1 Relation between maximum and average error probability

Show that for any \(M \)-code \((E, D)\) for a channel \(\{W_x\}_{x \in \mathcal{X}} \), there exists an \([M/2]\)-code \((E', D')\) for the same channel with \(p_{\text{err, max}}(E', D') \leq 2p_{\text{err}}(E, D) \).

2 Channel capacities

1. For a classical-quantum channel \(\{W_x\}_{x \in \mathcal{X}} \), we defined the function \(f(n) = \sup_{P_{X^n}} I(X^n : B^n) \), where \(\rho_{X^n B^n} = \sum_{x^n \in \mathcal{X}^n} P_{X^n}(x^n) |x^n\rangle \langle x^n| \otimes W_{x^n} \) and \(W_{x^n} = W_{x_1} \otimes W_{x_2} \cdots \otimes W_{x_n} \). Show that the function \(f \) is superadditive.

2. Let \(p \in [0, 1] \) and consider the channel \(W \) with input alphabet \(\mathcal{X} = \{0, 1\} \) defined by \(W_0 = (1 - p)|0\rangle\langle 0| + p|1\rangle\langle 1| \) and \(W_1 = p|0\rangle\langle 0| + (1 - p)|1\rangle\langle 1| \) (this is called the binary symmetric channel). Compute the capacity \(C(W) \).

3. Let \(e \in [0, 1] \) and consider the channel \(W \) with input alphabet \(\mathcal{X} = \{0, 1\} \) defined by \(W_0 = (1 - e)|0\rangle\langle 0| + e|E\rangle\langle E| \) and \(W_1 = (1 - e)|1\rangle\langle 1| + e|E\rangle\langle E| \), where \(|E\rangle \) is orthogonal to both \(|0\rangle \) and \(|1\rangle \) (this is called the binary erasure channel). Compute the capacity \(C(W) \).

4. Prove that the von Neumann entropy is strictly concave, i.e., for any distribution \(\{p(x)\} \) with support \(S \) we have \(H(\sum_{x \in S} p(x)W_x) \geq \sum_{x \in S} p(x)H(W_x) \) with equality if and only if \(W_x = W \) for all \(x \in S \). (You may want to use a question from Sheet 3 for this). Conclude that a classical-quantum channel \(\{W_x\}_{x \in \mathcal{X}} \) satisfies \(C(W) = 0 \) if and only if there exists \(W \) such that \(W_x = W \) for all \(x \in \mathcal{X} \).

3 Properties of the Holevo information

Recall that the Holevo information \(\chi(\{p(x), \sigma_A^x\}) \) of an ensemble \(\{p(x), \sigma_A^x\} \) is defined as \(I(X : A) \), where \(\rho_{XA} = \sum_x p(x)|x\rangle \langle x| \otimes \sigma_A^x \).

1. Show that \(\chi(\{p(x), \sigma_A^x\}) = H(\sum_x p(x)\sigma_A^x) - \sum_x p(x)H(\sigma_A^x) \)

2. Show that \(\chi \) is concave in \(\{p(x)\} \) (for fixed \(\{\sigma_A^x\} \)) and convex in \(\{\sigma_A^x\} \) (for fixed \(\{p(x)\} \)).

3. The Holevo information of a channel \(\mathcal{W} : L(A) \rightarrow L(B) \) is defined as the supremum over all ensembles \(\{p(x), \sigma_A^x\} \) of the Holevo information \(\chi(\{p(x), \mathcal{W}(\sigma_A^x)\}) \). Show that we may restrict the optimization to ensembles where \(\sigma_A^x \) are all pure states.