SHEET 5

1 Entangled strategy for a classical channel

Define the classical channel $\{W(y|x)_{x\in\mathcal{X},y\in\mathcal{Y}}\}$ with $\mathcal{X} = \{1,2,3,4\}$ and $\mathcal{Y} = \binom{\mathcal{X}}{2}$ is the subsets of \mathcal{X} of size 2. We let $W(y|x) = \frac{1}{3}$ if $x \in y$ and 0 otherwise. Show that $p_{\text{succ}}(W, 2) = \frac{5}{6}$. Give a quantum strategy that beats this value. *Hint:* You might want to take the shared state to be $\frac{1}{2}\sum_{i=1}^{4}|i\rangle \otimes |i\rangle$ and the encoding POVMs of the form $E(x|0) = |x\rangle\langle x|$ and $E(x|1) = U|x\rangle\langle x|U^*$ where $U = \frac{1}{\sqrt{3}}\begin{pmatrix} 0 & -1 & -1 & 1 \\ -1 & 1 & 0 & 1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$.

2 Analyzing the greedy algorithm for submodular functions

1. (Maximization of submodular functions)

A function $f: 2^{\mathcal{X}} \to \mathbb{R}_+$ taking as input a subset $S \subseteq X$ that has the following property.

$$f(S \cup T) + f(S \cap T) \le f(S) + f(T) . \tag{1}$$

It is said to be monotone if $f(S) \leq f(T)$ whenever $S \subseteq T$.

- (a) Show that an equivalent definition for submodular function is that $f(T \cup \{j\}) f(T) \le f(S \cup \{j\}) f(S)$ for any $S \subseteq T$ and any $j \in \mathcal{X} T$. This can be interpreted as a "diminishing returns" property.
- (b) (Remark: this question is independent of the other questions) Let Z₁,..., Z_n be a family of random variables. For a subset S ⊆ {1,..., n}, let Z_S be the collection of random variables {Z_i}_{i∈S}. Show that f(S) = H(Z_S) is a submodular and monotone function.
- (c) Let f be a submodular, monotone and nonnegative function and consider the following optimization problem max_{S⊆X,|S|=M} f(S). Let S* of size M be such that f(S*) = max_{S⊆X,|S|=M} f(S). Computing such an S* is computationally hard in general. But there is a natural greedy algorithm for this problem: start with S₀ = Ø, then choose S_{i+1} = S_i ∪ arg max{f(S_i ∪ {j}) : j ∈ X − S_i}. Show that f(S*) ≤ f(S_i) + M(f(S_{i+1}) − f(S_i)).
- (d) Prove that $f(S^*) f(S_{i+1}) \le (1 \frac{1}{M})(f(S^*) f(S_i)).$
- (e) Conclude that the greedy algorithm gives a approximation factor of $1 \frac{1}{e}$ for this problem.
- 2. (Channel coding as a submodular optimization problem) Let $p_{\text{succ}}(W, M)$ be the largest average success probability of a code for M messages:

$$p_{\text{succ}}(W, M) = \max_{C \subseteq \mathcal{X}, |C| \le M} \frac{1}{M} f_W(C) , \qquad (12)$$

where $f_W(C) = \sum_{i=1}^{M} \max_{x \in C} W(y|x)$.

(a) Show that f_W is submodular and monotone.