EXERCISES AND SUPPLEMENTAL TOPICS FOR LECTURE 7

Let F be a field and let A be an abelian group. A symbol on F with values in A is a function

$$\phi: F^{\times} \times F^{\times} \to A$$

which is bilinear and such that $\phi(a, 1-a) = 0$. Using the identity

$$-a = \frac{1 - a}{1 - 1/a},$$

one deduces as well that $\phi(a, -a) = 0$. Consequently, with a little work one checks that ϕ is antisymmetric, i.e., $\phi(a, b) = -\phi(b, a)$.

For the purpose of quadratic forms, one is most interested in symbols that take values in \mathbb{F}_2 -vector spaces, in which case (i.e., 2A = 0) such a ϕ defines a *symmetric* bilinear form $F^{\times}/F^{\times 2} \times F^{\times}/F^{\times 2} \to A$.

(1) For p > 2, the formula for the p-adic Hilbert symbol is as follows. If $x, y \in \mathbb{Q}_p^{\times}$ and $x = p^a u, y = p^b v$ for $a, b \in \mathbb{Z}$ and $u, v \in \mathbb{Z}_p^{\times}$, then

$$(x,y)_{\mathbb{Q}_p} = (-1)^{ab\epsilon(p)} \left(\frac{u}{p}\right)^b \left(\frac{v}{p}\right)^a$$

where $\left(\frac{\cdot}{p}\right)$ denotes the quadratic (Legendre symbol), i.e., ± 1 according to whether the input is a square in \mathbb{F}_p^{\times} , and $\epsilon(p) = \frac{p-1}{2}$. Check this by reducing to a handful of basic cases and using the results on quadratic forms over \mathbb{Q}_p proved earlier.

(2) Let p > 2. We define a function

$$\mathbb{Q}_p^\times \times \mathbb{Q}_p^\times \to \mathbb{F}_p^\times$$

by sending

$$(a,b) \mapsto (-1)^{v_p(a)v_p(b)} \overline{\frac{b^{v_p(a)}}{a^{v_p(b)}}}$$

where v_p denotes the p-adic valuation and $\bar{\cdot}$ refers to reduction modulo p (for a p-adic unit). Show that this function is a symbol (called the $tame\ symbol$). In fact, when one composes with the quadratic symbol $\mathbb{F}_p^{\times} \to \{\pm 1\}$, the composite is just the p-adic Hilbert symbol (this follows from the formula given in the lecture and above).

(3) The Hilbert symbol for \mathbb{Q}_2 is as follows. Given $x = 2^a u, y = 2^b v$ with $u, v \in \mathbb{Z}_2^{\times}$, then

$$(x,y)_{\mathbb{O}_2} = (-1)^{\epsilon(u)\epsilon(v) + a\omega(v) + b\omega(u)}$$

Here $\epsilon, \omega : \mathbb{Z}_2^{\times} \to \mathbb{Z}/2$ are defined by $\epsilon(z) = \frac{z-1}{2}, \omega(z) = \frac{z^2-1}{8}$ (and reducing mod 2). Check that these are both homomorphisms.

In particular:

- We have $(u, v)_{\mathbb{Q}_2} = (-1)^{\epsilon(u)\epsilon(v)}$.
- We have $(2, v)_{\mathbb{Q}_2} = (-1)^{\omega(v)}$.

Date: July 20, 2021.

(4) (Non-dyadic fields). Let $(E, |\cdot|)$ be any nonarchimedean local field. The residue characteristic of E is the unique prime number p such that |p| < 1. If E actually has characteristic p (so that E is isomorphic to $\mathbb{F}_q((t))$), then E has residue characteristic p. But \mathbb{Q}_p or any finite extension has characteristic zero but residue characteristic p. Given such an E, we let $\mathcal{O}_E = \{x \in E : |x| \le 1\}$ be the unit disk (which is a subring of E),

A nonarchimedean local field E is said to be *non-dyadic* if the residue characteristic is $\neq 2$ (so |p|=1). Much of the treatment of \mathbb{Q}_p for p>2 can be generalized to any non-dyadic local field; for instance, for such E we have $E^{\times}/E^{\times 2}$ is isomorphic to \mathbb{F}_2^2 , and the Hilbert symbol can be computed explicitly.