EXERCISES AND SUPPLEMENTAL TOPICS FOR LECTURE 2

1. General exercises

Let F be a field of characteristic $\neq 2$.

- (1) Let E be an extension of F (not necessarily finite!). Given a quadratic space (V, q), construct the quadratic space (V_E, q_E) where $V_E = V \otimes_F E$.
- (2) Let $d \in F^{\times} \setminus F^{\times 2}$ and form the quadratic extension $F(\sqrt{d})$. Let (V,q) be a quadratic form over F which is anisotropic but such that $V \otimes_F F(\sqrt{d})$ is isotropic. Then show that V contains $\langle a, -ad \rangle$ as a summand for some $a \in F^{\times}$ (and conversely). (Note: this was incorrect in the earlier version; thanks to Niven Achenjang for the correction.)
- (3) Let (V,q) be any two-dimensional quadratic space. Show that V is hyperbolic if and only if det $V = -1 \in F^{\times}/F^{\times 2}$.
- (4) Let (V,q) and (V',q') be two-dimensional quadratic spaces. Show that $(V,q) \simeq (V',q')$ if and only if they have the same determinant (in $F^{\times}/F^{\times 2}$) and they both represent a common element of F.
- (5) Let (V,q) be a quadratic space and let $a \in F^{\times}$. Show that (V,q) represents a (i.e., there exists $v \in V$ with $v \cdot v = a$) if and only if $V \oplus \langle -a \rangle$ is isotropic.
- (6) Suppose the u-invariant of F is n (so every (n+1)-dimensional quadratic form over F is isotropic). Then for any n-dimensional quadratic space (V,q) over F, and any $a \in F^{\times}$, there exists $v \in V$ such that $v \cdot v = a$. In lecture we used this fact for n = 2 (and a = 1).

2. Exercises on C_1 fields

- (1) Let \mathbb{F}_q be a finite field. Let $P(X_1,\ldots,X_n)$ be a homogeneous polynomial of degree d in n variables. Suppose n > d. Then there exists a nontrivial solution of $P(X_1, \ldots, X_n) = 0$ over \mathbb{F}_q . In fact, the number of all solutions including the trivial solution is $\equiv 0 \mod p$ (Chevalley–Warning). Here p is the prime such that q is a power of p.
 - (a) For $x \in \mathbb{F}_q$, we have $x^{q-1} = 1$ if $x \neq 0$.
 - (b) The number of zeros of $P(X_1, \ldots, X_n)$ is congruent mod p to $-\sum_{(x_1, \ldots, x_n) \in \mathbb{F}_n^n} P(x_1, \ldots, x_n)^{q-1}$ (note that this sum lives in \mathbb{F}_q).

 - (c) For i < q-1, we have $\sum_{x \in \mathbb{F}_q} x^i = 0$ in \mathbb{F}_q . (d) Expand out the sum above. Each monomial in $P(X_1, \dots, X_n)^{q-1}$ is of the form $cX_1^{a_1}X_2^{a_2}\dots X_n^{a_n}$ with $\sum_i a_i = d(q-1)$. In particular, one of the a_i satisfies $a_i < q-1$, and deduce that the sum vanishes in \mathbb{F}_q .
 - (e) Combine to deduce the claim.
- (2) Let $P(X_1, \ldots, X_n)$ be a homogeneous polynomial of degree d in n variables over the function field $\mathbb{C}(t)$. If d < n, then $P(X_1, \dots, X_n) = 0$ has a solution (special case of Tsen's theorem). In particular, any three-dimensional quadratic form over $\mathbb{C}(t)$ is isotropic.
 - (a) Without loss of generality, suppose the coefficients of P are polynomials in $\mathbb{C}[t]$.

1

Date: July 13, 2021.

- (b) Take $X_i = \sum_{j=0}^m a_{ij}t^j$ for some coefficients $a_{ij} \in \mathbb{C}$ and for some $m \gg 0$. In this case, the equation $P(X_1, \ldots, X_n) = 0$ can be regarded as a system of homogeneous polynomial equations over \mathbb{C} in n(m+1) variables. However, the number of equations needed is given by the number of degree md + O(1). For $m \gg 0$, there are more variables than equations.
- (c) Here we use the following basic fact: given r homogeneous polynomial equations in \mathbb{C}^s , if r < s, they have a nontrivial common root. Conclude the proof of the result.

3. The u-invariant

The *u-invariant* of a field F is the maximum dimension (or ∞) of an anisotropic quadratic form over F. For example, the *u*-invariant of \mathbb{C} is 1, and we have seen that the *u*-invariant of \mathbb{F}_q is 2. There are many open questions involving the *u*-invariant: for instance, it is not known what values it can take in general (it was once believed that the *u*-invariant has to be a power of two, but it is now known that all even values and some odd values are possible for the *u*-invariant). As another example, it is a consequence of the Hasse–Minkowski machinery that the *u*-invariant of $\mathbb{Q}(\sqrt{-1})$ is four, but it is not known what the *u*-invariant of the field of rational functions $\mathbb{Q}(\sqrt{-1})(t)$. See the survey article by Parimala, "A Hasse Principle for Quadratic Forms over Function Fields."

- (1) Let $\mathbb{C}((t))$ be the Laurent series field of \mathbb{C} (i.e., the fraction field of the ring of formal power series $\mathbb{C}[[t]]$). Show that any three-dimensional quadratic form over $\mathbb{C}((t))$ is isotropic. (In fact, any homogeneous polynomial equation of degree d in n variables for n > d has a nontrivial solution.)
- (2) More generally, show that the *u*-invariant of the Laurent series field F((t)) is twice the *u*-invariant of F (for any field F of characteristic $\neq 2$). You will use the fact that any element in 1 + tF[[t]] has a square root (why?).

4. The Cartan-Dieudonné theorem

Let (V,q) be a quadratic space over F. As in the lecture, we know that the orthogonal group O(V,q) acts transitively on each of the level sets $\{v:q(v)=a\}$ for any $a\in k^{\times}$.

In this sequence of exercises we will prove the $Cartan-Dieudonn\acute{e}$ theorem: any element of O(V,q) is a product of $\leq n$ reflections, where $n=\dim V$.

- (1) To begin with, prove the weaker assertion that any element $f \in O(V,q)$ is a product of some number of reflections. Use induction on dim V. Given an anisotropic vector $v \in V$, show that (as in the lecture) there is a reflection $R: V \simeq V$ carrying $v \mapsto \pm fv$ (one of those). Inductively, show that $Rf: V \simeq V$ is a product of reflections and conclude.
- (2) The argument in (1) does not quite manage to prove that any f is a product of $\leq n$ reflections; the issue is that given anisotropic vectors $v, w \in V$ with v.v = w.w, there need not exist a reflection R such that Rv = w. Such a reflection does exist if v-w is anisotropic. Conclude that if V itself is anisotropic, then the argument of part (1) suffices to prove the Cartan-Dieudonné theorem.
- (3) Now we start to prove the Cartan–Dieudonné theorem. By induction, we may assume the result in dimensions < n. The above arguments then show that f can be written as a product of $\le n+1$ reflections.

If there exists an anisotropic vector $v \in V$ with v - fv either zero or anisotropic, then we can conclude the result for f by induction (why?). So, we may assume that for every anisotropic $v \in V$, the vector v - fv is isotropic but nonzero.

- (4) In general, any vector in any quadratic space is a "limit" of anisotropic vectors (why?). (Work over $F = \mathbb{C}$, where this literally makes sense, or one has to form some algebraic substitute of this.) Therefore, for any vector $v \in V$, v fv is isotropic. Let $M: V \to V$ be the transformation id -f. Show that:
 - For any $v, w \in V$, we have Mv.Mw = 0, i.e., $(MV) \subset (MV)^{\perp}$.
 - Furthermore $\ker(M)$ (the fixed points of f) is a subspace consisting of isotropic vectors, and hence $\ker(M) \subset \ker(M)^{\perp}$.
 - Show also that $\ker M = (MV)^{\perp}$. Conclude that $M^2 = 0$.
- (5) Use the inclusions $(MV) \subset (MV)^{\perp}$, $\ker(M) \subset \ker(M)^{\perp}$ and basic linear algebra to show that $\dim MV = \dim \ker M = \frac{n}{2}$ (in particular, n is even) and these inequalities are equalities.
- (6) Using $M^2 = 0$, conclude that f = id M has determinant 1.
- (7) Using the inductive hypothesis on n, we saw that f is a product of $\leq n+1$ reflections. Write f as such a product; if there are exactly n+1 reflections in the product, then obtain a contradiction since det f=1. This proves the theorem.