Sheet 2

1 State discrimination

1. We start with the average error probability setting.
(a) Let ρ, σ be density operators. Show that $\Delta(\rho, \sigma)=\max \{\operatorname{tr}(P(\rho-\sigma))\}$, where the maximum is over all orthogonal projections P. Show also that the maximization can be taken over all operators P satisfying $0 \leq P \leq I$.
(b) Conclude that the minimum average error probability for distinguishing ρ_{0} and ρ_{1} is given by $\frac{1}{2}-$ $\frac{1}{2} \Delta\left(\rho_{0}, \rho_{1}\right)$.
2. Now consider the asymmetric setting. Assume $\operatorname{supp}(\rho)$ is not included in $\operatorname{supp}(\sigma)$. We show Stein's lemma in this case.
(a) Show that for some $\epsilon<1$, we have $D_{H}^{\epsilon}(\rho \| \sigma)=+\infty$.
(b) Conclude that for any $\epsilon>0$, there is an n_{ϵ} such that for $n \geq n_{\epsilon}$, we have $D_{H}^{\epsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)=+\infty$ and that Stein's lemma holds in this case.
3. Assume that ρ and σ commute and let $\{P(x)\}_{x \in \mathcal{X}}$ and $\{Q(x)\}_{x \in \mathcal{X}}$ be their vector of eigenvalues. Show that $D_{H}^{\epsilon}(\rho \| \sigma)=D_{H}^{\epsilon}(P \| Q)$, where $D_{H}^{\epsilon}(P \| Q)=\max \left\{-\log \sum_{x \in \mathcal{X}} E(x) Q(x): \sum_{x \in \mathcal{X}} E(x) P(x) \geq 1-\epsilon\right\}$.

2 Properties of quantum entropies

1. Recall that the von Neumann entropy $H(A)_{\rho}=-D\left(\rho_{A} \| I_{A}\right)$. Show that $0 \leq H(A)_{\rho} \leq \log \operatorname{dim} A$. You might want to use Jensen's inequality.
2. Show that $H(A)_{\rho}=0$ if and only if ρ is pure and $H(A)_{\rho}=\log \operatorname{dim} A$ if and only if ρ is maximally mixed.
3. Show that if $\rho_{A B}=\rho_{A} \otimes \rho_{B}, H(A B)_{\rho}=H(A)_{\rho}+H(B)_{\rho}$.
4. Recall we defined $H(A \mid B)_{\rho}=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)$. Show that $H(A \mid B)_{\rho}=H(A B)_{\rho}-H(B)_{\rho}$.
5. Show that if $\rho_{A B}$ is classical, i.e., $\rho_{A B}=\sum_{a, b} P(a, b)|a\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right.$ for some orthonormal bases $\{|a\rangle\}_{a}$ and $\{|b\rangle\}_{b}$, then $H(A \mid B)_{\rho} \geq 0$. Is this still the case for general ρ ?

3 Pinching

Recall that for a Hermitian operator σ, the pinching map \mathcal{P}_{σ} is defined by $\mathcal{P}_{\sigma}(S)=\sum_{\lambda \in \operatorname{spec}(\sigma)} \Pi_{\lambda} S \Pi_{\lambda}$, where Π_{λ} is the projector onto the eigenspace of λ for the operator σ.

1. If $\sigma=I$, what is \mathcal{P}_{σ} ?
2. Show that $\mathcal{P}_{\sigma}(S)$ commutes with σ.
3. Show that $\operatorname{tr}\left(\mathcal{P}_{\sigma}(S) \sigma\right)=\operatorname{tr}(S \sigma)$.
4. Let $m=|\operatorname{spec}(\sigma)|$ and label the eigenvalues by λ_{x} with $x \in\{0,1, \ldots, m-1\}$. Show that for any $y \in\{0,1, \ldots, m-1\}$, the operator $U_{y}:=\sum_{x \in\{0,1, \ldots, m-1\}} e^{\frac{2 \pi i x y}{m}} \Pi_{\lambda_{x}}$ is unitary. Show that \mathcal{P}_{σ} can be written as choosing $y \in\{0,1, \ldots, m-1\}$ at random and then applying U_{y}.
5. Show that for a positive operator ρ, we have $\mathcal{P}_{\sigma}(\rho) \geq \frac{1}{|\operatorname{spec}(\sigma)|} \rho$.
