Tseitin formulas.

Indeed, the key tool underlying both their proof and ours is a lemma due to Schrijver [61] which allows

us to simulate CP refutations of faces of a polytope, when beginning from P itself.

Using this equivalence we prove the following surprising simulation (see Figure 1), stating that

Stabbing Planes proofs with relatively small coefficients (quasi-polynomially bounded in magnitude)

can be quasi-polynomially simulated by Cutting Planes.

Theorem 1.2. Let F be any unsatisfiable CNF formula on n variables, and suppose that there is a SP

refutation of F in size s and maximum coefficient size c. Then there is a CP refutation of F in size

s(cn)log s.

In fact, we prove a more general result (Theorem 3.7) which holds for arbitrary polytopes P ∈ Rn,

rather than only for CNF formulas, which degrades with the diameter of P . This should be contrasted
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SP = TreeR(CP) Semantic CP

CP = Facelike SPSP
∗

CP
∗

Figure 1: Known relationships between proof systems considered in this paper. A solid black (red)

arrow from proof system P1 to P2 indicates that P2 can polynomially (quasi-polynomially) simulate

P1. A dashed arrow indicates that this simulation cannot be done.

with the work of Dadush and Tiwari [26], who show that any SP proof of size s of a polytope with

diameter d can be assumed to have coefficients of size (nd)O(n2).

As a second application of Theorem 1.1, we generalize Dadush and Tiwari upper bound for Tseitin

to show that Cutting Planes can refute any unsatisfiable system of linear equations over a finite field.

This follows by showing that, like Tseitin, we can refute such systems of linear equations in quasi-

polynomial-size Facelike SP.

Theorem 1.3. Let F be the CNF encoding of an unsatisfiable system of m linear equations over a finite

field. There is a CP refutation of F of size |F |O(logm).

This should be contrasted with the work of Filmus, Hrubeš, and Lauria [31], which gives several

unsatisfiable systems of linear equations over R that require exponential size refutations in Cutting

Planes (see Figure 1).

Lower Bounds

An important open problem is to prove superpolynomial size lower bounds for Stabbing Planes proofs.

We make significant progress toward this goal by proving the first superpolynomial lower bounds on

the size of low-weight Stabbing Planes proofs. Let SP∗ denote the family of Stabbing Planes proofs in

which each coefficient has at most quasipolynomial (nlogO(1) n) magnitude.

Theorem 1.4. There exists a family of unsatisfiable CNF formulas {Fn} such that any SP
∗ refutation

of F requires size at least 2n
ε

for constant ε > 0.

Our proof follows in a straightforward manner from Theorem 1.2 together with known Cutting

Planes lower bounds. We view this as a step toward proving SP lower bounds (with no restrictions on

the weight). Indeed, lower bounds for CP∗ (low-weight Cutting Planes) [16] were first established, and

led to (unrestricted) CP lower bounds [55].

Our second lower bound is a new linear depth lower bound for semantic Cutting Planes proofs. (In

a semantic Cutting Planes proof the deduction rules for CP are replaced by a simple and much stronger

semantic deduction rule).

Theorem 1.5. For all sufficiently large n there is a graph G on n vertices and a labelling ℓ such that

the Tseitin formula for (G, ℓ) requires Ω(n) depth to refute in Semantic Cutting Planes.
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We note that depth lower bounds for Semantic Cutting Planes have already established via commu-

nication complexity arguments. However, since Tseitin formulas have short communication protocols,

our depth bound for semantic Cutting Planes proofs of Tseitin is new.

Theorem 1.5 is established via a new technique for proving lower bounds on the depth of semantic

Cutting Planes proofs. Our technique is inspired by the result of Buresh-Oppenheim et al. [17], who

proved lower bounds on the depth of Cutting Planes refutations of Tseitin by studying the Chátal rank

of the associated polytope P . Letting P (d) be the polytope composed of all inequalities which can be

derived in depth d in Cutting Planes. The Chátal rank of P is the minimum d such that P (d) = ∅. Thus,

in order to establish a depth lower bound of depth d, one would like to show the existence of a point

p ∈ P (d). To do so, they give a sufficient criterion for a point p to be in P (i) in terms of the points

in P (i−1). This criterion relies on a careful analysis of the specific rules of Cutting Planes, and is no

longer sufficient for semantic CP. Instead, we develop an analogous criterion for semantic CP by using

novel geometric argument (Lemma 5.10) which we believe will be of independent interest.

Our main motivation behind this depth bound is as a step towards proving a supercritical tradeoff

in CP for Tseitin formulas. A supercritical tradeoff for CP, roughly speaking, states that small size

CP proofs must sometimes necessarily be very deep — that is, beyond the trivial depth upper bound

of O(n) [12, 57]. (Observe that Dadush and Tiwari’s quasipolynomial-size CP refutations of Tseitin

are quasipolynomially deep; this is preserved by our simulation of Facelike Stabbing Planes by Cutting

Planes in Theorem 1.1.) Establishing supercritical tradeoffs is a major challenge, both because hard

examples witnessing such a tradeoff are rare, and because current methods seem to fail beyond the

critical regime. In fact, to date the only supercritical tradeoffs between size and depth for known

proof systems are due to Razborov, under the additional assumption that the proofs have bounded

width. Namely, Razborov exhibited a supercritical size-depth tradeoff for bounded width tree-like

resolution [57], and then extended this result to CP proofs in which each inequality has a bounded

number of distinct variables [58].

How could one prove a supercritical depth lower bound for Cutting Planes? All prior depth

lower bounds for Cutting Planes proceed by either reducing to communication complexity, or by us-

ing so-called protection lemmas (e.g. [17]). Since communication complexity is always at most n, it

will be useless for proving supercritical lower bounds directly. It therefore stands to reason that we

should focus on improving the known lower bounds using protection lemmas and, indeed, our proof

of Theorem 1.5 is a novel geometric argument which generalizes the top-down “protection lemma”

approach [17] for syntactic CP. At this point in time we are currently unable to use protection lemma

techniques to prove size-depth tradeoffs, so, we leave this as an open problem.

Conjecture 1.6. There exists a family of unsatisfiable formulas {Fn} such that Fn has quasipolynomial-

size CP proofs, but any quasipolynomial-size proof requires superlinear depth.

1.2 Related Work

Lower Bounds on SP and TreeR(CP). Several lower bounds on subsystems of SP and TreeR(CP)
have already been established. Krajı́ček [45] proved exponential lower bounds on the size of R(CP)
proofs in which both the width of the clauses and the magnitude of the coefficients of each line in the

proof are bounded. Concretely, let these bounds be w and c respectively. The lower bound that he ob-

tains is 2n
Ω(1)

/cw log2 n. Kojevnikov [44] removed the dependence on the coefficient size for TreeR(CP)
proofs, obtaining a bound of exp(Ω(

√

n/w log n)). Beame et al. [9] provide a size-preserving simula-

tion of Stabbing Planes by TreeR(CP) which translates a depth d Stabbing Planes proof into a width d
TreeR(CP) proof, and therefore this implies lower bounds on the size of SP proofs of depth o(n/ log n).
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Beame et al. [9] exhibit a function for which there are no SP refutations of depth o(n/ log2 n) via a

reduction to the communication complexity of the CNF search problem.

Supercritical Tradeoffs. Besides the work of Razborov [57], a number of supercritical tradeoffs

have been observed in proof complexity. Perhaps most relevant for our work, Razborov [58] proved a

supercritical tradeoff for Cutting Planes proofs under the assumption that each inequality has a bounded

number of distinct variables (mimicking the bound on the width of each clause in the supercritical

tradeoff of [57]).

A number of supercritical tradeoffs are also known between proof width and proof space. Beame

et al. [8] and Beck et al. [10] exhibited formulas which admit polynomial size refutations in Resolution

and the Polynomial Calculus respectively, and such that any refutation of sub-linear space necessitates a

superpolynomial blow-up in size. Recently, Berkholz and Nordström [12] gave a supercritical trade-off

between width and space for Resolution.

Depth in Cutting Planes and Stabbing Planes. It is widely known (and easy to prove) that any

unsatisfiable family of CNF formulas can be refuted by exponential size and linear depth Cutting

Planes. It is also known that neither Cutting Planes nor Stabbing Planes can be balanced, in the sense

that a depth-d proof can always be transformed into a size 2O(d) proof [9, 17]. This differentiates both

of these proof systems from more powerful proof systems like Frege, for which it is well-known how

to balance arbitrary proofs [23]. Furthermore, even though both the Tseitin principles and systems

of linear equations in finite fields can be proved in both quasipolynomial-size and O(log2 n) depth in

Facelike SP, the simulation of Facelike SP by CP cannot preserve both size and depth, as the Tseitin

principles are known to require depth Θ(n) to refute in CP [17].

We first recall the known depth lower bound techniques for Cutting Planes, semantic Cutting

Planes, and Stabbing Planes proofs. In all of these proof systems, arguably the primary method for

proving depth lower bounds is by reducing to real communication complexity [9, 41]; however, com-

munication complexity is always trivially upper bounded by n, and it is far from clear how to use the

assumption on the size of the proof to boost this to superlinear.

A second class of methods have been developed for syntactic Cutting Planes, which lower bound

rank measures of a polytope, such as the Chvátal rank. In this setting, lower bounds are typically

proven using so-called protection lemmas [17], which seems much more amenable to applying a small-

size assumption on the proof. We also remark that for many formulas (such as the Tseitin formulas!)

it is known how to achieve Ω(n)-depth lower bounds in Cutting Planes via protection lemmas, while

proving even ω(log n) lower bounds via communication complexity is impossible, due to a known

folklore upper bound.

The first lower bound on the Chvátal rank was established by Chvátal et al. [21], who proved a

linear bound for a number of polytopes in [0, 1]n. Much later, Pokutta and Schulz [54] characterized

the polytopes P ⊆ [0, 1] with P ∩ Zn = ∅ which have Chvátal rank exactly n. However, unlike most

other cutting planes procedures, the Chvátal rank is not of polytopes P ∩ [0, 1]n with P ∩ Zn = ∅ is

not upper bounded by n. Eisenbrand and Schulz [30] showed that the Chvátal rank of any polytope

P ⊆ [0, 1]n is at most O(n2 log n) and gave examples where it is Ω(n); a nearly-matching quadratic

lower bound was later established by Rothvoß and Sanita [59]. For CNF formulas, the Chvátal rank is

(trivially) at most n. Buresh-Oppenheim et al. [17] gave the first lower bounds on the Chvátal rank a

number of CNF formulas, including an Ω(n) lower bound for the Tseitin formulas.

The rank of a number of generalizations of Cutting Planes has been studied as well. However, none

of these appear to capture the strength of semantic Cutting Planes. Indeed, semantic Cutting Planes
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is able to refute Knapsack in a single cut, and therefore is known not to be polynomially verifiable

unless P = NP [31]. Lower bounds on the rank when using split cuts and mixed integer cuts, instead

of CG cuts, was established in [25]. Pokutta and Schulz [53] obtained Ω(n/ log n) rank lower bounds

on the complete tautology (which includes every clause of width n) for the broad class of admissible

cutting planes, which includes syntactic Cutting Planes, split cuts, and many of the lift-and-project

operators. Bodur et al. [14] studied the relationship between rank and integrality gaps for another

broad generalization of Cutting Planes known as aggregate cuts.

2 Preliminaries

We first recall the definitions of some key proof systems.

Resolution. Fix an unsatisfiable CNF formula F over variables x1, . . . , xn. A Resolution refutation

P of F is a sequence of clauses {Ci}i∈[s] ending in the empty clause Cs = ∅ such that each Ci is in F
or is derived from earlier clauses Cj , Ck with j, k < i using one of the following rules:

• Resolution. Ci = (Cj \ {ℓk}) ∪ (Ck \
{

ℓk
}

) where ℓk ∈ Cj , ℓk ∈ Ck is a literal.

• Weakening. Ci ⊇ Cj .

The size of the resolution proof is s, the number of clauses. It is useful to visualize the refutation P as

a directed acyclic graph; with this in mind the depth of the proof (denoted depthRes(P )) is the length

of the longest path in the proof DAG. The resolution depth depthRes(F ) of F is the minimal depth of

any resolution refutation of F .

Cutting Planes and Semantic Cutting Planes. A Cutting Planes (CP) proof of an inequality cx ≥ d
from a system of linear inequalities P is given by a sequence of inequalities

a1x ≥ b1, a2x ≥ b2, . . . , asx ≥ bs

such that as = c, bs = d, and each inequality aix ≥ bi is either in P or is deduced from earlier

inequalities in the sequence by applying one of the two rules Linear Combination or Division Rule

described at the beginning of Section 1. We will usually be interested in the case that the list of

inequalities P defines a polytope.

An alternative characterization of Cutting Planes uses Chvátal-Gomory cuts (or just CG cuts) [19,

24]. Let P be a polytope. A hyperplane ax = b is supporting for P if b = max {ax : x ∈ P}, and

if ax = b is a supporting hyperplane then the set P ∩ {x ∈ Rn : ax = b} is called a face of P . An

inequality ax ≤ b is valid for P if every point of P satisfies the inequality and ax = b is a supporting

hyperplane of P .

Definition 2.1. Let P ⊆ Rn be a polytope, and let ax ≥ b be any valid inequality for P such that all

coefficients of a are relatively prime integers. The halfspace {x ∈ Rn : ax ≥ ⌈b⌉} is called a CG cut

for P . (We will sometimes abuse notation and refer to the inequality ax ≥ ⌈b⌉ also as a CG cut.)

If ax ≥ ⌈b⌉ is a CG cut for the polytope P , then we can derive ax ≥ ⌈b⌉ from P in O(n) steps of

Cutting Planes by Farkas Lemma (note that the inequality ax ≥ b is valid for P by definition, so we

can deduce ax ≥ b as a linear combination of the inequalities of P and then apply the division rule). If

7



P is a polytope and H is a CG cut, then we will write P ⊢ P ∩H , and say that P ∩H is derived from

P .

Given a CNF formula F , we can translate F into a system of linear inequalities in the following

natural way. First, for each variable xi in F add the inequality 0 ≤ xi ≤ 1. If C =
∨

i∈P xi∨
∨

i∈N ¬xi
is a clause in F , then we add the inequality

∑

i∈P

xi +
∑

i∈N

(1− xi) ≥ 1.

It is straightforward to see that the resulting system of inequalities will have no integral solutions if and

only if the original formula F is unsatisfiable. With this translation we consider Cutting Planes refuta-

tions (defined in the introduction) of F to be refutations of the translation of F to linear inequalities.

The semantic Cutting Planes proof system (denoted sCP or Semantic CP) is a strengthening of

Cutting Planes proofs to allow any deduction that is sound over Boolean points [16]. Like Cutting

Planes, an sCP proof is given by a sequence of halfspaces {aix ≥ ci}i∈[s], but now we can use the

following very powerful semantic deduction rule:

• Semantic Deduction. From ajx ≥ cj and akx ≥ ck deduce aix ≥ ci if every {0, 1} assignment

satisfying both ajx ≥ cj and akx ≥ ck also satisfies aix ≥ ci .

Filmus et al. [31] showed that sCP is extremely strong: there are instances for which any refutation

in CP requires exponential size, and yet these instances admit polynomial-size refutations in semantic

sCP.

The size of a Cutting Planes proof is the number of lines (it is known that for unsatisfiable CNF

formulas that this measure is polynomially related to the length of the bit-encoding of the proof [24]).

As with Resolution, it is natural to arrange Cutting Planes proofs into a proof DAG. With this in

mind we analogously define depthCP(F ) and depthsCP(F ) to be the smallest depth of any (semantic)

Cutting Planes proof of F .

It is known that any system of linear inequalities in the unit cube has CP depth at most O(n2 log n),
and moreover there are examples requiring CP-depth more than n [30]. However for unsatisfiable CNF

formulas, the CP-depth is at most n [13].

Stabbing Planes. Let F be an unsatisfiable system of linear inequalities. A Stabbing Planes (SP)

refutation of F is a directed binary tree, T , where each edge is labelled with a linear integral inequality

satisfying the following consistency conditions:

• Internal Nodes. For any internal node u of T , if the right outgoing edge of u is labelled with

ax ≥ b, then the left outgoing edge is labelled with its integer negation ax ≤ b− 1.

• Leaves. Each leaf node v of T is labelled with a non-negative linear combination of inequalities

in F with inequalities along the path leading to v that yields 0 ≥ 1.

For an internal node u of T , the pair of inequalities (ax ≤ b − 1, ax ≥ b) is called the query corre-

sponding to the node. Every node of T has a polytope P associated with it, where P is the polytope

defined by the intersection of the inequalities in F together with the inequalities labelling the path from

the root to this node. We will say that the polytope P corresponds to this node. The slab corresponding

to the query is {x∗ ∈ Rn | b − 1 < ax∗ < b}, which is the set of points ruled out by this query. The

width of the slab is the minimum distance between ax ≤ b − 1 and ax ≥ b, which is 1/‖a‖2. The

size of a refutation is the bit-length needed to encode a description of the entire proof tree, which, for
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CNF formulas as well as sufficiently bounded systems of inequalities, is polynomially equivalent to the

number of queries in the refutation [26]. As well, the depth of the refutation is the depth of the binary

tree. The proof system SP
∗ is the subsystem of Stabbing Planes obtained by restricting all coefficients

of the proofs to have magnitude at most quasipolynomial (nlogO(1) n) in the number of input variables.

The Stabbing Planes proof system was introduced by Beame et al. [9] as a generalization of Cutting

Planes that more closely modelled query algorithms and branch-and-bound solvers. Beame et al. proved

that SP is equivalent to the proof system TreeR(CP) introduced by Krajı́ček [45] which can be thought

of as a generalization of Resolution where the literals are replaced with integer-linear inequalities.

3 Translating Stabbing Planes into Cutting Planes

3.1 Equivalence of CP with Subsystems of SP

In this section we prove Theorem 1.1, restated below, which characterizes Cutting Planes as a non-

trivial subsystem of Stabbing Planes.

Theorem 1.1. The proof systems CP and Facelike SP are polynomially equivalent.

We begin by formally defining Facelike SP.

Definition 3.1. A Stabbing Planes query (ax ≤ b− 1, ax ≥ b) at a node P is facelike if one of the sets

P ∩ {x ∈ Rn : ax ≤ b− 1}, P ∩ {x ∈ Rn : ax ≥ b} is empty or a face of P (see Figure 2b). An SP

refutation is facelike if every query in the refutation is facelike.

Enroute to proving Theorem 1.1, it will be convenient to introduce the following further restriction

of Facelike Stabbing Planes.

Definition 3.2. A Stabbing Planes query (ax ≤ b− 1, ax ≥ b) at a node corresponding to a polytope

P is pathlike if at least one of P ∩ {x ∈ Rn : ax ≤ b− 1} and P ∩ {x ∈ Rn : ax ≥ b} is empty (see

Figure 2a). A Pathlike SP refutation is one in which every query is pathlike.

The name “pathlike” stems from the fact that the underlying graph of a pathlike Stabbing Planes

proof is a path, since at most one child of every node has any children (see Figure 2). In fact, we have

already seen (nontrivial) pathlike SP queries under another name: Chvátal-Gomory cuts.

Lemma 3.3. Let P be a polytope and let (ax ≤ b − 1, ax ≥ b) be a pathlike Stabbing Planes query

for P . Assume w.l.o.g. that P ∩ {x ∈ Rn : ax ≤ b− 1} = ∅ and that P ∩ {x ∈ Rn : ax ≥ b} ( P .

Then ax ≥ b is a CG cut for P .

Proof. Since ax ≥ b is falsified by some point in P , it follows that there exists some 0 < ε < 1 such

that ax ≥ b − ε is valid for P — note that ε < 1 since otherwise ax ≤ b − 1 would not have empty

intersection with P . This immediately implies that ax ≥ b is a CG cut for P .

With this observation we can easily prove that Pathlike SP is equivalent to CP. Throughout the

remainder of the section, for readability, we will use the abbreviation P ∩ {ax ≥ b} for P ∩ {x ∈ Rn :
ax ≥ b}, for any polytope P and linear inequality ax ≥ b.

Lemma 3.4. Pathlike SP is polynomially equivalent to CP.

9



ax ≥ bax ≤ b− 1

∅

∅

ax ≤ b− 1 ax ≥ b

P

(a) A Pathlike query. The polytope P ∩ {x ∈ Rn : ax ≤ b− 1} = ∅, and ax ≥ b is a CG cut for P .

ax ≥ bax ≤ b− 1
ax ≤ b− 1 ax ≥ b

P

ax = b− 1

(b) A Facelike query. The polytope P ∩ {x ∈ Rn : ax ≤ b− 1} = P ∩ {x ∈ Rn : ax = b− 1} is a face of P .

Figure 2: Pathlike and Facelike SP queries on a polytope P . On the left are the proofs and on the right

are the corresponding effects on the polytope.

Proof. First, let a1x ≥ b1, a2x ≥ b2, . . . , asx ≥ bs be a CP refutation of an unsatisfiable system

of linear inequalities Ax ≥ b. Consider the sequence of polytopes P0 = {Ax ≥ b} and Pi =
Pi−1 ∩ {aix ≥ bi}. By inspecting the rules of CP, it can observed that Pi ∩ {aix ≤ bi − 1} = ∅ and

thus Pi+1 can be deduced using one pathlike SP query from Pi for all 0 ≤ i ≤ s.

Conversely, let P be any polytope and let (ax ≤ b − 1, ax ≥ b) be any pathlike SP query to P
(so, suppose w.l.o.g. that the halfspace defined by ax ≤ b − 1 has empty intersection with P ). By

Lemma 3.3, ax ≥ b is a CG cut for P , and so can be deduced in Cutting Planes from the inequalities

defining P in length O(n) (cf. Section 2). Applying this to each query in the Pathlike SP proof yields

the theorem.

Next, we show how to simulate Facelike SP proofs by Pathlike SP proofs of comparable size. The

proof of Lemma 3.6 is inspired by Dadush and Tiwari [26], and will use the following lemma due to

Schrijver [61] (although, we use the form appearing in [24]). Recall that we write P ⊢ P ′ for polytopes

P,P ′ to mean that P ′ can be obtained from P by adding a single CG cut to P .

Lemma 3.5 (Lemma 2 in [24]). Let P be a polytope defined by a system of integer linear inequalities

and let F be a face of P . If F ⊢ F ′ then there is a polytope P ′ such that P ⊢ P ′ and P ′ ∩ F ⊆ F ′.

Lemma 3.6. Facelike SP is polynomially equivalent to Pathlike SP.

Proof. That Facelike SP simulates Pathlike SP follows by the fact that any Pathlike SP query is a

valid query in Facelike SP. For the other direction, consider an SP refutation π of size t. We describe a
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recursive algorithm for generating a Pathlike SP proof from π. The next claim will enable our recursive

case.

Claim. Let P be a polytope and suppose ax ≥ b is valid for P . Assume that P ∩ {ax = b} has a

Pathlike SP refutation using s queries. Then P ∩ {ax ≥ b+ 1} can be derived from P in Pathlike SP

using s+ 1 queries.

Proof of Claim. Since ax ≥ b is valid for P it follows that F = P ∩ {ax = b} is a face of P
by definition. Consider the Pathlike SP refutation F0, F1, . . . Fs = ∅, where the ith polytope Fi for

i < s is obtained from Fi−1 by applying a pathlike SP query and proceeding to the non-empty child.

Without loss of generality we may assume that Fi ( Fi−1 for all i, and so applying Lemma 3.3

we have that Fi−1 ⊢ Fi for all i. Thus, by applying Lemma 3.5 repeatedly, we get a sequence of

polytopes P = P0 ⊢ P1 ⊢ · · · ⊢ Ps such that Pi ∩ F = Pi ∩ {ax = b} ⊆ Fi. This means that

Ps ∩ {ax = b} ⊆ Fs = ∅, and so (ax ≤ b, ax ≥ b + 1) is Pathlike SP query for Ps. This means

that Ps ⊢ Ps ∩ {ax ≥ b + 1} ⊆ P ∩ {ax ≥ b + 1}. Since any CG cut can be implemented as a

Pathlike SP query the claim follows by applying the s CG cuts as pathlike queries, followed by the

query (ax ≤ b, ax ≥ b+ 1).

We generate a Pathlike SP refutation by the following recursive algorithm, which performs an in-

order traversal of π. At each step of the recursion (corresponding to a node in π) we maintain the

current polytope P we are visiting and a Pathlike SP proof Π — initially, P is the initial polytope and

Π = ∅. We maintain the invariant that when we finish the recursive step at node P , the Pathlike SP

refutation Π is a refutation of P . The algorithm is described next:

1. Let (ax ≤ b− 1, ax ≥ b) be the current query and suppose that ax ≥ b− 1 is valid for P .

2. Recursively refute P ∩ {ax ≤ b − 1} = P ∩ {ax = b− 1}, obtaining a Pathlike SP refutation

Π with t queries.

3. Apply the above Claim to deduce P ∩ {ax ≥ b} from P in t+ 1 queries.

4. Refute P ∩ {ax ≥ b} by using the SP refutation for the right child.

Correctness follows immediately from the Claim, and also since the size of the resulting proof is the

same as the size of the SP refutation.

Theorem 1.1 then follows by combining Lemma 3.4 with Lemma 3.6.

3.2 Simulating SP
∗ by CP

In this section we prove Theorem 1.2, restated below for convenience.

Theorem 1.2. Let F be any unsatisfiable CNF formula on n variables, and suppose that there is a SP

refutation of F in size s and maximum coefficient size c. Then there is a CP refutation of F in size

s(cn)log s.

To prove this theorem, we will show that any low coefficient SP proof can be converted into a

Facelike SP proof with only a quasi-polynomial loss. If P is a polytope let d(P ) denote the diameter

of P , which is the maximum Euclidean distance between any two points in P . Theorem 1.2 follows

immediately from the following theorem.

11



Theorem 3.7. Let P be a polytope and suppose there is an SP refutation of P with size s and maximum

coefficient size c. Then there is a Facelike SP refutation of P in size

s(c · d(P )
√
n)log s.

Proof. The theorem is by induction on s. Clearly, if s = 1 then the tree is a single leaf and the theorem

is vacuously true.

We proceed to the induction step. Let P be the initial polytope and π be the SP proof. Consider

the first query (ax ≤ b, ax ≥ b + 1) made by the proof, and let πL be the SP proof rooted at the left

child (corresponding to ax ≤ b) and let πR be the SP proof rooted at the right child. Let PL denote the

polytope at the left child and PR denote the polytope at the right child. By induction, let π′
L and π′

R be

the Facelike SP refutations for PL and PR guaranteed by the statement of the theorem.

Suppose w.l.o.g. that |πL| ≤ |π|/2. Let b0 be the largest integer such that ax ≥ b0 is satisfied for

any point in P . The plan is to replace the first query (ax ≤ b, ax ≥ b+ 1) with a sequence of queries

q0, q1, . . . , qt−1 such that

• For each i, qi = (ax ≤ b0 + i, ax ≥ b0 + i+ 1).

• The query q0 is the root of the tree and qi is attached to the right child of qi−1 for i ≥ 1.

• qt−1 = (ax ≤ b, ax ≥ b+ 1).

After doing this replacement, instead of having two child polytopes PL, PR below the top query, we

have t+ 1 polytopes P0, P1, . . . , Pt+1 where Pi = P ∩ {ax = b0 + i} and Pt+1 = PR. To finish the

construction, for each i ≤ t use the proof π′
L to refute Pi and the proof π′

R to refute Pt+1.

We need to prove three statements: this new proof is a valid refutation of P , the new proof is

facelike, and that the size bound is satisfied.

First, it is easy to see that this is a valid proof, since for each i ≤ t the polytope Pi ⊆ PL and

Pt+1 ⊆ PR — thus, the refutations π′
L and π′

R can be used to refute the respective polytopes.

Second, to see that the proof is facelike, first observe that all the queries in the subtrees π′
L, π

′
R are

facelike queries by the inductive hypothesis. So, we only need to verify that the new queries at the top

of the proof are facelike queries, which can easily be shown by a quick induction. First, observe that

the query q0 is a facelike query, since b0 was chosen so that ax ≥ b0 is valid for the polytope P . By

induction, the query qi = (ax ≤ b0 + i, ax ≥ b0 + i + 1) is a facelike query since the polytope Pi

associated with that query is P ∩{ax ≥ b0+i} by definition. Thus ax ≥ b0+i is valid for the polytope

at the query.

Finally, we need to prove the size upper bound. Let s be the size of the original proof, sL be the

size of πL and sR be the size of πR. Observe that the size of the new proof is given by the recurrence

relation

f(s) = t · f(sL) + f(sR).

where f(1) = 1. Since the queries q0, q1, . . . , qt−1 cover the polytope PL with slabs of width 1/‖a‖2,

it follows that

t ≤ d(PL)‖a‖2 ≤ d(P )
√
n‖a‖∞ = d(P )c

√
n

where we have used that the maximum coefficient size in the proof is c. Thus, by induction, the previous
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inequality, and the assumption that sL ≤ s/2, we can conclude that the size of the proof is

f(s) ≤ sL(c · d(P )
√
n)(c · d(PL)

√
n)log sL + sR(c · d(PR)

√
n+)log sR

≤ sL(c · d(P )
√
n)(c · d(P )

√
n)log(s/2) + sR(c · d(P )

√
n)log s

≤ sL(c · d(P )
√
n)log s + sR(c · d(P )

√
n)log s

= s(c · d(P )
√
n)log s.

Theorem 1.2 follows immediately, since for any CNF formula F the encoding of F as a system of

linear inequalities is contained in the n-dimensional cube [0, 1]n, which has diameter
√
n. We may also

immediately conclude Theorem 1.4 by applying the known lower bounds on the size of Cutting Planes

proofs [33, 34, 40, 55].

As a consequence of Theorem 1.2 and the non-automatability of Cutting Planes [37], we can con-

clude that SP∗ proofs cannot be found efficiently assuming P 6= NP.

Corollary 3.8. SP
∗ is not automatable unless P 6= NP.

This follows by observing that the argument in [37] does not require large coefficients.

4 Refutations of Linear Equations over a Finite Field

In this section we prove Theorem 1.3. To do so, we will extend the approach used by Beame et al. [9]

to prove quasi-polynomial upper bounds on the Tseitin formulas to work on any unsatisfiable set of

linear equations over any finite field.

If ax = b is a linear equation we say the width of the equation is the number of non-zero variables

occurring in it. Any width-d linear equation over a finite field of size q, denoted Fq, can be represented

by a CNF formula with qd−1 width-d clauses — one ruling out each falsifying assignment. For a

width-d system of m linear equations F over Fq, we will denote by |F | := mqd−1 the size of the CNF

formula encoding F .

Theorem 4.1. Let F = {f1 = b1, . . . , fm = bm} be a width-d, unsatisfiable set of linear equations

over Fq. There is an SP refutation of (the CNF encoding of) F in size (mqd)O(logm)qd = |F |O(logm).

First we sketch the idea for F2, i.e., a system of XOR equations. In this case the SP proof

corresponds to a branch decomposition procedure which is commonly used to solve SAT (see e.g.

[3,27,29,47]). View the system F as a hypergraph over n vertices (corresponding to the variables) and

with a d-edge for each equation. Partition the set of hyperedges into two sets E = E1 ∪ E2 of roughly

the same size, and consider the cut of vertices that belong to both an edge in E1 and in E2. Using

the SP rule we branch on all possible values of the sum of the cut variables in order to isolate E1 and

E2. Once we know this sum, we are guaranteed that either E1 is unsatisfiable or E2 is unsatisfiable

depending on the parity of the of the sum of the cut variables. This allows us to recursively continue

on the side of the cut (E1 or E2) that is unsatisfiable. Since there are n Boolean variables, each cut

corresponds to at most n+1 possibilities for the sum, and if we maintain that the partition of the hyper

edges defining the cut is balanced, then we will recurse at most O(logm) times. This gives rise to a

tree decomposition of fanout O(n) and height O(log n).
Over a finite field of size q the proof will proceed in much the same way. Instead of a subgraph,

at each step we will maintain a subset of the equations I ⊆ [m] such that {fi = bi}i∈I must contain

a constraint that is violated by the SP queries made so far. We partition I into two sets I1 and I2 of
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roughly equal size and query the values a and b of
∑

i∈I1
fi and

∑

i∈I2
fi. Because F is unsatisfiable,

at least one of a −∑

i∈I1
bi 6≡ 0 or b −∑

i∈I2
bi 6≡ 0, meaning that that it is unsatisfiable, and we

recurse on it.

In the following, we will let z stand for a vector of Fq-valued variables zi. When we discuss any

form f := az where a ∈ Fn
q and z is a vector of n variables zi, we will implicitly associate it with the

linear form
∑

i∈[n] ai(
∑

j∈[log q] xi,j) where xi,j are the log q many Boolean variables encoding zi in

the CNF encoding of F .

Proof of Theorem 4.1. Let F = {f1 = b1, . . . , fm = bm} be a system of unsatisfiable linear equations

over Fq, where each fi = aiz for ai ∈ Fn
q , and bi ∈ Fq. Because F is unsatisfiable, there exists a

Fq linear combination of the equations in F witnessing this; formally, there exists α ∈ Fn
q such that

∑

i∈[m] αifi ≡ 0 mod q, but
∑

i∈[m] αibi 6≡ 0 mod q.

Stabbing Planes will implement the following binary search procedure for a violated equation;

we describe the procedure first, and then describe how to implement it in Stabbing Planes. In each

round we maintain a subset I ⊆ [m] and an integer kI representing the value of
∑

i∈I αifi. Over the

algorithm, we maintain the invariant that kI −
∑

i∈I bi 6≡ 0 mod q, which implies that there must be a

contradiction to F inside of the constraints {fi = bi}i∈I .

Initially, I = [m] and we obtain kI by querying the value of the sum
∑

i∈[m] αifi. If kI 6≡ 0
mod q then this contradicts the fact that

∑

i∈I αifi ≡ 0 mod q; thus, the invariant holds. Next,

perform the following algorithm.

1. Choose a balanced partition I = I1 ∪ I2 (so that ||I1| − |I2|| ≤ 1).

2. Query the value of
∑

i∈I1
αifi and

∑

i∈I2
αifi; denote these values by a and b respectively.

3. If a−∑

i∈I1
αibi 6≡ 0 mod q then recurse on I1 with kI1 := a. Otherwise, if b−∑

i∈I2
αibi 6≡

0 mod q then recurse on I2 with kI2 := b.

4. Otherwise (if a−∑

i∈I1
αibi ≡ b−∑

i∈I2
αibi ≡ 0 mod q), then this contradicts the invariant:

0 6≡ kI −
∑

i∈I

αbi =
∑

i∈I

αi(fi − bi)

=
∑

i∈I1

αi(fi − bi) +
∑

i∈I2

αi(fi − bi)

= (a−
∑

i∈I1

αibi) + (b−
∑

i∈I1

αibi) ≡ 0 mod q.

This recursion stops when |I| = 1, at which point we have an immediate contradiction between kI and

the single equation indexed by I .

It remains to implement this algorithm in SP. First, we need to show how to perform the queries in

step 2. Querying the value of any sum
∑

i∈I αifi can be done in a binary tree with at most q2md leaves,

one corresponding to every possible query outcome. Internally, this tree queries all possible integer

values for this sum (e.g. (
∑

i∈I αifi ≤ 0,
∑

i∈I αifi ≥ 1), (
∑

i∈I αifi ≤ 1,
∑

i∈I αifi ≥ 2), . . .). For

the leaf where we have deduced
∑

i∈[m] αifi ≤ 0 we use the fact that each variable is non-negative to

deduce that
∑

i∈[m] αifi ≥ 0 as well. Note that q2md is an upper bound on this sum because there are
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m equations, each containing at most d variables, each taking value at most (q − 1) †. Thus, step 2 can

be completed in (q2md)2 queries.

Finally, we show how to derive refutations in the following cases: (i) when we deduced that
∑

i∈[m] αifi 6≡ 0 mod q at the beginning, (ii) in step 4, (iii) when |I| = 1.

(i) Suppose that we received the value a 6≡ 0 mod q from querying
∑

i∈[m] αifi. Note that every

variable in
∑

i∈[m] αifi is a multiple of q. Query

(

∑

i∈[m]

αifi/q ≤ ⌈a/q⌉ − 1,
∑

i∈[m]

αifi/q ≥ ⌈a/q⌉
)

.

At the leaf that deduces
∑

i∈[m] αifi/q ≤ ⌈a/q⌉ − 1, we can derive 0 ≥ 1 as a non-negative

linear combination of this inequality together with
∑

i∈[m] αifi ≥ a. Similarly, at the other leaf
∑

i∈[m] αifi/q ≥ ⌈a/q⌉ can be combined with
∑

i∈[m] αifi ≤ a to derive 0 ≥ 1.

(ii) Suppose that a−∑

i∈I1
αibi ≡ b−∑

i∈I2
αibi ≡ 0 mod q. Then 0 ≥ 1 is derived by summing

∑

i∈I1
αifi ≥ a,

∑

i∈I2
αifi ≥ b and

∑

i∈I αifi ≤ kI , all of which have already been deduced.

(iii) When |I| = 1 then we deduced that aIz = kI for kI 6≡ bI mod q and we would like to derive

a contradiction using the axioms encoding aIz ≡ bI . These axioms are presented to SP as the

linear-inequality encoding of a CNF formula, and while there are no integer solutions satisfying

both these axioms and aIz = kI , there could in fact be rational solutions. To handle this, we

simply force that each of the at most d variables in aIz takes an integer value by querying the

value of each variable one by one. As there are at most d variables, each taking an integer value

between 0 and q − 1, this can be done in a tree with at most qd many leaves. At each leaf of this

tree we deduce 0 ≥ 1 by a non-negative linear combination with the axioms, the integer-valued

variables, and aIz ≡ bI .

The recursion terminates in at most O(logm) many rounds because the number of equations under

consideration halves every time. Therefore, the size of this refutation is (qmd)O(logm)qd. Note that by

making each query in a balanced tree, this refutation can be carried out in depth O(log2(mqd)).

Finally, we conclude Theorem 1.3.

Proof of Theorem 1.3. Observe that the SP refutation from Theorem 4.1 is facelike. Indeed, to perform

step 2 we query (
∑

i∈I αifi ≤ t− 1,
∑

i∈I αifi ≥ t) from t = 1, . . . , q2md. For t = 1, the halfspace
∑

i∈I αifi ≥ 0 is valid for the current polytope because the polytope belongs to the [0, 1]n cube. For

each subsequent query,
∑

i∈I αifi ≥ t − 1 is valid because the previous query deduced
∑

i∈I αifi ≥
t−1. Similar arguments show that the remaining queries are also facelike. Thus, Lemma 3.6 completes

the proof.

We note that the CP refutations that result from Theorem 1.3 have a very particular structure: they

are extremely long and narrow. Indeed, they have depth nO(logm). We give a rough sketch of the

argument: it is enough to show that most lines Li in the CP refutation are derived using some previous

line Lj with j = O(i). This is because the final line would have depth proportional to the size of the

proof. To see that the CP refutation satisfies this property, observe that for each node visited in the

in-order traversal, the nodes in the right subproof πR depend on the halfspace labelling the root, which

in turn depends on the left subproof πL.

†Note that instead of querying the value of
∑

i∈I
αifi we could have queried

∑
i∈I

αifi ( mod q) to decrease the number

of leaves to qmd.
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5 Lower Bound on the Depth of Semantic CP Refutations

Our results from Section 3 suggest an interesting interplay between depth and size of Cutting Planes

proofs. In particular, we note that there is a trivial depth n and exponential size refutation of any

unsatisfiable CNF formula in Cutting Planes; however, it is easy to see that the Dadush–Tiwari proofs

and our own quasipolynomial size CP proofs of Tseitin are also extremely deep (in particular, they are

superlinear). Even in the stronger Semantic CP it is not clear that the depth of these proofs can be

decreased. However, this does not hold for SP, which has quasi-polynomial size and poly-logarithmic

depth refutations. This motivates Conjecture 1.6, regarding the existence of a “supercritical” trade-off

between size and depth for Cutting Planes [12, 57]. The Tseitin formulas are a natural candidate for

resolving this conjecture.

In this section we develop a new method for proving depth lower bounds which we believe should

be more useful for resolving this conjecture. Our method works not only for CP but also for semantic

CP. Using our technique, we establish the first linear lower bounds on the depth of Semantic CP

refutations of the Tseitin formulas.

Lower bounds on the depth of syntactic CP refutations of Tseitin formulas were established by

Buresh-Openheim et al. [17] using a rank-based argument. Our proof is inspired by their work, and

so we describe it next. Briefly, their proof proceeds by considering a sequence of polytopes P (0) ⊇
. . . ⊇ P (d) where P (i) is the polytope defined by all inequalities that can be derived in depth i from

the axioms in F . The goal is to show that P (d) is not empty. To do so, they show that a point p ∈ P (i)

is also in P (i+1) if for every coordinate j such that 0 < pj < 1, there exists points p(j,0), p(j,1) ∈ P (i)

such that p
(j,b)
k = b if k = j and p

(j,b)
k = pk otherwise. The proof of this fact is syntactic: it relies on

the careful analysis of the precise rules of CP.

When dealing with Semantic CP, we can no longer analyze a finite set of syntactic rules. Further-

more, it is not difficult to see that the aforementioned criterion for membership in P (i+1) is no longer

sufficient for Semantic CP. We develop an analogous criterion for Semantic CP given later in this

section. As well, we note that the definition of P (i) is not well-suited to studying the depth of bounded-

size CP proofs like those in Conjecture 1.6 — there does not appear to be a useful way to limit P (i) to

be a polytope derived by a bounded number of halfspaces. Therefore we develop our criterion in the

language of lifting, which is more amenable to supercritical tradeoffs [12, 57].

Through this section we will work with the following top-down definition of Semantic CP.

Definition 5.1. Let F be an n-variate unsatisfiable CNF formula. An sCP refutation of F is a directed

acyclic graph of fan-out ≤ 2 where each node v is labelled with a halfspace Hv ⊆ Rn (understood as a

set of points satisfying a linear inequality) satisfying the following:

1. Root. There is a unique source node r labelled with the halfspace Hv = Rn (corresponding to

the trivially true inequality 1 ≥ 0).

2. Internal-Nodes. For each non-leaf node u with children v,w, we have

Hu ∩ {0, 1}n ⊆ Hv ∪Hw.

3. Leaves. Each sink node u is labeled with a unique clause C ∈ F such that Hv ∩ {0, 1}n ⊆
C−1(0).

The above definition is obtained by taking a (standard) sCP proof and reversing all inequalities:

now, a line is associated with the set of assignments falsified at that line, instead of the assignments

satisfying the line.
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To prove the lower bound we will need to find a long path in the proof. To find this path we will be

taking a root-to-leaf walk down the proof while constructing a partial restriction ρ ∈ {0, 1, ∗}n on the

variables. For a partial restriction ρ, denote by free(ρ) := ρ−1(∗) and fix(ρ) := [n] \ free(ρ). Let the

restriction of H by ρ be the halfspace

H ↾ρ := {x ∈ Rfree(ρ) : ∃α ∈ H, αfix(ρ) = ρfix(ρ), αfree(ρ) = x}.

It is important to note that H ↾ρ is itself a halfspace on the free coordinates of ρ.

One of our key invariants needed in the proof is the following.

Definition 5.2. A halfspace H ⊆ Rn is good if it contains the all-12 vector, that is, (12 )
n = (12 ,

1
2 , . . . ,

1
2) ∈

H .

We will need two technical lemmas to prove the lower bounds. The first lemma shows that if a

good halfspace H has its boolean points covered by halfspaces H1,H2, then one of the two covering

halfspaces is also good modulo restricting a small set of coordinates.

Lemma 5.3. Let H ⊆ Rn be any good halfspace, and suppose H ∩{0, 1}n ⊆ H1 ∪H2 for halfspaces

H1,H2. Then there is a restriction ρ and an i = 1, 2 such that |fix(ρ)| ≤ 2 and Hi ↾ρ is good.

The second lemma shows that good halfspaces are robust, in the sense that we can restrict a good

halfspace to another good halfspace while also satisfying any mod-2 equation.

Lemma 5.4. Let n ≥ 2 and H ⊆ Rn be a good halfspace. For any I ⊆ [n] with |I| ≥ 2 and b ∈ {0, 1},
there is a partial restriction ρ ∈ {0, 1, ∗}n with fix(ρ) = I such that

•
⊕

i∈I

ρ(xi) = b and

• H ↾ρ ⊆ Rfree(ρ) is good.

With these two lemmas one can already get an idea of how to construct a long path in the proof.

Suppose we start at the root of the proof; the halfspace is 1 ≥ 0 (which is clearly good) and the

restriction we maintain is ρ = ∗n. We can use the first lemma to move from the current good halfspace

to a good child halfspace while increasing the number of fixed coordinates by at most 2. However, we

have no control over the two coordinates which are fixed by this move, and so we may fall in danger of

falsifying an initial constraint. Roughly speaking, we will use the second lemma to satisfy constraints

that are in danger of being falsified.

We delay the proofs of these technical lemmas to the end of the section, and first see how to prove

the depth lower bounds.

5.1 Lifting Decision Tree Depth to Semantic CP Depth

As a warm-up, we show how to lift lower bounds on Resolution depth to Semantic CP depth by com-

posing with a constant-width XOR gadget. If F is a CNF formula then we can create a new formula by

replacing each variable zi with an XOR of 4 new variables xi,1, . . . , xi,4:

zi := XOR4(xi,1, . . . , xi,4) = xi,1 ⊕ · · · ⊕ xi,4.

We call zi the unlifted variable associated with the output of the XOR4 gadget applied to the i-th block

of variables. Formally, let XORn
4 : {0, 1}4n → {0, 1}n be the application of XOR4 to each 4-bit block
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of a 4n-bit string. Let F ◦XORn
4 denote the formula obtained by performing this substitution on F and

transforming the result into a CNF formula in the obvious way.

The main result of this section is the following.

Theorem 5.5. For any unsatisfiable CNF formula F ,

depthsCP(F ◦ XORn
4 ) ≥

1

2
depthRes(F ).

Key to our lower bound will be the following characterization of Resolution depth by Prover-

Adversary games.

Definition 5.6. The Prover–Adversary game associated with an n-variate formula F is played between

two competing players, Prover and Adversary. The game proceeds in rounds, where in each round the

state of the game is recorded by a partial assignment ρ ∈ {0, 1, ∗}n to the variables of F .

Initially the state is the empty assignment ρ = ∗n. Then, in each round, the Prover chooses an

i ∈ [n] with ρi = ∗, and the Adversary chooses b ∈ {0, 1}. The state is updated by ρi ← b and play

continues. The game ends when the state ρ falsifies an axiom of F .

It is known [56] that depthRes(F ) is exactly the smallest d for which there is a Prover strategy that

ends the game in d rounds, regardless of the strategy for the Adversary.

The proof of Theorem 5.5 will follow by using an optimal Adversary strategy for F to construct a

long path in the Semantic CP proof of F ◦ XORn
4 . Crucially, we need to understand how halfspaces H

transform under XORn
4 :

XOR
n
4 (H) := {z ∈ {0, 1}n : ∃x ∈ H ∩ {0, 1}4n ,XORn

4 (x) = z}.

As we have already stated, we will maintain a partial assignment ρ ∈ {0, 1, ∗}4n on the 4n lifted

variables. However, in order to use the Adversary, we will need to convert ρ to a partial assignment

on the n unlifted variables. To perform this conversion, for any ρ ∈ {0, 1, ∗}4n define XOR
n
4 (ρ) ∈

{0, 1, ∗}n as follows: for each block i ∈ [n], define

XOR
n
4 (ρ)i =

{

XOR4(ρ(xi,1), . . . , ρ(xi,4)) if (i, j) ∈ fix(ρ) for j ∈ [4],

∗ otherwise.

We are now ready to prove Theorem 5.5. Fix any Semantic CP refutation of F ◦XORn
4 , and suppose

that there is a strategy for the Adversary in the Prover-Adversary game of F certifying that F requires

depth d. Throughout the walk, we maintain a partial restriction ρ ∈ {0, 1, ∗}4n to the lifted variables

satisfying the following three invariants with respect to the current visited halfspace H .

– Block Closed. In every block either all variables in the block are fixed or all variables in the block

are free.

– Good Halfspace. H ↾ρ is good.

– Strategy Consistent. The unlifted assignment XORn
4 (ρ) does not falsify any clause in F .

Initially, we set ρ = ∗4n and the initial halfspace is 1 ≥ 0, so the pair (H, ρ) trivially satisfy the

invariants. Suppose we have reached the halfspace H in our walk and ρ is a restriction satisfying the

invariants. We claim that H cannot be a leaf. To see this, suppose that H is a leaf, then by definition
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H ∩ {0, 1}4n ⊆ C−1(0) for some clause C ∈ F ◦ XORn
4 . By the definition of the lifted formula, this

implies that XORn
4 (H) ⊆ D−1(0) for some clause D ∈ F . Since (H, ρ) satisfy the invariants, the

lifted assignment XORn
4 (ρ) does not falsify D, and so by the block-closed property it follows that there

must be a variable zi ∈ D such that all lifted variables in the block i are free under ρ. But then applying

Lemma 5.4 to the block of variables {xi,1, xi,2, xi,3, xi,4}, we can extend ρ to a partial assignment ρ′

such that zi = XOR4(ρ(xi,1), ρ(xi,2), ρ(xi,3), ρ(xi,4)) satisfies D. But H ↾ ρ′ is a projection of H ↾ ρ
and so this contradicts that XORn

4 (H) violates D.

It remains to show how to take a step down the proof. Suppose that we have taken t < d/2 steps

down the Semantic CP proof, the current node is labelled with a halfspace H , and the partial assignment

ρ satisfies the invariants. If H has only a single child H1, then H ∩ {0, 1}4n ⊆ H1 ∩ {0, 1}4n and

ρ will still satisfy the invariants for H1. Otherwise, if H has two children H1 and H2 then applying

Lemma 5.3 to the halfspaces H ↾ ρ,H1 ↾ ρ,H2 ↾ ρ we can find an i ∈ {1, 2} and a restriction τ such

that Hi ↾ (ρτ) is good and τ restricts at most 2 extra coordinates. Let i1, i2 ∈ [n] be the two blocks of

variables in which τ restricts variables, and note that it could be that i1 = i2.

Finally, we must restore our invariants. We do this in the following three step process.

• Query the Adversary strategy at the state XORn
4 (ρ) on variables zi1 , zi2 and let b1, b2 ∈ {0, 1} be

the responses.

• For i = i1, i2 let Ii be the set of variables free in the block i, and note that |Ii| ≥ 2. Apply

Lemma 5.4 to H ↾ (ρτ) and Ii to get new restrictions ρi1 , ρi2 so that blocks i1 and i2 both take

values consistent with the Adversary responses b1, b2.

• Update ρ← ρτρi1ρi2 .

By Lemma 5.4 the new restriction ρ satisfies the block-closed and the good halfspace invariants. At

each step we fix at most two blocks of variables, and thus the final invariant is satisfied as long as

t < d/2. This completes the proof.

5.2 Semantic CP Depth Lower Bounds for Unlifted Formulas

Next we show how to prove depth lower bounds directly on unlifted families of F2-linear equations.

The strength of these lower bounds will depend directly on the expansion of the underlying constraint-

variable graph of F .

Throughout this section, let F denote a set of F2-linear equations. In a Semantic CP proof, we

must encode F as a CNF formula, but while proving the lower bound we will instead work with the

underlying system of equations. For a set F of F2-linear equations let GF := (F ∪ V,E) be the

bipartite constraint-variable graph defined as follows. Each vertex in F corresponds to an equation

in F and each vertex in V correspond to variables xi. There is an edge (Ci, xj) ∈ E if xj occurs

in the equation Ci. For a subset of vertices X ⊆ F ∪ V define the neighbourhood of X in GF as

Γ(X) := {v ∈ F ∪ V : ∃u ∈ X, (u, v) ∈ E}.

Definition 5.7. For a bipartite graph G = (U ∪ V,E) the boundary of a set W ⊆ U is

δ(W ) := {v ∈ V : |Γ(v) ∩W | = 1}.

The boundary expansion of a set W ⊆ U is |δ(W )|/|W |. The graph G is a (r, s)-boundary expander

if the boundary expansion of every set W ⊆ U with |W | ≤ r has boundary expansion at least s.
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If F is a system of linear equations then we say that F is an (r, s)-boundary expander if its con-

straint graph GF is. The main result of this section is the following theorem, analogous to Theorem 5.5.

Theorem 5.8. For any system of F2-linear equations F that is an (r, s + 3)-boundary expander,

depthsCP(F ) ≥ rs/2.

The proof of this theorem follows the proof of Theorem 5.5 with some small changes. As before,

we will maintain a partial assignment ρ ∈ {0, 1, ∗}n that will guide us on a root-to-leaf walk through

a given Semantic CP proof; we also require that each halfspace H that we visit is good relative to our

restriction ρ. Now our invariants are (somewhat) simpler: we will only require that F ↾ρ is a sufficiently

good boundary expander.

We first prove an auxiliary lemma that will play the role of Lemma 5.4 in the proof of Theorem 5.8.

We note that it follows immediately from Lemma 5.4 and boundary expansion.

Lemma 5.9. Suppose F is a system of F2-linear equations that is an (r, s)-boundary expander for s >
1, and suppose F ′ ⊆ F with |F ′| ≤ r. Let H be a good halfspace. Then there exists a ρ ∈ {0, 1, ∗}n
with fix(ρ) = Γ(F ′) such that

• F ′ is satisfied by ρ, and

• H ↾ρ is good.

Proof. We first use expansion to find, for each constraint Ci ∈ F ′, a pair of variables yi,1, yi,2 that are

in Ci’s boundary. To do this, first observe that |δ(F ′)| ≥ s|F ′| > |F ′| by the definition of boundary

expansion. The pigeonhole principle then immediately implies that there are variables yi,1, yi,2 ∈ δ(F ′)
and a constraint Ci ∈ F ′ such that yi,1, yi,2 ∈ Ci. Since yi,1, yi,2 do not occur in F ′ \ {Ci}, it follows

that F ′ \ {Ci} is still an (r, s)-boundary expander. So, we update F ′ = F ′ \ {Ci} and repeat the above

process.

When the process terminates, we have for each constraint Ci ∈ F ′ a pair of variables yi,1, yi,2 that

occur only in Ci. Write the halfspace H =
∑

i wixi ≥ c, and let I = Γ(F ′) \ ⋃i∈I {yi,1, yi,2} be

the set of variables occurring in F ′ that were not collected by the above process. We define a partial

restriction ρ with fix(ρ) = I that depends on |I| as follows.

• If |I| = 0 then ρ = ∗n.

• If I = {xi} then define ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise, and for all other variables

set ρ(x) = ∗.

• If |I| > 2 then apply Lemma 5.4 to generate a partial restriction ρ with fix(ρ) = I that sets the

XOR of I arbitrarily.

Observe that H ↾ρ is good. The only non-trivial case is when |I| = 1, but, in this case we observe

(H ↾ρ)((1/2)n−1) = wiρ(xi) +
∑

j 6=i

wi/2 ≥
∑

i

wi/2 ≥ c,

where we have used that H is good and the definition of ρ.

Next we extend ρ as follows: for each i = 1, 2, . . . , |F ′| apply Lemma 5.4 to Ii = {yi,1, yi,2} to

generate a partial restriction ρi with fix(ρi) = Ii so that the constraint Ci ↾ ρρ1 · · · ρi−1 is satisfied

by ρi. Observe that this is always possible since Ii is in the boundary of Ci. Finally, we update

ρ← ρρ1 · · · ρ|F ′|. It follows by Lemma 5.4 that F ′ is satisfied by ρ and H ↾ρ is good.
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We are now ready to prove Theorem 5.8. Fix any Semantic CP refutation of F and let n be the

number of variables. We take a root-to-leaf walk through the refutation while maintaining a partial

assignment ρ ∈ {0, 1, ∗}n and an integer valued parameter k ≥ 0. Throughout the walk we maintain

the following invariants with respect to the current halfspace H:

– Good Expansion. F ↾ρ is a (k, t)-boundary expander with t > 3.

– Good Halfspace. H ↾ρ is good.

– Consistency. The partial assignment ρ does not falsify any clause of F .

Initially, we set k = r, ρ = ∗n, and t = s + 3, so the invariants are clearly satisfied since F is

an (r, s + 3)-expander. So, suppose that we have reached a halfspace H in our walk, and let k, ρ be

parameters satisfying the invariants. We first observe that if k > 0 then H cannot be a sink node of

the proof. To see this, it is enough to show that H contains a satisfying assignment for each equation

C ∈ F . Because H ↾ ρ is non-empty (since it is good) there exists a satisfying assignment in H for

every equation satisfied by ρ, so, assume that C is not satisfied by ρ. In this case, since F ↾ ρ is a

(k, t)-expander for k > 0 we can apply Lemma 5.9 to {C} and H ↾ρ and obtain a partial restriction τ
with fix(τ) = Γ(C) such that τ satisfies C . It follows that H is not a leaf.

Next, we show how to take a step down the proof while maintaining the invariants. If H has only

a single child H1, then H ⊆ H1 and we can move to H1 without changing ρ or k. Otherwise, let the

children of H be H1 and H2. Applying Lemma 5.3 to H ↾ ρ,H1 ↾ ρ,H2 ↾ ρ we get a partial restriction

τ and an i ∈ {1, 2} such that Hi ↾ ρτ is good and |fix(τ)| ≤ 2. Due to this latter fact, since F ↾ ρ is

a (k, t)-expander it follows that F ↾ ρτ is a (k, t − 2)-expander in the worst case. Observe that since

t > 3 it follows that F ↾ ρτ still satisfies the consistency invariant. It remains to restore the expansion

invariant.

To restore the expansion invariant, let W be the largest subset of equations such that |W | ≤ k
and W has boundary expansion at most 3 in F ↾ ρτ , and note that W has boundary expansion at least

t − 2 > 1. Applying Lemma 5.9, we can find a restriction ρ′ such that W ↾ ρτρ′ is satisfied, and

H ↾ ρτρ′ is a good halfspace. Since W is the largest subset with expansion at most 3, it follows that

F ↾ ρτρ′ is now a (k − |W |, t′)-boundary expander with t′ > 3. Suppose otherwise, then there exists

a subset of equations W ′ which has boundary expansion at most 3 in F ↾ ρτρ′. Then W ∪W ′ would

have had boundary expansion at most 3 in F ↾ ρτ , contradicting the maximality of W . Now update

ρ← ρτρ′ and k ← k − |W |. Finally, we halt the walk if k = 0.

We now argue that this path must have had depth at least rs/2 upon halting. Assume that we have

taken t steps down the proof. For each step i ≤ t let Wi be the set of equations which lost boundary

expansion during the ith cleanup step. Note that Wi∩Wj = ∅ for every i 6= j. Let W ∗ = ∪ti=1Wi, note

that |W ∗| = r because at the ith step we decrease k by |Wi|. Furthermore, at the end of the walk, W ∗

has no neighbours and therefore no boundary in F ↾ρ. Before the start of the ith cleanup step, Wi has

at most 3|Wi| boundary variables. Therefore, at most 3|W ∗| = 3r boundary variables were removed

during the cleanup step. Since F started as an (r, s + 3)-boundary expander, it follows that W ∗ had at

least r(s + 3) boundary variables at the start of the walk. But, since all variables have been removed

from the boundary by the end, this means that rs variables must have been removed from the boundary

during the move step. Thus, as each move step sets at most 2 variables, it follows that t ≥ rs/2 before

the process halted.
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5.3 Proof of Lemma 5.3 and Lemma 5.4

In this section we prove our two key technical lemmas: Lemma 5.3 and Lemma 5.4. We begin by

proving Lemma 5.4 as it is simpler.

Proof of Lemma 5.4. Let H be represented by
∑

i∈[n]wixi ≥ c and suppose without loss of generality

that c ≥ 0 and that I = {1, . . . , k}. Let the weights of I in H be ordered |w1| ≥ |w2| ≥ . . . |wk|.
Define ρ by setting ρ(xi) = ∗ for i 6∈ I , for i ≤ k−1 set ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise,

and set ρ(xk) so that
⊕

i∈I ρ(xi) = b. Clearly the parity constraint is satisfied, we show that H ↾ ρ is

good. This follows by an easy calculation:

(H ↾ρ)((1/2)[n]\I ) = wk−1ρ(xk−1) + wkρ(xk) +
∑

i≤k−2

wiρ(xi) +
∑

i≥k+1

wi/2

≥ wk−1/2 + wk/2 +
∑

i≤k−2

wiρ(xi) +
∑

i≥k+1

wi/2

≥
∑

i∈[n]

wi/2 ≥ c

where the first inequality follows by averaging since |wk−1| ≥ |wk|, and the final inequality follows

since H is good.

In the remainder of the section we prove Lemma 5.3. It will be convenient to work over {−1, 1}n
rather than {0, 1}n , so, we restate it over this set and note that we can move between these basis by

using the bijection v 7→ (1− v)/2.

Lemma 5.10. Let H ∈ Rn be a halfspace such that 0n ∈ H and suppose that H∩{−1, 1}n ⊆ H1∪H2.

Then one of H1 or H2 contains a point y ∈ {−1, 0, 1}n such that y has at most two coordinates in

{−1, 1}.
The key ingredient in our proof of Lemma 5.10 is the following simple topological lemma, which

will allow us to find a well-behaved point lying on a 2-face of the {−1, 1}n cube

Definition 5.11 (2-face). A 2-face of the n-cube with vertices {−1, 1}n are the 2-dimensional 2-by-2
squares spanned by four vertices of the cube that agree on all but two coordinates. That is, a two face

is a set A ⊆ [−1, 1]n such that there exists ρ ∈ {−1, 1, ∗}n with |free(ρ)| = 2 and A = [−1, 1]n ↾ρ.

Lemma 5.12. Let w1, w2 ∈ Rn be any pair of non-zero vectors, then we can find a vector v ∈ Rn

orthogonal to w1, w2, such that v lies on a 2-face.

Proof. We will construct the vector v iteratively by rounding one coordinate at a time to a {−1, 1}-
value until v contains exactly n − 2 coordinates fixed to {−1, 1}. At each step, we will maintain that

v ∈ [−1, 1]n and that v is orthogonal to w1 and w2. Therefore when the process halts v will lie on a

2-face.

Initially, set v = 0n and observe that the invariants are satisfied. Suppose that we have constructed

a vector v that is orthogonal to w1 and w2, all of its coordinates belong to [−1, 1], and exactly i < n−2
of its coordinates belong to {−1, 1}; suppose w.l.o.g. that they are the first i coordinates. We will show

how to “booleanize” an additional coordinate of v. Let u be any non-zero vector that is orthogonal to

{w1, w2, e1, . . . , ei}, where ej is the jth standard basis vector. Begin moving from v in the direction of

u and let α > 0 be the smallest value such that one of the coordinates j > i of v + αu is in {−1, 1}.
We verify that the following properties hold:
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1. The first i coordinates of v + αu are in {−1, 1}. This follows because we moved in a direction

that is orthogonal to e1, . . . , ei.

2. v + αu is orthogonal to w1 and w2. Let w be either of the vectors w1 or w2 and observe that

vi+1w = viw + α(uw) = 0, where the final equality follows because w is orthogonal to vi by

induction and to u by assumption.

Finally, set v to be v + αu.

Proof of Lemma 5.10. Let the children H1 and H2 of H be given by the halfspaces w1x ≥ b1 and

w2x ≥ b2 respectively. By Lemma 5.12 we can find a vector v which is orthogonal to w1 and w2, and

which lies on some 2-face F of the [−1, 1]n cube corresponding to some restriction ρ ∈ {0, 1, ∗}n .

Then, v lies in (at least) one of the four 1-by-1 quadrants of the 2-face, [0, 1]2, [0, 1]× [−1, 0], [−1, 0]×
[0, 1], or [−1, 0]2; suppose that v lies in the [−1, 0] × [0, 1] quadrant of F , the other cases will follow

by symmetry (see Figure 3).

v

a− v

(0, 0)

(1, 1)

(1,−1)

a = (−1, 1)

(−1,−1)

Figure 3: A 2-face of the n-cube together with a depiction of the booleanizing process.

Let a ∈ Rn be the vector corresponding to the (−1, 1) corner of F , i.e., a is ρ extended by setting

the two free bits to −1 and 1. By symmetry and the fact that H is good (and therefore 0n ∈ H), we

can assume that a is contained in H — otherwise, simply exchange a and v for −a and −v. Since

H ∩ {−1, 1}n ⊆ H1 ∪ H2 and a ∈ {−1, 1}n, it follows that a is in one of H1 or H2. Assume that

a ∈ H1; that is, w1a ≥ b1. Our goal is to construct a vector y ∈ H1 that satisfies the statement of the

lemma. Consider the following two cases:

(i) If w1(a − v) ≤ 0, then it follows that y := 0n ∈ H1. Indeed, w1y = w1v ≥ w1a ≥ b1, where

first equality follows because w1 and p are orthogonal by assumption, and the final inequality

follows because a ∈ H1.

(ii) Otherwise, we have that w1(a − v) > 0. We construct a point that satisfies the statement of the

lemma as follows. First, note that since a, v ∈ F , it follows that the vector a − v has at most

two non-zero coordinates. Beginning at the origin 0n, move in the direction a − v until a free

coordinate coordinate becomes fixed to −1 or 1; that is, let α > 0 be the minimum value such

that α(a−v) has at most one coordinate which is not {−1, 1}-valued. Since both a and v belong

to the same 1 × 1 quadrant of the 2-face, ‖a − v‖∞ ≤ 1 and so α ≥ 1. We can then verify that

α(a− v) ∈ H1, since

w1α(a− v) = α(w1a)− 0 ≥ w1a ≥ b1,
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where we have used the fact that v is orthogonal to w1 and α ≥ 1. Finally, since α(a− v) ∈ H1

we can round the final non-zero coordinate to −1 or 1; since H1 is a halfspace one of the two

vectors will remain in H1.

5.4 Applications

We now use the theorems from the previous sections to obtain several concrete lower bounds. First, we

give strong depth lower bounds for sCP proofs of Tseitin formulas on expander graphs.

Theorem 5.13. There exists a graph G and labelling ℓ : V → {0, 1} such that any sCP refutation of

Tseitin(G, ℓ) requires depth Ω(n).

Proof. A graph G = (V,E) is a γ-vertex expander if

min {|Γ(W )| : W ⊆ V, |W | ≤ |V |/2} ≥ γ|W |,

where Γ(W ) is the neighbourhood of W . We claim that if G is a γ-vertex expander then any Tseitin

formula over G is a (n/2, γ)-boundary expander. Fix any subset W of the equations with |W | ≤
n/2. By the definition of vertex expansion we have that |Γ(W )| ≥ γ|W |, and since each variable

is contained in exactly two constraints, it follows that the boundary of W in Tseitin(G, ℓ) has size at

least |δ(W )| ≥ γ|W |. The result then follows from Theorem 5.8 and the existence of strong vertex

expanders G (e.g. d-regular Ramanujan graphs are at least d/4-vertex expanders, and exist for all d and

n [49]).

Next, we give lower bounds on the depth of Semantic CP refutations of random k-XOR and random

k-CNF formulas for constant k.

Definition 5.14. Let XOR(m,n, k) be the distribution on random k-XOR formulas obtained by sam-

pling m equations from the set of all mod 2 linear equations with exactly k variables.

Theorem 5.15. The following holds for Semantic CP :

1. For any k ≥ 6 there exists m = O(n) such that F ∼ XOR(m,n, k) requires refutations of depth

at least Ω(n) with high probability.

2. For any k ≥ 6 there exists m = O(n) such that F ∼ F(m,n, k) requires refutations of depth at

least Ω(n) with high probability.

Proof. We first prove (1) and obtain (2) via a reduction. Fix m = O(n) so that F is unsatisfiable with

high probability. For any constant k, δ and m = O(n), F ∼ XOR(m,n, k) is an (αn, k − 2 − 2δ)-
boundary expander for some α > 0 (see e.g. [17, 22]). Thus, setting k ≥ 6 and ε to be some small

constant, the boundary expansion of GF is at least 3. By Theorem 5.8, F requires depth Ω(n) to refute

in Semantic CP with high probability.

The proof of (2) is via a reduction from F(m,n, k) to XOR(m,n, k). Every k-clause occurs in the

clausal encoding of exactly one k-XOR constraint. It follows that from any k-CNF formula F we can

generate a k-XOR formula whose clausal expansion F ′ contains F as follows: for each clause C ∈ F ,

if C contains an even (odd) number of positive literals then add to F ′ every clause on the variables of

C which contains an even (odd) number of positive literals. The resulting F ′ is the clausal encoding of

a set of |F | k-XOR constraints. As there is a unique k-XOR consistent with the clauses of F , we can

define the distribution XOR(m,n, k) equivalently as follows:
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1. Sample F ∼ F(m,n, k),

2. Return the k-XOR F ′ generated from F according to the aforementioned process.

It follows that the complexity of refuting F ∼ F(m,n, k) is at least that of refuting F ′ ∼ XOR(m,n, k)
and (2) follows from (1) with the same parameters.

Finally, we use Theorem 5.8 to extend the integrality gaps from [17] to sCP by essentially the same

argument. For a linear program with constraints given by a system of linear inequalities Ax ≤ b,
the r-round sCP relaxation adds all inequalities that can be derived from Ax ≤ b by a depth-r sCP

proof. We show that the r-round Semantic sCP linear program relaxation cannot well-approximate the

number of satisfying assignments to a random k-SAT or k-XOR instance.

First we define our LP relaxations. Suppose that F is a k-CNF formula with m clauses C1, C2, . . . , Cm

and n variables x1, x2, . . . , xn. If Ci =
∨

i∈P xi∨
∨

i∈N xi then let E(Ci) =
∑

i∈P xi+
∑

i∈N 1−xi.
We consider the following LP relaxation of F :

max

m
∑

i=1

yi

subject to E(Ci) ≥ yi ∀i ∈ [m]

0 ≤ xj ≤ 1 ∀j ∈ [n]

0 ≤ yi ≤ 1 ∀i ∈ [m]

If F is a k-XOR formula with m constraints and n variables then we consider the above LP relax-

ation obtained by writing F as a k-CNF. Finally, recall that the integrality gap is the ratio between the

optimal integral solution to a linear program and the optimal solution produced by the LP.

Theorem 5.16. For any ε > 0 and k ≥ 6,

1. There is κ > 0 and m = O(n) such that for F ∼ XOR(m,n, k) the integrality gap of the

κn-round sCP relaxation of F is at least (2− ε) with high probability.

2. There is κ > 0 and m = O(n) such that for F ∼ F(m,n, k) the integrality gap of the κn-round

sCP relaxation of F is at least 2k/(2k − 1)− ε with high probability.

Proof. Let F ∼ XOR(m,n, k) and let Yi be the event that the ith constraint is falsified by a uniformly

random assignment. Let δ := ε/(2−ε), then by a multiplicative Chernoff Bound, the probability that a

uniformly random assignment satisfies at least a 1/(2−ε)-fraction of F is Pr[
∑

i∈[m] Yi ≥ (1+δ)m2 ] ≤
2−δm/6. By a union bound, the probability that there exists an assignment satisfying at least a 1/(2−ε)
fraction of F is 2n−δm/6 which is exponentially small when m ≥ 7n(2− ε)/ε.

On the other hand, consider the partial restriction to the LP relaxation of F that sets yi = 1 for all

i ∈ [m]. Setting m ≥ 7n(2 − ε)/ε large enough, by Theorem 5.15 there some κ > 0 such that with

high probability F requires depth κn. Hence, the κn round Semantic CP LP relaxation is non-empty,

and there is a satisfying assignment α ∈ Rn. Thus α ∪ {yi = 1} satisfies all constraints of max(F ).
The second result follows by an analogous argument.
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6 Conclusion

We end by discussing some problems left open by this paper. The most obvious of which is a resolution

to Conjecture 1.6. A related question is whether supercritical size-depth tradeoffs can be established

for monotone circuits? Indeed, current size lower bound techniques [33, 34, 40, 55] are via reduction

to monotone circuit lower bounds. As a first step towards both of these, can one prove a supercritical

size-depth tradeoff for a weaker proof system such as resolution?

The simulation results presented in Section 3 leave open several questions regarding the relation-

ship between SP and CP. First, the simulation of SP∗ by CP incurs a significant blowup in the co-

efficient size due to Shrijver’s lemma. It would be interesting to understand whether SP
∗ can be

quasi-polynomially simulated by CP
∗; that is, whether this blowup in the size of the coefficients is

necessary.

The most obvious question left open by these simulations is whether CP can polynomially simulate

SP, or even polynomially simulate SP
∗. Similarly, what are the relationships of both SP and CP, to

(bounded-coefficient) R(CP), the system which corresponds to dag-like SP. R(CP) can polynomially

simulate DNF resolution, and therefore has polynomial size proofs of the Clique-Colouring formulas,

for cliques of size Ω(
√
n) and colourings of size o(log2 n) [4]. Quasi-polynomial lower bounds on the

size of CP refutations are known for this range of parameters and this rules out a polynomial simulation

by Cutting Planes; however, a quasi-polynomial simulation may be possible. A potential approach to

resolving this question is to use the added expressibility of R(CP) over DNF resolution to extend the

upper bound on Clique-Colouring to the range of parameters for which superpolynomial CP lower

bounds are known.
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