Sheet 5

1 Entangled strategy for a classical channel

Define the classical channel $\left\{W(y \mid x)_{x \in \mathcal{X}, y \in \mathcal{Y}}\right\}$ with $\mathcal{X}=\{1,2,3,4\}$ and $\mathcal{Y}=\binom{\mathcal{X}}{2}$ is the subsets of \mathcal{X} of size 2. We let $W(y \mid x)=\frac{1}{3}$ if $x \in y$ and 0 otherwise. Show that $p_{\text {succ }}(W, 2)=\frac{5}{6}$. Give a quantum strategy that beats this value. Hint: You might want to take the shared state to be $\frac{1}{2} \sum_{i=1}^{4}|i\rangle \otimes|i\rangle$ and the encoding POVMs of the form $E(x \mid 0)=|x\rangle\langle x|$ and $E(x \mid 1)=U|x\rangle\langle x| U^{*}$ where $U=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & -1 & -1 & 1 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & 1 \\ -1 & -1 & 1 & 0\end{array}\right)$.

2 Analyzing the greedy algorithm for submodular functions

1. (Maximization of submodular functions)

A function $f: 2^{\mathcal{X}} \rightarrow \mathbb{R}_{+}$taking as input a subset $S \subseteq X$ that has the following property.

$$
\begin{equation*}
f(S \cup T)+f(S \cap T) \leq f(S)+f(T) . \tag{1}
\end{equation*}
$$

It is said to be monotone if $f(S) \leq f(T)$ whenever $S \subseteq T$.
(a) Show that an equivalent definition for submodular function is that $f(T \cup\{j\})-f(T) \leq f(S \cup\{j\})-$ $f(S)$ for any $S \subseteq T$ and any $j \in \mathcal{X}-T$. This can be interpreted as a "diminishing returns" property.
(b) (Remark: this question is independent of the other questions) Let Z_{1}, \ldots, Z_{n} be a family of random variables. For a subset $S \subseteq\{1, \ldots, n\}$, let Z_{S} be the collection of random variables $\left\{Z_{i}\right\}_{i \in S}$. Show that $f(S)=H\left(Z_{S}\right)$ is a submodular and monotone function.
(c) Let f be a submodular, monotone and nonnegative function and consider the following optimization problem $\max _{S \subseteq \mathcal{X},|S|=M} f(S)$. Let S^{*} of size M be such that $f\left(S^{*}\right)=\max _{S \subseteq \mathcal{X},|S|=M} f(S)$. Computing such an S^{*} is computationally hard in general. But there is a natural greedy algorithm for this problem: start with $S_{0}=\emptyset$, then choose $S_{i+1}=S_{i} \cup \arg \max \left\{f\left(S_{i} \cup\{j\}\right): j \in \mathcal{X}-S_{i}\right\}$. Show that $f\left(S^{*}\right) \leq f\left(S_{i}\right)+M\left(f\left(S_{i+1}\right)-f\left(S_{i}\right)\right)$.
(d) Prove that $f\left(S^{*}\right)-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{M}\right)\left(f\left(S^{*}\right)-f\left(S_{i}\right)\right)$.
(e) Conclude that the greedy algorithm gives a approximation factor of $1-\frac{1}{e}$ for this problem.
2. (Channel coding as a submodular optimization problem) Let $p_{\text {succ }}(W, M)$ be the largest average success probability of a code for M messages:

$$
\begin{equation*}
p_{\text {succ }}(W, M)=\max _{C \subseteq \mathcal{X},|C| \leq M} \frac{1}{M} f_{W}(C), \tag{12}
\end{equation*}
$$

where $f_{W}(C)=\sum_{i=1}^{M} \max _{x \in C} W(y \mid x)$.
(a) Show that f_{W} is submodular and monotone.

