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Abstract
Consider a random n× n zero-one matrix with ‘sparsity’ p, sampled according to one of the following two
models: either every entry is independently taken to be one with probability p (the ‘Bernoulli’ model) or
each row is independently uniformly sampled from the set of all length-n zero-one vectors with exactly pn
ones (the ‘combinatorial’ model). We give simple proofs of the (essentially best-possible) fact that in both
models, if min (p, 1− p)≥ (1+ ε) log n/n for any constant ε > 0, then our random matrix is nonsingular
with probability 1− o(1). In the Bernoulli model, this fact was already well known, but in the combinatorial
model this resolves a conjecture of Aigner-Horev and Person.

2020 MSC Codes: 60B20

1. Introduction
Let M be an n× n random matrix with i.i.d. Bernoulli (p) entries (meaning that each entry
Mij satisfies P(Mij = 1)= p and P(Mij = 0)= 1− p). It is a famous theorem of Komlós [15, 16]
that for p= 1/2 a random Bernoulli matrix is asymptotically almost surely nonsingular: that is,
limn→∞ P(M is singular)= 0. Komlós’ theorem can be generalised to sparse random Bernoulli
matrices as follows.

Theorem 1.1. Fix ε > 0, and let p= p(n) be any function of n satisfying min (p, 1− p)≥ (1+
ε) log n/n. Then for a random n× n random matrix M with i.i.d. Bernoulli (p) entries, we have

lim
n→∞ P(M is singular)= 0.

Theorem 1.1 is best-possible, in the sense that if min (p, 1− p)≤ (1− ε) log n/n, then we actu-
ally have limn→∞ P(M is singular)= 1 (because, for instance, M is likely to have two identical
columns). That is to say, log n/n is a sharp threshold for singularity. It is not clear when
Theorem 1.1 first appeared in print, but strengthenings and variations on Theorem 1.1 have been
proved by several different authors (see, for example, [1, 3, 5, 6]).

Next, let Q be an n× n random matrix with independent rows, where each row is sampled
uniformly from the subset of vectors in {0, 1}n having exactly d ones (Q is said to be a random
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2 A. Ferber, M. Kwan and L. Sauermann

combinatorialmatrix). The study of such matrices was initiated by Nguyen [19], who proved that
if d = n/2 then Q is asymptotically almost surely nonsingular (where n→ ∞ along the even inte-
gers). Strengthenings of Nguyen’s theorem have been proved by several authors, see, for example,
[2, 10, 12, 13, 23]. Recently, Aigner-Horev and Person [2] conjectured an analogue of Theorem 1.1
for sparse random combinatorial matrices, which we prove in this note.

Theorem 1.2. Fix ε > 0, and let d = d(n) be any function of n satisfying min (d, n− d)≥
(1+ ε) log n. Then for an n× n random zero-one matrix Q with independent rows, where each
row is chosen uniformly among the vectors with d ones, we have

lim
n→∞ P(Q is singular)→ 0.

Just like Theorem 1.1, Theorem 1.2 is best-possible in the sense that if min (d, n− d)≤
(1− ε) log n, then limn→∞ P(M is singular)= 1. Theorem 1.2 improves on a result of
Aigner-Horev and Person: they proved the same fact under the assumption that limn→∞
d/(n1/2 log3/2 n)= ∞ (assuming that d ≤ n/2).

The structure of this note is as follows. First, in Section 2 we prove a simple and general lemma
(Lemma 2.1) which applies to any random matrix with i.i.d. rows. This lemma distills the essence
of (a special case of) an argument due to Rudelson and Vershinyn [22]. Essentially, it shows that
in order to prove Theorems 1.1 and 1.2, one just needs to prove some relatively crude estimates
about the typical structure of the vectors in the left and right kernels of our random matrices.

Then, in Sections 3 and 4 we show how to use Lemma 2.1 to give simple proofs of Theorem 1.1
and Theorem 1.2. Of course, Theorem 1.1 is not new, but its proof is extremely simple and it
serves as a warm-up for Theorem 1.2. It turns out that in order to analyse the typical structure of
the vectors in the left and right kernel, we can work over Zq for some small integer q (in fact, we
can mostly work over Z2). This idea is not new (see, for example, [2, 4, 8, 9, 10, 11, 18, 20, 21]),
but the details here are much simpler.

We remark that with a bit more work, themethods in our proofs can also likely be used to prove
the conclusions of Theorems 1.1 and 1.2 under the weaker (and strictly best-possible) assump-
tions that limn→∞ ( min (pn, n− pn)− log n)= ∞ and limn→∞ ( min (d, n− d)− log n)= ∞.
However, in this note we wish to emphasise the simple ideas in our proofs and do not pursue this
direction.

Notation. All logarithms are to base e. We use common asymptotic notation, as follows. For
real-valued functions f (n) and g(n), we write f =O(g) to mean that there is some constant C > 0
such that |f | ≤ Cg. If g is nonnegative, we write f = �(g) to mean that there is c> 0 such that
f ≥ cg for sufficiently large n. We write f = o(g) to mean that f (n)/g(n)→ 0 as n→ ∞.

2. A general lemma
In this section, we prove a (very simple) lemma which will give us a proof scheme for both
Theorems 1.1 and 1.2. For a vector x, let supp (x) (the support of x) be the set of indices i such
that xi �= 0.

Lemma 2.1. Let F be a field, and let A ∈ Fn×n be a random matrix with i.i.d. rows R1, . . . , Rn. Let
P ⊆ Fn be any property of vectors in Fn. Then for any t ∈R, the probability that A is singular is
upper-bounded by

P(xTA= 0 for some nonzero x ∈ Fn with | supp (x)| < t) (1)

+ n
t
P(there is nonzero x /∈P such that x · Ri = 0 for all i= 1, . . . , n− 1) (2)

+ n
t
sup
x∈P

P(x · Rn = 0). (3)
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Proof. Note that A is singular if and only if there is a nonzero x ∈ Fn satisfying xTA= 0. Let Ei
be the event that Ri ∈ span{R1, . . . , Ri−1, Ri+1, . . . , Rn}, and let X be the number of i for which Ei
holds. Then byMarkov’s inequality and the assumption that the rows R1, . . . , Rn are i.i.d., we have

P

(
xTM = 0 for some x with | supp(x)| ≥ t

)
≤ P(X ≥ t)≤ EX

t
= n

t
P(En).

It now suffices to show that n
t P(En) is upper-bounded by the sum of the terms (2) and (3). Note

that we can always choose a nonzero vector x ∈ Fn with x · Ri = 0 for i= 1, . . . , n− 1. We inter-
pret x as a random vector depending on R1, . . . , Rn−1 (but not Rn). If the event En occurs, we must
have x · Rn = 0, so

n
t
P(En)≤ n

t
P(x /∈P)+ n

t
P(x · Rn = 0 | x ∈P).

Then n
t P(x /∈P) is upper-bounded by the expression in (2), and, since x and Rn are independent,

n
t P(x · Rn = 0 | x ∈P) is upper-bounded by the expression in (3).

3. Singularity of sparse Bernoulli matrices: a simple proof
Let us fix 0< ε < 1. We will take t = cn for some small constant c (depending on ε), and let P
be the property {x ∈Qn:| supp (x)| ≥ t}. All we need to do is to show that the three terms (1), (2)
and (3) in Lemma 2.1 are each of the form o(1). The following lemma is the main part of the
proof.

Lemma 3.1. Let R1, . . . , Rn−1 be the first n− 1 rows of a random Bernoulli (p) matrix, with
min (p, 1− p)≥ (1+ ε) log n/n. There is c> 0 (depending only on ε) such that with proba-
bility 1− o(1), no nonzero vector x ∈Qn with | supp (x)| < cn satisfies Ri · x= 0 for all i= 1,
. . . , n− 1.

Proof. If such a vector x were to exist, we would be able to multiply by an integer and then divide
by a power of two to obtain a vector v ∈Zn with at least one odd entry also satisfying | supp (v)| <
cn and Ri · v= 0 for i= 1, . . . , n− 1. Interpreting v as a vector in Zn

2 , we would have Ri · v≡ 0
(mod 2) for i= 1, . . . , n− 1 and furthermore v ∈Zn

2 would be a nonzero vector consisting of less
than cn ones. We show that such a vector v is unlikely to exist (working over Z2 discretises the
problem, so that we may use a union bound).

Let p∗ =min (p, 1− p)≥ (1+ ε) log n/n. Consider any v ∈ {0, 1}n with | supp (v)| = s. Then
Ri · v for i= 1, . . . , n− 1 are i.i.d. Binomial (s, p) random variables. Let Ps,p denote the probability
that a Binomial (s, p) random variable is even. We observe

Ps,p = 1
2

( s∑
i=0

(
s
i

)
pi(1− p)s−i +

s∑
i=0

(
s
i

)
(− 1)ipi(1− p)s−i

)

= 1
2

+ (1− 2p)s

2
≤ 1

2
+ (1− 2p∗)s

2
.

Then, using the fact that e−t = 1− t +O(t2) for t = o(1), we deduce

Ps,p ≤
{
e−(1+o(1))sp∗ if sp∗ = o(1),
e−�(1) if sp∗ = �(1).

Taking r = δ/p∗ for sufficiently small δ (relative to ε), and recalling that p∗ ≥ (1+ ε) log n/n, the
probability that there exists nonzero v ∈Zn

2 with | supp (v)| < cn and Ri · v≡ 0 (mod 2) for all
i= 1, . . . , n− 1 is at most
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4 A. Ferber, M. Kwan and L. Sauermann

cn∑
s=1

(
n
s

)
Pn−1
s,p ≤

r∑
s=1

es log n−(1−ε/3)snp∗ +
cn∑

s=r+1
es( log (n/s)+1)−�(n)

≤
∞∑
s=1

n−sε/3 +
cn∑
s=1

en((s/n)( log (n/s)+1)−�(1)) = o(1),

provided c is sufficiently small (relative to δ).

Taking c as in Lemma 3.1, we immediately see that the term (2) is of the form o(1). Observing
that the rows and columns ofM have the same distribution, and that the event xTM = 0 is simply
the event that x · Ci = 0 for each column Ci ofM; it also follows from Lemma 3.1 that the term (1)
is of the form o(1). Finally, the following straightforward generalisation of the well-known Erdős–
Littlewood–Offord theorem shows that the term (3) is of the form o(1), which completes the proof
of Theorem 1.1. This lemma is the only nontrivial ingredient in the proof of Theorem 1.1. It
appears as [5, Lemma 8.2], but it can also be quite straightforwardly deduced from the Erdős–
Littlewood–Offord theorem itself.

Lemma 3.2. Consider a (non-random) vector x= (x1, . . . , xn) ∈Rn, and let ξ1, . . . , ξn be i.i.d.
Bernoulli (p) random variables, and let p∗ =min (p, 1− p). Then

max
a∈R

P(x1ξ1 + · · · + xnξn = a)=O

(
1√| supp (x)|p∗

)
.

4. Singularity of sparse combinatorial matrices
Let us again fix 0< ε < 1. The proof of Theorem 1.2 proceeds in almost exactly the same way as
the proof of Theorem 1.1, but there are three significant complications. First, since the entries are
no longer independent, the calculations become somewhat more technical. Second, the rows and
columns of Q have different distributions, so we need two versions of Lemma 3.1: one for vectors
in the left kernel and one for vectors in the right kernel. Third, the fact that each row has exactly d
ones means that we are not quite as free to do computations over Z2 (for example, if d is even and
v is the all-ones vector, then we always have Qv= 0 over Z2). For certain parts of the argument,
we will instead work over Zd−1.

Before we start the proof, the following lemma will allow us to restrict our attention to the case
where d ≤ n/2, which will be convenient.

Lemma 4.1. Let Q ∈Rn×n be a matrix whose every row has sum d, for some d /∈ {0, n}. Let J be the
n× n all-ones matrix. Then Q is singular if and only if J −Q is singular.

Proof. Note that the all-ones vector 1 is in the column space ofQ (since the sum of all columns of
Q equals d1). Hence, every column of J −Q is in the column space ofQ. Therefore, ifQ is singular,
then J −Q is singular as well. The opposite implication can be proved the same way.

In the rest of the section, we prove Theorem 1.2 under the assumption that (1+ ε) log n≤ d ≤
n/2 (note that if Q is a uniformly random zero-one matrix with every row having exactly d ones,
then J −Q is a uniformly random zero-one matrix with every row having exactly n− d ones).

The first ingredient we will need is an analogue of Lemma 3.2 for ‘combinatorial’ random vec-
tors. In addition to the notion of the support of a vector, we define a fibre of a vector to be a set of
all indices whose entries are equal to a particular value.
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Lemma 4.2. Let 0≤ d ≤ n/2, and consider a (non-random) vector x ∈Rn whose largest fibre has
size n− s, and let γ ∈ {0, 1}n be a random zero-one vector with exactly d ones. Then

max
a∈R

P(x · γ = a)=O
(√

n/(sd)
)
.

We deduce Lemma 4.2 from the p= 1/2 case of Lemma 3.2 (that is, from the Erdős–Littlewood–
Offord theorem [7]).

Proof. The case p= 1/2 is treated in [17, Proposition 4.10]; this proof proceeds along similar
lines. Let p= d/n≤ 1/2. We realise the distribution of γ as follows. First choose d = pn ran-
dom disjoint pairs

(
i1, j1

)
, . . . ,

(
ipn, jpn

) ∈ {1, . . . , n}2 (each having distinct entries), and then
determine the 1-entries in γ by randomly choosing one element from each pair.

We first claim that with probability 1− e−�(sp), at least �
(
sp
)
of our pairs

(
i, j
)
have xi �= xj

(we say such a pair is good). To see this, let I be a union of fibres of x, chosen such that |I| ≥ n/3
and n− |I| ≥ s/3 (if s≤ 2n/3, we can simply take I to be the largest fibre of x, and otherwise we
can greedily add fibres to I until |I| ≥ n/3). To prove our claim, we will prove that in fact with the
desired probability there are �(sp) different � for which i� /∈ I and j� ∈ I.

Let f = ⌈
pn/6

⌉
and let S be the set of � ≤ f for which i� /∈ I. So, |S| has a hypergeometric

distribution with mean (n− |I|)f /n= �
(
sp
)
, and by a Chernoff bound (see, for example, [14,

Theorem 2.10]), we have |S| = �
(
sp
)
with probability 1− e−�(sp). Condition on such an out-

come of i1, . . . , if . Next, let T be the set of � ∈ S for which j� ∈ I. Then, conditionally, |T| has a
hypergeometric distribution with mean at least (|I| − f )|S|/n= �

(
sp
)
, so again using a Chernoff

bound we have |T| = �
(
sp
)
with probability 1− e−�(sp), as claimed.

Now, condition on an outcome of our random pairs such that at least �(sp) of them are good.
Let ξ� be the indicator random variable for the event that i� is chosen from the pair

(
i�, j�

)
, so

ξ1, . . . , ξpn are i.i.d. Bernoulli(1/2) random variables, and x · γ = a if and only if
(xi1 − xj1 )ξ1 + · · · + (xipn − xjpn)ξ1 = a− xj1 − · · · − xjpn .

Under our conditioning, �
(
sp
)
of the xi� − xj� are nonzero, so by Lemma 3.2 with p= 1/2,

conditionally we have P(x · γ = a) ≤O
(
1/√sp

)
. We deduce that unconditionally

P(x · γ = 0)≤ e−�(sp) +O(1/
√
sp)=O(1/

√
sp)=O(

√
n/(sd)),

as desired.

The proof of Theorem 1.2 then reduces to the following two lemmas. Indeed, for a constant c> 0
(depending on ε) satisfying the statements in Lemma 4.3 and 4.4, we can take t = cn/ log d, and

P = {x ∈Qn : x has largest fibre of size at most (1− c/ log d)n}.
We can then apply Lemma 2.1. By Lemma 4.3, the term (1) is bounded by o(1), by Lemma 4.4 the
term (2) is bounded by (n/t) · n−�(1) = ( log d/c) · n−�(1) = o(1), and by Lemma 4.2 the term (3)
is bounded by (n/t) ·O

(√
n log d/(cnd)

)
=O( log3/2 d/

√
d)= o(1).

Lemma 4.3. Let Q be a random combinatorial matrix (with d ones in each row), with (1+
ε) log n≤ d ≤ n/2. There is c> 0 (depending only on ε) such that with probability 1− o(1), there is
no nonzero vector x ∈Qn with | supp (x)| < cn/ log d and xTQ= 0.

Lemma 4.4. Let R1, . . . , Rn−1 be the first n− 1 rows of a random combinatorial matrix (with d
ones in each row), with (1+ ε) log n≤ d ≤ n/2. There is c> 0 (depending only on ε) such that with
probability 1− n−�(1), every nonzero x ∈Qn satisfying Ri · x= 0 for all i= 1, . . . , n− 1 has largest
fibre of size at most (1− c/ log d)n.
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6 A. Ferber, M. Kwan and L. Sauermann

Proof of Lemma 4.3. As in Lemma 3.1, it suffices to work overZ2. Let C1, . . . , Cn be the columns
of Q, consider any v ∈Zn

2 with | supp (v)| = s, and let Ev be the event that Ci · v≡ 0 (mod 2) for
i= 1, . . . , n. Note that Ev only depends on the submatrix Qv of Q containing only those rows j
with vj = 1 (and Ev is precisely the event that every column of Qv has an even sum).

Let p= d/n≤ 1/2, let Mv be a random s× n matrix with i.i.d. Bernoulli (p) entries and let
E ′
v be the event that every column in Mv has an even sum. Note that Mv is very similar to Qv,

so the probability of Ev is very similar to the probability of E ′
v. Indeed, writing R1, . . . , Rs and

R′
1, . . . , R′

s for the rows ofQv andMv, respectively, and writing sj = | supp (R′
j)|, for each j we have

sj ∼ Binomial (n, p), so an elementary computation using Stirling’s formula shows that P(sj = d)=
�(1/

√
d)= e−O( log d). Hence

P(Ev)= P(E ′
v | sj = d for all j)≤ P(E ′

v)/P(sj = d for all j)= eO(s log d)P(E ′
v)= eO(s log (pn))P(E ′

v).
Recalling the quantity Ps,p from the proof of Lemma 3.1, we have

P(E ′
v)= Pns,p =

{
e−(1+o(1))spn if sp= o(1),
e−�(n) if sp= �(1),

so if s≤ cn/ log d = cn/ log (pn) for small c> 0, then we also have

P(Ev)≤
{
e−(1+o(1))spn if sp= o(1),
e−�(n) if sp= �(1).

Let Ps = P(Ev) (which only depends on s). We can now conclude the proof in exactly the same way
as in Lemma 3.1. Taking r = δ/p for sufficiently small δ (relative to ε), the probability that there
exists nonzero v ∈Zn

2 with | supp (v)| < cn/ log d and Ci · v≡ 0 (mod 2) for all i= 1, . . . , n is at
most

cn/ log d∑
s=1

(
n
s

)
Ps ≤

r∑
s=1

es log n−(1−ε/3)snp +
cn/ log d∑
s=r+1

es( log (n/s)+1)−�(n)

≤
∞∑
s=1

n−sε/3 +
cn/ log d∑
s=1

en((s/n)( log (n/s)+1)−�(1)) = o(1),

provided c is sufficiently small (relative to δ).

We will deduce Lemma 4.4 from the following lemma.

Lemma 4.5. Suppose p≤ 1/2 and pn→ ∞, and let γ ∈ {0, 1}n be a random vector with exactly pn
ones. Let q≥ 2 be an integer and consider a (non-random) vector v ∈Zn

q whose largest fibre has size
n− s. Then for any a ∈Zq we have P(v · γ ≡ a (mod q))≤ Pp,n,s for some Pp,n,s (only depending on
p, n and s) satisfying

Pp,n,s =
{
e−�(1) when sp= �(1),
e−(1−o(1))sp when sp= o(1)

Proof. As in the proof of Lemma 4.2, we realise the distribution of γ by first choosing pn random
disjoint pairs (i1, j1), . . . , (ipn, jpn) ∈ {1, . . . , n}2, and then randomly choosing one element from
each pair to comprise the 1-entries of γ .

Let E be the event that vi �= vj for at least one of our random pairs (i, j). Then P(v · γ ≡ a
(mod q) | E)≤ 1/2, and therefore P(v · γ ≡ a (mod q))≤ 1− P(E)/2. So, it actually suffices to
prove that
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P(E)≥
{

�(1) when sp= �(1),
(2− o(1))sp when sp= o(1).

If s≥ n/3 (this can only occur if sp= �(1)), then we can choose J ⊆ {1, . . . , n} to be a union of
fibres of the vector v ∈Zn

q such that n/3≤ |J| ≤ 2n/3. In this case,

P(E)≥ P(i1 ∈ J, j1 /∈ J)= �(1),

as desired. So, we assume s< n/3, and let I ⊆ {1, . . . , n} be the set of indices in the largest fibre of
v (so |I| = n− s). Note that E occurs whenever there is a pair {ik, jk} with exactly one element in I.

Let F be the event that ik ∈ I for all k= 1, . . . , pn. We have

P(E |F)≥ 1− (1− s/n)pn =
{

�(1) when sp= �(1),
(1− o(1))sp when sp= o(1),

and

P(E |F)≥ (n− s− pn)/(n− pn)=
{

�(1) when sp= �(1),
1− o(1) when sp= o(1).

This already implies that if sp= �(1), then P(E)= �(1) as desired. If sp= o(1), then P(F)≤
(1− s/n)pn = 1− (1+ o(1))sp, so

P(E)= P(F)P(E |F)+ P(F)P(E |F)≥ (2− o(1))sp,
as desired.

Proof of Lemma 4.4. Let q= d − 1. It suffices to prove that with probability 1− o(1) there is no
nonconstant ‘bad’ vector v ∈Zn

q whose largest fibre has size at least (1− c/ log q)n and which sat-
isfies Ri · v≡ 0 (mod q) for all i= 1, . . . , n− 1. (Note that by the choice of q, if v ∈Zn

q is constant
and nonzero, then it is impossible to have v · R1 = 0).

Let p= d/n, consider any v ∈Zn
q whose largest fibre has size n− s, and consider any i ∈

{1, . . . , n− 1}. Then Ri · v is of the form in Lemma 4.5, so taking r = δ/p for sufficiently small
δ (relative to ε), the probability that such a bad vector exists is at most

c′n/ log q∑
s=1

(
n
s

)
qs+1Pn−1

p,n,s ≤
r∑

s=1
es log n+(s+1)2√pn−(1−ε/3)spn +

c′n/ log q∑
s=r+1

es( log (n/s)+1)+cn+2√pn−�(n)

≤
∞∑
s=1

n−sε/3 +
c′n/ log q∑

s=1
en((s/n)( log (n/s)+1)−�(1)) = n−�(1),

provided c′ > 0 is sufficiently small (relative to δ) and n is sufficiently large.
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