SHEET 2

1 State discrimination

- 1. We start with the average error probability setting.
 - (a) Let ρ, σ be density operators. Show that $\Delta(\rho, \sigma) = \max\{\operatorname{tr}(P(\rho \sigma))\}$, where the maximum is over all orthogonal projections P. Show also that the maximization can be taken over all operators P satisfying $0 \le P \le I$.
 - (b) Conclude that the minimum average error probability for distinguishing ρ_0 and ρ_1 is given by $\frac{1}{2} \frac{1}{2}\Delta(\rho_0, \rho_1)$.
- 2. Now consider the asymmetric setting. Assume $supp(\rho)$ is not included in $supp(\sigma)$. We show Stein's lemma in this case.
 - (a) Show that for some $\epsilon < 1$, we have $D_H^{\epsilon}(\rho \| \sigma) = +\infty$.
 - (b) Conclude that for any $\epsilon > 0$, there is an n_{ϵ} such that for $n \geq n_{\epsilon}$, we have $D_H^{\epsilon}(\rho^{\otimes n} || \sigma^{\otimes n}) = +\infty$ and that Stein's lemma holds in this case.
- 3. Assume that ρ and σ commute and let $\{P(x)\}_{x \in \mathcal{X}}$ and $\{Q(x)\}_{x \in \mathcal{X}}$ be their vector of eigenvalues. Show that $D_H^{\epsilon}(\rho \| \sigma) = D_H^{\epsilon}(P \| Q)$, where $D_H^{\epsilon}(P \| Q) = \max\{-\log \sum_{x \in \mathcal{X}} E(x)Q(x) : \sum_{x \in \mathcal{X}} E(x)P(x) \ge 1 \epsilon\}$.

2 Properties of quantum entropies

- 1. Recall that the von Neumann entropy $H(A)_{\rho} = -D(\rho_A || I_A)$. Show that $0 \le H(A)_{\rho} \le \log \dim A$. You might want to use Jensen's inequality.
- 2. Show that $H(A)_{\rho} = 0$ if and only if ρ is pure and $H(A)_{\rho} = \log \dim A$ if and only if ρ is maximally mixed.
- 3. Show that if $\rho_{AB} = \rho_A \otimes \rho_B$, $H(AB)_{\rho} = H(A)_{\rho} + H(B)_{\rho}$.
- 4. Recall we defined $H(A|B)_{\rho} = -D(\rho_{AB}||I_A \otimes \rho_B)$. Show that $H(A|B)_{\rho} = H(AB)_{\rho} H(B)_{\rho}$.
- 5. Show that if ρ_{AB} is classical, i.e., $\rho_{AB} = \sum_{a,b} P(a,b)|a\rangle\langle a|_A \otimes |b\rangle\langle b|_B$ for some orthonormal bases $\{|a\rangle\}_a$ and $\{|b\rangle\}_b$, then $H(A|B)_\rho \geq 0$. Is this still the case for general ρ ?

3 Pinching

Recall that for a Hermitian operator σ , the pinching map \mathcal{P}_{σ} is defined by $\mathcal{P}_{\sigma}(S) = \sum_{\lambda \in \operatorname{spec}(\sigma)} \Pi_{\lambda} S \Pi_{\lambda}$, where Π_{λ} is the projector onto the eigenspace of λ for the operator σ .

- 1. If $\sigma = I$, what is \mathcal{P}_{σ} ?
- 2. Show that $\mathcal{P}_{\sigma}(S)$ commutes with σ .
- 3. Show that $\operatorname{tr}(\mathcal{P}_{\sigma}(S)\sigma) = \operatorname{tr}(S\sigma)$.
- 4. Let $m=|\operatorname{spec}(\sigma)|$ and label the eigenvalues by λ_x with $x\in\{0,1,\ldots,m-1\}$. Show that for any $y\in\{0,1,\ldots,m-1\}$, the operator $U_y:=\sum_{x\in\{0,1,\ldots,m-1\}}e^{\frac{2\pi ixy}{m}}\Pi_{\lambda_x}$ is unitary. Show that \mathcal{P}_σ can be written as choosing $y\in\{0,1,\ldots,m-1\}$ at random and then applying U_y .
- 5. Show that for a positive operator ρ , we have $\mathcal{P}_{\sigma}(\rho) \geq \frac{1}{|\operatorname{spec}(\sigma)|} \rho$.