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2 Summary of Progress

We accomplished our two primary goals during our time at the IAS. First, we fine-tuned a
result within the scheme of the Maximum Distance Problem that we began during the 2022-
2023 academic year; this project is now in preprint form. Second, we chose a problem and
established foundational results in a new direction that will we work on together during the
2023-2024 academic year. Below, we summarize our Maximum Distance Problem results.

2.1 Maximum Distance Problems for Hölder Curves

Roughly speaking, the Maximum Distance Problem is the following:

Given some compact subset E ⊂ Rn and some neighborhood radius r > 0, find a curve of least
length whose closed r-neighborhood covers E.

To formulate this problem precisely, we must define what we mean by curve and fix a notion
of length. Traditionally, in the study of the Maximum Distance Problem “curves” has meant
finite continuum, i.e., closed connected subset Γ ⊆ Rn with H1(Γ) < ∞, and length has
been measured by 1-dimensional Hausdorff measure, H1(Γ). With these choices, the Maximum
Distance Problem may be stated as:

(H1, E, r)

{
minimize H1(Γ)

among finite continua Γ ⊆ Rn such that B(Γ, r) ⊇ E
(2.1)

where B(A, r) := {x ∈ Rn : dist(x,A) ≤ r} denotes the closed r-neighborhood of any subset
A ⊂ Rn, and dist(x,A) := infy∈A |x− y|.

More than simply identifying solutions to the Maximum Distance Problem, there is interest
in finding length minimizers of the Maximum Distance Problem and determining the regularity
of such minimizers. To this end, we define an infimum:

Λ(H1, E, r) := inf{H1(Γ) : Γ ⊆ Rn is a finite continuum and B(Γ, r) ⊇ E}.
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Compactness arguments show that (H1, E, r)-minimizers exist [AKV21, Theorem 2.15], and
we denote minimizers of (2.1) by Γ∗ so that Γ∗ is a finite continuum such that B(Γ∗, r) ⊇ E
and H1(Γ∗) = Λ(H1, E, r). We call Γ∗ an (H1, E, r)-minimizer, or an r-maximum distance
minimizer of E.

For our project, we investigated the asymptotic behavior of r-maximum distance minimizers
for various types of subsets E ⊂ Rn. In [AKV21], the authors’ motivation to study the maximum
distance problem came from the Analyst’s Traveling Salesman Problem, which asks for necessary
and sufficient conditions for a set E ⊆ Rn to be covered by a finite continuum. We showed that
whenever E can be covered by a finite continuum, that solutions to the Analyst’s Traveling
Salesman Problem can be obtained as the limit of r-maximum distance minimizers as r → 0+.
Formally, we state this result as follows:

Theorem 2.1. Suppose E can be covered by a finite continuum. For any positive numbers
ri → 0, there exists a sequence {Γ∗

i } of (H1, B(E, ri), ri)-minimizers and a finite continuum Γ∗

such that

1. lim
i→∞

dH(Γ
∗
i ,Γ

∗) = 0;

2. E ⊆ Γ∗;

3. lim
i→∞

H1(Γ∗
i ) = H1(Γ∗) = inf{H1(Γ) : Γ is a rectifiable curve and Γ ⊇ E}.

Note that any finite continuum has a Lipschitz parameterization whose 1-variation is com-
parable to its 1-dimensional Hausdorff measure. In particular, there is a constant C = C(n)
such that whenever K ⊆ Rn is a finite continuum, there exists an L > 0 and a Lipschitz map
γ : [0, L] → Rn such that γ̂ = K, H1(K) ≤ L ≤ CH1(K), and |γ′(t)| = 1 for L1-almost every
t ∈ [0, L] [DS93, Theorem 1.8]. Thus, we may state an equivalent version of problem (2.1)
where we are minimizing over such Lipschitz maps. A common way of measuring the length of
a Lipschitz map γ : [a, b] → Rn is with its 1-variation, defined by

ℓ(γ) := sup
N∑
k=1

|γ(tk)− γ(tk−1)|,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tN−1 < tN = b of [a, b]. We
used the 1-variation as a way to measure the length of a Lipschitz curve for what we call the
maximum distance problem with Lipschitz parameterizations:

(ℓ, E, r)

{
minimize ℓ(γ)

among γ ∈ C1,1([0, 1]) such that B(γ̂, r) ⊇ E.
(2.2)

We let Λ(ℓ, E, r) be the infimum of that problem:

Λ(ℓ, E, r) := inf{ℓ(γ) : γ ∈ C1,1([0, 1]) such that B(γ̂, r) ⊇ E}.

We showed the existence of (ℓ, E, r)-minimizers. That is, we showed that there exists a Lipschitz
curve γ∗ : [0, 1] → Rn such that B(γ̂∗, r) ⊇ E and ℓ(γ∗) = Λ(ℓ, E, r). Although (H1, E, r)-
minimizers and (ℓ, E, r)-minimizers may be different (even for fixed E and r), their minimum
values, Λ(H1, E, r) and Λ(ℓ, E, r) are comparable in the sense that there exists a constant
C = C(n) such that

Λ(H1, E, r) ≤ Λ(ℓ, E, r) ≤ CΛ(H1, E, r).



The situation is more complicated whenever E cannot be covered by a finite continuum as
is the case, for example, with the von Koch snowflake. One immediate complication is that
we cannot use compactness arguments since the function r 7→ Λ(H1, B(E, r), r) is unbounded.
In order to understand the asymptotic behaviour of minimizers for more general subsets, we
studied such asymptotics in the context of Hölder curves.

In order to introduce the general techniques in a more familiar context, we began by first
looking at r-maximum distance minimizers of r-neighborhoods of the standard 1

3
-von Koch

snowflake, which has infinite H1 measure but postive and finite Hs measure when s = log3(4).
We were able to show that the growth of the function r 7→ Λ(H1, B(E, 1/r), 1/r) is comparable
to a logarithmic exponentiation of 4/3.

Theorem 2.2. Let S be the 1
3
-von Koch snowflake. There exists a constant C > 1 such that

1

C

(
4

3

)k(r)

≤ Λ(H1, B(S, 1/r), 1/r) ≤ C

(
4

3

)k(r)

for all r > 1/3 where k(r) := log3(r).

In a sense, this result quantifies how H1 can approximate higher dimensional Hausdorff
measures Hlog3(4) in the context of the von Koch snowflake at scale r. To extend our result
to more general Hölder curves, we begin with a definition. For α ∈ (0, 1], we say that a map
γ : [0, 1] → Rn is an α-Hölder curve with constant 1 ≤ C < ∞ if

|γ(x)− γ(y)| ≤ C|x− y|α

for all x, y ∈ [0, 1]. We denote the class of α-Hölder curves by C0,α([0, 1]). If in addition, there
exists a β ≥ α such that

1

C
|x− y|β ≤ |γ(x)− γ(y)| ≤ C|x− y|α

for all x, y ∈ [0, 1], then we call γ a weak (α, β)-bi-Hölder curve with constant C, or sim-
ply an (α, β)-bi-Hölder curve. We were able to show that the maximum distance function
r 7→ Λ(H1, B(γ̂, 1/r), 1/r) for neighborhoods of (α, β)-bi-Hölder curves is O(2(1−α)kα(r)) and
Ω(2(1−β)kβ(r)).

Theorem 2.3. Let 0 < α ≤ β and let γ : [0, 1] → Rn be a weak (α, β)-bi-Hölder curve with
constant 1 ≤ Cγ < ∞. Then there exists C = C(α, β, Cγ) such that

1

C
2(1−β)kβ(r) ≤ Λ(H1, B(γ̂, 1/r), 1/r) ≤ C2(1−α)kα(r)

for all small enough r = r(β) > 0 where kη(r) := log2η(r).

2.2 Future Direction

Going forward, we plan to continue to explore ways in which results for Lipschitz curves can be
extended to Hölder curves as well as ways in which standard tools break down when regularity
is decreased from Lipschitz to Hölder. We intend to continue our collaboration during the
upcoming academic year, and we look forward to sharing our new problem statement and
results soon.
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