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Algorithms for orbit closure separation for
invariants and semi-invariants of matrices

Harm Derksen and Visu Makam

We consider two group actions on m-tuples of n×n matrices with entries in the field K . The first is simul-
taneous conjugation by GLn and the second is the left-right action of SLn × SLn . Let K be the algebraic
closure of the field K . Recently, a polynomial time algorithm was found to decide whether 0 lies in the
Zariski closure of the SLn(K )×SLn(K )-orbit of a given m-tuple by Garg, Gurvits, Oliveira and Wigderson
for the base field K =Q. An algorithm that also works for finite fields of large enough cardinality was
given by Ivanyos, Qiao and Subrahmanyam. A more general problem is the orbit closure separation
problem that asks whether the orbit closures of two given m-tuples intersect. For the conjugation action
of GLn(K ) a polynomial time algorithm for orbit closure separation was given by Forbes and Shpilka
in characteristic 0. Here, we give a polynomial time algorithm for the orbit closure separation problem
for both the conjugation action of GLn(K ) and the left-right action of SLn(K )× SLn(K ) in arbitrary
characteristic. We also improve the known bounds for the degree of separating invariants in these cases.

1. Introduction

The algorithms we present will only use numbers from the field of definition, as opposed to its algebraic
closure (see Section 5A). However, it will be convenient to assume that the field of definition is algebraically
closed for stating and proving results.

In this paper, let K denote an algebraically closed field. For a vector space V over the field K, let K [V ]
denote the ring of polynomial functions on V. Suppose that a group G acts on V by linear transformations.
A polynomial f ∈ K [V ] is called an invariant polynomial if it is constant along orbits, i.e., f (g ·v)= f (v)
for all g ∈ G and v ∈ V. The invariant polynomials form a graded subalgebra K [V ]G =

⊕
∞

d=0 K [V ]Gd ,
where K [V ]Gd denotes the degree d homogeneous invariants. We will call K [V ]G the invariant ring or
the ring of invariants.

For a point v ∈ V, its orbit G · v = {g · v | g ∈ G} is not necessarily closed with respect to the Zariski
topology. We say that an invariant f separates two points v,w ∈ V if f (v) 6= f (w). It follows from
continuity that any invariant polynomial must take the same value on all points of the closure of an orbit.
Hence invariant polynomials cannot separate two points whose orbit closures intersect.
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We can ask the converse question: if v,w ∈ V such that G · v ∩G ·w =∅, then is there an invariant
polynomial f ∈ K [V ]G such that f (v) 6= f (w)? The answer to this question is in general negative; see
[Derksen and Kemper 2002, Example 2.2.8]. However, if we enforce additional hypothesis, we get a
positive answer as the theorem below shows; see [Mumford et al. 1994].

Theorem 1.1. Let V be a rational representation of a reductive group G. Then for v,w ∈ V, there exists
f ∈ K [V ]G such that f (v) 6= f (w) if and only if G · v ∩G ·w =∅.

Henceforth, we shall assume that V is a rational representation of a reductive group G.

Problem 1.2 (orbit closure problem). Decide whether the orbit closures of two given points v,w ∈ V
intersect.

Definition 1.3. Two points v,w ∈ V are said to be closure equivalent if G · v ∩G ·w 6= ∅. We write
v ∼ w if v and w are closure equivalent, and we write v 6∼ w if they are not closure equivalent.

By Theorem 1.1, we have v ∼ w if and only if f (v)= f (w) for all f ∈ K [V ]G. So ∼ is clearly an
equivalence relation. Since closure equivalence can be detected by invariant polynomials, the existence of
a small generating set of invariants, each of which can be computed efficiently would give an algorithm
for the orbit closure problem. Fortunately, the invariant ring K [V ]G is finitely generated; see [Haboush
1975; Hilbert 1890; 1893; Nagata 1963/64].

Definition 1.4. We define β(K [V ]G) to be the smallest integer D such that invariants of degree ≤ D
generate K [V ]G, i.e.,

β(K [V ]G)=min
{
D ∈ N |

⋃D
d=1 K [V ]Gd generates K [V ]G

}
,

where N= {1, 2, . . . }.

We are not just interested in deciding whether orbit closures intersect — when they do not, we want
to provide an explicit invariant that separates them. To be able to do this efficiently, there must exist
an invariant of small enough degree that separates the two given points. A strong upper bound on
β(K [V ]G) would provide evidence that such invariants exist. Such a bound can be obtained for any
rational representation V of a linearly reductive group G (see [Derksen 2001]), but this is often too large.
For the cases of interest to us, stronger bounds exist, and we recall them in Section 2. Despite having
strong degree bounds, it is a difficult problem to extract a small set of generators. On the other hand,
we may only need a subset of the invariants to detect closure equivalence, prompting the definition of a
separating set of invariants.

Definition 1.5. A subset of invariants S ⊂ K [V ]G is called a separating set of invariants if for every pair
v,w ∈ V such that v 6∼ w, there exists f ∈ S such that f (v) 6= f (w).

We make another definition.
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Definition 1.6. We define βsep(K [V ]G) to be the smallest integer D such that the invariants of degree≤ D
form a separating set of invariants, i.e.,

βsep(K [V ]G)=min
{
D ∈ N |

⋃D
d=1 K [V ]Gd is a separating set of invariants

}
.

Extracting a small set of separating invariants is also difficult; see [Kemper 2003] for a general
algorithm. We now turn to a closely related problem, and to describe this we need to recall the null cone.

Definition 1.7. The null cone N (G, V )= {v ∈ V | 0 ∈ G · v}.

For a set of polynomials I ⊂ K [V ] we define its vanishing set

V(I )= {v ∈ V | f (v)= 0 for all f ∈ I }.

The null cone can also be defined by N (G, V )=V(K [V ]G
+
), where K [V ]G

+
=
⊕
∞

d=1 K [V ]Gd ; see [Derksen
and Kemper 2002, Definition 2.4.1, Lemma 2.4.2].

Problem 1.8 (null cone membership problem). Decide whether a given point v ∈ V lies in the null cone
N (G, V ).

Since 0 is a closed orbit, a point v ∈ V is in the null cone if and only if 0 ∼ v, and hence the null
cone membership problem can be seen as a subproblem of the orbit closure problem. So, the null cone
membership problem could potentially be easier than the orbit closure problem. On the other hand, an
algorithm for the null cone membership problem may provide a stepping stone for the orbit closure problem.

In this paper, we are interested in giving efficient algorithms for the orbit closure problem in two specific
cases — matrix invariants and matrix semi-invariants. These two cases have generated considerable interest
over the past few years due to their connections to computational complexity; see [Derksen and Makam
2017b; Forbes and Shpilka 2013; Garg et al. 2016; Hrubeš and Wigderson 2014; Ivanyos et al. 2017;
2018; Mulmuley 2017].

Remark 1.9. For analyzing the run time of our algorithms, we will use the unit cost arithmetic model.
This is also often referred to as algebraic complexity.

1A. Matrix invariants. Let Matp,q be the set of p× q matrices. The group GLn acts by simultaneous
conjugation on the space V =Matmn,n of m-tuples of n× n matrices. This action is given by

g · (X1, X2, . . . , Xm)= (gX1g−1, gX2g−1, . . . , gXm g−1).

We set S(n,m)= K [V ]G. The ring S(n,m) is often referred to as the ring of matrix invariants. We will
write ∼C for the orbit closure equivalence relation ∼ with respect to this simultaneous conjugation action.

1A1. Representation theoretic view point. Orbit closure intersection for matrix invariants has an in-
terpretation in terms of finite-dimensional representations of the free algebra. Consider the free al-
gebra Fm = K 〈t1, . . . , tm〉 on m indeterminates. An m-tuple of matrices X = (X1, . . . , Xm) gives an
n-dimensional representation, i.e., an action of Fm on K n where ti acts via X i . We will denote this
representation by VX . Two m-tuples X and Y are in the same GLn orbit if and only if VX and VY
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are isomorphic representations of Fm . In other words, we have a correspondence between orbits and
isomorphism classes of n-dimensional representations of Fm .

Finite-dimensional representations of Fm form an abelian category. A representation is called semisim-
ple if it is a direct sum of simple representations. A composition series of a representation V is a
filtration 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vl = V whose successive quotients Vi/Vi−1 are simple. These simple
subquotients are called composition factors and are independent of the choice of composition series. For
the representation V, the direct sum

⊕l
i=1(Vi/Vi−1) is called the associated semisimple representation

of V. The following statements follow from [Artin 1969]:

Proposition 1.10 [Artin 1969]. Consider the simultaneous conjugation action of G = GLn on Matmn,n ,
and let X, Y ∈Matn,n .

(1) The orbit of X is closed if and only if the representation VX is semisimple. In other words, we have a
correspondence between closed orbits and semisimple representations of dimension n.

(2) There is a unique closed orbit in the orbit closure of X, and the representation corresponding to this
unique closed orbit is the associated semisimple representation of VX .

(3) The orbit closures of X and Y intersect if and only if the associated semisimple representations of
VX and VY are isomorphic.

For the representation VX , let a composition series be 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vl = VX . Suppose that
dim Vi/Vi−1 = ni for all i . Then for an appropriate choice of basis of K n, all the X i ’s are in a block upper
triangular form, with the sizes of the diagonal blocks being n1, . . . , nl . Call (n1, . . . , nl) the type of the
block upper triangularization. The diagonal blocks correspond to the composition factors Vi/Vi−1 and the
upper triangular blocks capture the information of the nontrivial extensions between these composition
factors that make up the module VX . In particular, the associated semisimple representation is then
obtained by setting the strictly upper triangular blocks to 0. Hence, we may also rephrase the orbit closure
problem for matrix invariants as follows:

Problem 1.11 (orbit closure for matrix invariants rephrased). Given X, Y ∈Matmn,n , decide if there exist
g, h ∈ GLn such that the m-tuples g · X and h · Y are in block upper triangular form of the same type,
such that for all 1≤ i ≤m, the diagonal blocks of (g · X)i = gX i g−1 and (h ·Y )i = hYi h−1 are the same?

Remark 1.12. The more general question of when two representations V and W of a finitely generated
algebra F have isomorphic associated semisimple representations can be reduced to the above problem.
Indeed, we have a surjection Fm � F for some m, and hence V and W can be viewed as representations
of Fm . V and W have isomorphic associated semisimple representations as Fm representations if and
only if they have isomorphic associated semisimple representations as F representations.

1A2. Forbes–Shpilka algorithm. Given any separating set S, an obvious algorithm for the orbit closure
problem would be to evaluate the two given points at every invariant function in the set S. In characteristic 0,
Forbes and Shpilka [2013] constructed a quasipolynomial sized set of explicit separating invariants in this
case, but this is not sufficient to get a polynomial time algorithm.
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Nevertheless, Forbes and Shpilka gave a deterministic parallel polynomial time algorithm for the orbit
closure problem in characteristic 0. Given an input X ∈Matmn,n , one can construct in polynomial time a
noncommutative polynomial PX with the feature that the coefficients of the monomials in PX are the
evaluations of a generating set of invariants on X. Hence, to check if the orbit closures of two points
X, Y ∈Matmn,n intersect, one needs to determine whether the noncommutative polynomial PX − PY is the
zero polynomial. There is an efficient algorithm to test whether PX − PY is the zero polynomial; see [Raz
and Shpilka 2005].

1A3. Our results. Forbes and Shpilka’s algorithm does not work in positive characteristic. In this paper,
we provide an algorithm that works in all characteristics.

Theorem 1.13. The orbit closure problem for the simultaneous conjugation action of GLn on Matmn,n
can be decided in polynomial time. Further, if A, B ∈Matmn,n and A 6∼C B, then an explicit invariant
f ∈ S(n,m) that separates A and B can be found in polynomial time.

Our algorithm has a remarkable and exciting feature — analyzing it allows us to prove a bound
on the degree of separating invariants! The bounds we obtain beat the existing ones in literature;
see [Mulmuley 2017].

Theorem 1.14. We have βsep(S(n,m)) ≤ 4n2 log2(n)+ 12n2
− 4n. If we assume char(K )= 0, then we

have βsep(S(n,m))≤ 4n log2(n)+ 12n− 4.

The bound in characteristic 0 is especially interesting because there are quadratic lower bounds for the
degree of generating invariants in this case; see [Domokos 2018; Kuzmin 1975; Formanek 1986]. This
also improves the bound in [Derksen and Makam 2017a] for the degree of invariants defining the null cone.

1B. Matrix semi-invariants. We consider the left-right action of G=SLn ×SLn on the space V =Matmn,n
of m-tuples of n× n matrices. This action is given by

(P, Q) · (X1, X2, . . . , Xm)= (P X1 Q−1, P X2 Q−1, . . . , P Xm Q−1).

We set R(n,m)= K [V ]G. The ring R(n,m) is often referred to as the ring of matrix semi-invariants.
We will write ∼L R for the equivalence relation ∼ with respect to this left-right action.

Remark 1.15. Two m-tuples of n× n matrices A = (Id, A2, . . . , Am) and B = (Id, B2, . . . , Bm) are in
the same SLn ×SLn orbit for the left-right action if and only if Ã= (A2, . . . , Am) and B̃ = (B2, . . . , Bm)

are in the same GLn orbit for the simultaneous conjugation action. This is compatible with orbit closure
in the sense that the orbit closures of A and B intersect for the left-right action if and only if the orbit
closures for Ã and B̃ intersect for the simultaneous conjugation action; see Corollary 3.3 for the precise
statement.

For A, B ∈ Matmn,n with A1 = Id it is easy to detect if A ∼L R B. If det(B1) 6= 1, then A 6∼L R B.
Otherwise, we have det(B1) = 1, i.e., B1 ∈ SLn and hence B̃ = (B−1

1 , Id) · B is in the same orbit as B.
Thus, it suffices to detect whether the orbit closures of A and B̃ intersect. By design, we have B̃1 = Id.
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By the above remark, it suffices to detect whether the orbit closures for (A2, . . . , Am) and (B̃2, . . . , B̃m)

intersect for the conjugation action.
In fact, if we can find a nonsingular matrix in the span of (A1, . . . , Am), then a similar strategy can be

used to detect orbit closure intersection; see Proposition 3.5. We can now highlight two important issues
that need to be addressed.

(1) It is not known how to decide if the span of A1, . . . , Am contains a nonsingular matrix in polynomial
time. In [Valiant 1979], it was shown that this problem captures the problem of polynomial identity
testing (PIT) (see also [Garg et al. 2016]). A polynomial time algorithm for PIT is a major open
problem in computational complexity.

(2) There may not be a nonsingular matrix in the span of the matrices A1, . . . , Am . One might be
tempted to hope that this condition would be equivalent to membership in the null cone, but this
turns out to be erroneous. The simplest example is the 3-tuple of 3× 3 matrices

S =

 0 1 0
−1 0 0
0 0 0

,
 0 0 1

0 0 0
−1 0 0

,
0 0 0

0 0 1
0 −1 0

 ∈Mat33,3 .

It is well known that S is not in the null cone (see [Domokos 2000]), but every matrix in the span of
S1, S2, S3 is singular. Similar examples can be found in [Derksen and Makam 2017b; 2018; Draisma
2006; Eisenbud and Harris 1988]. There are several equivalent characterizations of the null cone,
and we refer to [Garg et al. 2016; Ivanyos et al. 2017] for details.

1B1. Null cone membership problem. The null cone membership problem for matrix semi-invariants
has attracted a lot of attention due to its connections to noncommutative circuits and identity testing; see
[Derksen and Makam 2017b; Garg et al. 2016; Hrubeš and Wigderson 2014; Ivanyos et al. 2017; 2018].
In characteristic 0, Gurvits’ algorithm gives a deterministic polynomial time algorithm; see [Derksen and
Makam 2017b; Garg et al. 2016]. There is a different algorithm which works for any sufficiently large
field in [Ivanyos et al. 2018].

Theorem 1.16 [Derksen and Makam 2017b; Garg et al. 2016; Ivanyos et al. 2018]. The null cone
membership problem for the left-right action of SLn ×SLn on Matmn,n can be decided in polynomial time.

1B2. Our results. The above theorem allows us to bypass the two issues mentioned above, and we are
able to show a polynomial time reduction from the orbit closure problem for matrix semi-invariants to the
orbit closure problem for matrix invariants. In fact, the converse also holds, i.e., there is a polynomial
time reduction from the orbit closure problem for matrix invariants to the orbit closure problem for matrix
semi-invariants. As a consequence, we have a polynomial time algorithm for the orbit closure problem
for matrix semi-invariants as well. Moreover, due to the nature of the reduction, we will be able to find a
separating invariant when the orbit closures of two points do not intersect.
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Theorem 1.17. The orbit closure problem for the left-right action of SLn ×SLn on Matmn,n can be decided
in polynomial time. Further for A, B ∈ Matmn,n , if A 6∼L R B, an explicit invariant f ∈ R(n,m) that
separates A and B can be found in polynomial time.

In characteristic 0, an analytic algorithm for the orbit closure problem for matrix semi-invariants
has also been obtained by Allen-Zhu, Garg, Li, Oliveira and Wigderson [Allen-Zhu et al. 2018]. Our
algorithm is algebraic, independent of characteristic, and provides a separating invariant when the orbit
closures do not intersect.

In [Derksen and Makam 2017a], bounds on βsep(R(n,m)) were given. In this paper, we give better
bounds using a reduction to matrix invariants.

Theorem 1.18. We have βsep(R(n,m))≤ n2βsep(S(n,mn2)).

Using the bounds on matrix invariants in Theorem 1.14, we get bounds for matrix semi-invariants.

Corollary 1.19. We have βsep(R(n,m))≤ 4n4 log2(n)+ 12n4
− 4n3. If we assume char(K )= 0, then we

have βsep(R(n,m))≤ 4n3 log2(n)+ 12n3
− 4n2.

Remark 1.20. There is a representation theoretic viewpoint for orbit closure intersection for matrix
semi-invariants in terms of semistable representations of the m-Kronecker quiver. We will not recall it as
it is not useful for our purposes and refer the interested reader to [King 1994].

Remark 1.21. We will say the null cone membership problem and orbit closure problem for matrix
invariants (resp. matrix semi-invariants) to refer to the corresponding problem for the simultaneous
conjugation action of GLn (resp. left-right action of SLn ×SLn) on Matmn,n .

Remark 1.22. Another interesting problem is to determine if two tuples (X1, . . . , Xm) and (Y1, . . . , Ym)

are in the same orbit for the simultaneous conjugation action of GLn (also for left-right action). An
obvious algorithm to do this would be to solve the equations X i Z = ZYi for all i . This is a linear system
of equations that can be solved efficiently. However, we need such a Z to be invertible, so we would need
to be able to verify whether the space of solutions to the equations X i Z = ZYi has an invertible matrix in
it. As pointed out in the discussion after Remark 1.15, it is not known how to do this in polynomial time.
Nevertheless, there is a polynomial time algorithm to test if the two tuples X and Y are in the same orbit!
We refer the interested reader to [Brooksbank and Luks 2008; Chistov et al. 1997].

1C. Organization. In Section 2, we collect a number of preliminary results on matrix invariants and
matrix semi-invariants. In Section 3, we show polynomial time reductions in both directions between
the orbit closure problems for matrix invariants and matrix semi-invariants. We give a polynomial time
algorithm for finding a basis of a subalgebra of matrices in Section 4. In Section 5, we give the algorithm
for the orbit closure problem for matrix invariants, and prove bounds on separating invariants. Finally in
Section 6, we prove Theorem 1.18.
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2. Preliminaries on matrix invariants and matrix semi-invariants

2A. Matrix invariants. Let us recall that the ring of matrix invariants S(n,m) is the invariant ring for
the simultaneous conjugation action of GLn on Matmn,n , the space of m-tuples of n× n matrices. Sibirskiı̆
[1968] showed that in characteristic 0, the ring S(n,m) is generated by traces of words in the matrices;
see also [Procesi 1976].

A word in an alphabet set 6 is an expression of the form i1i2 . . . ik with i j ∈ 6. We denote the
set of all words in an alphabet 6 by 6? (the Kleene closure of 6). The set 6? includes the empty
word ε. For a word w = i1i2 . . . ik , we define its length l(w) = k. For a positive integer m, we write
[m] := {1, 2, . . . ,m}, the set of all positive integers less equal m. For a word w = i1i2 . . . ik ∈ [m]?, and
for X = (X1, . . . , Xm) ∈Matmn,n , we define Xw = X i1 X i2 . . . X ik . The function Tw :Matmn,n→ K given
by Tw(X) := Tr(Xw) is an invariant polynomial.

Theorem 2.1 [Sibirskiı̆ 1968; Procesi 1976]. Assume char(K )= 0. The invariant functions of the form
Tw, w ∈ [m]? generate S(n,m).

Razmyslov studied trace identities, and as a consequence of his work, we have:

Theorem 2.2 [Razmyslov 1974]. Assume char(K )= 0. Then β(S(n,m))≤ n2.

In positive characteristic, generators of the invariant ring were given by Donkin [1992; 1993]. In simple
terms, we have to replace traces with coefficients of characteristic polynomial. For an n× n matrix X, let
c(X)= det(Id+ t X)=

∑n
i=0 σ j (X)t j denote its characteristic polynomial. The function X 7→ σ j (X) is

a polynomial in the entries of X, and is called the j-th characteristic coefficient of X. Note that σ0 = 1,
σ1(X)= Tr(X) and σn(X)= det(X). For any word w, we define the invariant polynomial σ j,w ∈ S(n,m)
by σ j,w(X) := σ j (Xw) for X = (X1, X2, . . . , Xm) ∈Matmn,n .

Theorem 2.3 [Donkin 1992; 1993]. The set of invariant functions {σ j,w | w ∈ [m]?, 1 ≤ j ≤ n} is a
generating set for the invariant ring S(n,m).

In a radically different approach from the case of characteristic 0, we recently proved a polynomial
bound on the degree of generators.

Theorem 2.4 [Derksen and Makam 2017a]. We have β(S(n,m))≤ (m+ 1)n4.

2B. Matrix semi-invariants. The ring of matrix semi-invariants R(n,m) is the ring of invariants for the
left-right action of SLn ×SLn on Matmn,n . There is a determinantal description for semi-invariants of
quivers; see [Derksen and Weyman 2000; Domokos and Zubkov 2001; Schofield and van den Bergh 2001].
Matrix semi-invariants is a special case — it is the ring of semi-invariants for the generalized Kronecker
quiver, for a particular choice of a dimension vector; see for example [Derksen and Makam 2017b].
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Given two matrices A = (ai j ) of size p× q, and B = (bi j ) of size r × s, we define their tensor (or
Kronecker) product to be

A⊗ B =


a11 B a12 B · · · a1n B

a21 B
. . .

...
...

. . .
...

am1 B · · · · · · amn B

 ∈Matpr,qs .

Associated to each T = (T1, T2, . . . , Tm) ∈Matmd,d , we define a homogeneous invariant fT ∈ R(n,m) of
degree dn by

fT (X1, X2, . . . , Xm)= det(T1⊗ X1+ T2⊗ X2+ · · ·+ Tm ⊗ Xm).

Theorem 2.5 [Derksen and Weyman 2000; Domokos and Zubkov 2001; Schofield and van den Bergh
2001]. The invariant ring R(n,m) is spanned by all fT with T ∈Matmd,d and d ≥ 1.

In particular, notice that if d is not a multiple of n, then there are no degree d invariants. In other words,
we have R(n,m)=

⊕
∞

d=0 R(n,m)dn . A polynomial bound on the degree of generators in characteristic 0
was shown in [Derksen and Makam 2017b], and the restriction on characteristic was removed in [Derksen
and Makam 2017a].

Theorem 2.6 [Derksen and Makam 2017a; 2017b]. We have β(R(n,m)) ≤ mn4. If char(K ) = 0, then
β(R(n,m))≤ n6.

Let N (n,m) denote the null cone for the left-right action of SLn ×SLn on Matmn,n . The following is
proved in [Derksen and Makam 2017b].

Theorem 2.7 [Derksen and Makam 2017b]. For X ∈Matmn,n , the following are equivalent:

(1) X /∈N (n,m).

(2) For some d ∈ N, there exists T ∈Matmd,d such that fT (X) 6= 0.

(3) For any d ≥ n− 1, there exists T ∈Matmd,d such that fT (X) 6= 0.

The above theorem relies crucially on the regularity lemma proved in [Ivanyos et al. 2017]. A more
conceptual proof of the regularity lemma is given in [Derksen and Makam 2018] using universal division
algebras, although it lacks the constructiveness of the original proof.

An algorithmic version of the above theorem appears in [Ivanyos et al. 2018].

Theorem 2.8 [Ivanyos et al. 2018]. For X ∈Matmn,n , there is a deterministic polynomial time (in n and m)
algorithm which determines if X /∈N (n,m). Further, for X /∈N (n,m) and any n−1≤ d ≤ poly(n), the
algorithm provides in polynomial time, an explicit T ∈Matmd,d such that fT (X) 6= 0.

Remark 2.9. We will henceforth refer to the algorithm in Theorem 2.8 above as the IQS algorithm.

For 1≤ j, k ≤ d, we define E j,k ∈Matd,d to be the d × d matrix which has a 1 in the ( j, k)-th entry,
and 0 everywhere else.
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Definition 2.10. If X = (X1, . . . , Xm) ∈Matmn,n , we define X [d] = (X i ⊗ E j,k)i, j,k ∈Matmd2

nd,nd , where the
tuples (i, j, k) ∈ [m]× [d]× [d] are ordered lexicographically.

Proposition 2.11. The following are equivalent:

(1) There exists f ∈ R(n,m) such that f (A) 6= f (B).

(2) There exists g ∈ R(nd,md2) such that g(A[d]) 6= g(B[d]) for either d = n− 1 or d = n.

Proof. We first show (1)=⇒ (2). We can assume f = fT for some T ∈Matme,e for some e ≥ 1. Without
loss of generality, assume f (A) 6= 0. Then we have µ = f (B)/ f (A) 6= 1. For any µ 6= 1, both µn−1

and µn cannot be 1. Hence for at least one of d ∈ {n−1, n}, we have µd
= f (B)d/ f (A)d 6= 1, and hence

f (A)d 6= f (B)d . Now, it suffices to show the existence of g ∈ R(nd,md2) such that g(A[d])= f (A)d

for all A ∈Matmn,n .
But now, consider

fT (A)d = det
(∑m

i=1 Ti ⊗ Ai
)d

= det
(∑m

i=1 T⊕d
i ⊗ Ai

)
= det

(∑m
i=1
(∑d

k=1 Ti ⊗ Ek,k ⊗ Ai
))

= det
(∑

i,k Ti ⊗ (Ai ⊗ Ek,k)
)
.

Let S ∈Matmd2

e,e given by Si, j,k = δ j,k Ti . We can take g = fS .
We now show (2)=⇒ (1). Indeed, we can choose g = fS for some S ∈Matmd2

e,e , e ≥ 1. We have

fS(A[d])= det
(∑

i, j,k Si, j,k ⊗ (A[d])i, j,k
)

= det
(∑

i, j,k Si, j,k ⊗ Ai ⊗ E j,k
)

= det
(∑

i

(∑
j,k Si, j,k ⊗ E j,k

)
⊗ Ai

)
= det

(∑
i S̃i ⊗ Ai

)
,

where S̃i =
∑

j,k Si, j,k ⊗ E j,k . Let S̃ = (S̃1, . . . , S̃m) ∈Matmde,de. Then the above calculation tells us that
f S̃(A)= fS(A[d])= g(A[d]). Hence we have

f S̃(A)= g(A[d]) 6= g(B[d])= f S̃(B).

We can take f = f S̃ . �

Corollary 2.12. The orbit closures of A and B do not intersect if and only if the orbit closures of A[d]

and B[d] do not intersect for at least one choice of d ∈ {n− 1, n}.

2C. Commuting action of another group. Let G be a group acting on V. Suppose we have another
group H acting on V, and the actions of G and H commute. To distinguish the actions, we will denote
the action of H by ?. The orbit closure problem for the action of G on V also commutes with the action
of H. More precisely, we have the following:
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Lemma 2.13. Let v,w ∈ V and h ∈ H. Then v ∼ w if and only if h ? v ∼ h ?w.

We have a natural identification of V =Matmn,n with Matn,n ⊗K m. The latter viewpoint illuminates an
action of GLm on V that commutes with the left-right action of SLn ×SLn , as well as the simultaneous con-
jugation action of GLn . In explicit terms, for P = (pi, j )∈GLm and X = (X1, . . . , Xm)∈Matmn,n , we have

P ? (X1, . . . , Xm)=
(∑

j p1, j X j ,
∑

j p2, j X j , . . . ,
∑

j pm, j X j
)
.

Corollary 2.14. The orbit closure problem for both the left-right action of SLn ×SLn and the simultane-
ous conjugation action of GLn on Matmn,n commutes with the action of GLm .

2D. A useful surjection. We consider the map

φ :Matmn,n→Matm+1
n,n , (X1, . . . , Xm) 7→ (Id, X1, . . . , Xm).

This gives a surjection on the coordinate rings φ∗ : K [Matm+1
n,n ] → K [Matmn,n], which descends to a

surjective map on invariant rings as below; see [Domokos 2000; Derksen and Makam 2017a].

Proposition 2.15 [Domokos 2000]. The map φ∗ : R(n,m+ 1)� S(n,m) is surjective.

We recall the proof of this proposition because the construction in the proof plays a significant role in
some of the algorithms below. Before proving the proposition, let us recall some basic linear algebra. For
a matrix X ∈Matn,n , let us denote the adjoint (or adjugate) matrix by Adj(X).

Lemma 2.16. Let X, Y ∈Matn,n . Then we have:

(1) Adj(XY )= Adj(Y )Adj(X).

(2) X Adj(X)= det(X) Id. In particular, if det(X)= 1, then Adj(X)= X−1.

(3) For (P, Q) ∈ SLn ×SLn , we have Adj(P X Q−1)(PY Q−1)= Q(Adj(X)Y )Q−1.

Proof. The first two are well known. The last one follows from the first two. �

Proof of Proposition 2.15. We want to first show that we have an inclusion φ∗(R(n,m+ 1))⊆ S(n,m).
Indeed for f ∈ R(n,m+ 1) and g ∈ GLn , we have

φ∗( f )(gX1g−1, . . . , gXm g−1)= f (Id, gX1g−1, . . . , gXm g−1)

= f (gIdg−1, gX1g−1, . . . , gXm g−1)

= f (Id, X1, . . . , Xm)

= φ∗( f )(X1, . . . , Xm).

The third equality is the only nontrivial one. Even though g may not be in SLn , we can replace g by
g′ = λg ∈ SLn for a suitable λ ∈ K ∗. Then, one has to observe that conjugation by g and conjugation
by g′ are the same.

Now, we show that the image of φ∗ surjects onto S(n,m). For f ∈ S(n,m), define f̃ by

f̃ (X1, . . . , Xm+1)= f (Adj(X1)X2,Adj(X1)X3, . . . ,Adj(X1)Xm+1).
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We claim that f̃ is invariant with respect to the left-right action of SLn ×SLn . Indeed for (P, Q) ∈
SLn ×SLn , we have

f̃ (P X1 Q−1, . . . , P Xm+1 Q−1)= f (Adj(P X1 Q−1)P X2 Q−1, . . . ,Adj(P X1 Q−1)P Xm+1 Q−1)

= f (Q(Adj(X1)X2)Q−1, . . . , Q(Adj(X1)Xm+1)Q−1)

= f (Adj(X1)X2, . . . ,Adj(X1)Xm+1)

= f̃ (X1, . . . , Xm+1).

The second equality follows from the above lemma, and the third follows because f is invariant under
simultaneous conjugation.

Further, we have

(φ∗( f̃ ))(X1, . . . , Xm)= f̃ (Id, X1, . . . , Xm)

= f (Adj(Id)X1, . . . ,Adj(Id)Xm)

= f (X1, . . . , Xm)

Hence for each f ∈ S(n,m), we have constructed a preimage f̃ ∈ R(n,m+1). Thus φ∗ is a surjection
from R(n,m+ 1) onto S(n,m). �

In fact, from the above proof, we can see that for f ∈ S(n,m), we can construct a preimage easily. We
record this as a corollary.

Corollary 2.17 [Domokos 2000]. For f ∈ S(n,m), the invariant polynomial f̃ ∈ R(n,m+ 1) defined by

f̃ (X1, . . . , Xm+1)= f (Adj(X1)X2,Adj(X1)X3, . . . ,Adj(X1)Xm+1)

is a preimage of f under φ∗, i.e., φ∗( f̃ )= f .

3. Time complexity equivalence of orbit closure problems

In this section, we will show polynomial reductions between the orbit closure problem for matrix invariants
and the orbit closure problem for matrix semi-invariants. We will in fact show a more robust reduction.

Let G be a group acting on V.

Definition 3.1. An algorithm for the orbit closure problem with witness is an algorithm that decides if
v ∼w for any two points v,w ∈ V, and if v 6∼w, provides a witness f ∈ K [V ]G such that f (v) 6= f (w).

3A. Reduction from matrix invariants to matrix semi-invariants. Let A, B ∈Matmn,n . We can consider
φ(A), φ(B) ∈Matm+1

n,n , where φ :Matmn,n→Matm+1
n,n is the map described in Section 2D.

Proposition 3.2. The following are equivalent:

(1) There exists f ∈ S(n,m) such that f (A) 6= f (B).

(2) There exists g ∈ R(n,m+ 1) such that g(φ(A)) 6= g(φ(B)).
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Proof. Recall the surjection φ∗ : R(n,m+1)� S(n,m) from Proposition 2.15. Let’s first prove (1)=⇒ (2).
Given f ∈ S(n,m) such that f (A) 6= f (B), take g to be a preimage of f , i.e., φ∗(g)= f . Now,

g(φ(A))= φ∗(g)(A)= f (A) 6= f (B)= φ∗(g)(B)= g(φ(B)).

To prove (2)=⇒ (1), simply take f = φ∗(g). �

Corollary 3.3. Let A, B ∈Matmn,n . Then we have

A ∼C B if and only if φ(A)∼L R φ(B).

Corollary 3.4. There is a polynomial reduction that reduces the orbit closure problem with witness for
matrix invariants to the orbit closure problem with witness for matrix semi-invariants.

Proof. Given A, B ∈Matmn,n , we construct φ(A) and φ(B). Appeal to the orbit closure problem with
witness for matrix semi-invariants with input φ(A) and φ(B). There are two possible outcomes. If
φ(A)∼L R φ(B), then we conclude that A∼C B. If φ(A) 6∼L R φ(B) and f ∈ R(n,m+1) separates φ(A)
and φ(B), then φ∗( f ) is an invariant that separates A and B. The reduction is clearly polynomial time. �

3B. Reduction from matrix semi-invariants to matrix invariants. We will show that the orbit closure
problem for matrix semi-invariants can be reduced to the orbit closure problem for matrix invariants.
Let A, B ∈ Matmn,n . Recall the discussion in Section 1B, in particular, that if we can find efficiently
a nonsingular matrix in the span of A1, . . . , Am , we would be done. We must address the two issues
indicated in Section 1B. The IQS algorithm (Theorem 2.8) can determine whether A is in the null cone
for the left-right action. Further, when A is not in the null cone, it constructs efficiently a nonsingular
matrix of the form

∑m
i=1 Ti ⊗ Ai , with Ti ∈Matd,d for any n−1≤ d < poly(n). Roughly speaking, these

nonsingular matrices will address both issues. We will now make precise statements.

Proposition 3.5. Assume A, B ∈Matmn,n such that det(A1)= det(B1) 6= 0. If we denote

Ã = (A−1
1 A2, . . . , A−1

1 Am) and B̃ = (B−1
1 B2, . . . , B−1

1 Bm),

then we have

A ∼L R B⇐⇒ Ã ∼C B̃.

Proof. Let us first suppose that det(A1) = det(B1) = 1. Then for g = (A−1
1 , Id) ∈ SLn ×SLn , we have

g ·A= (Id, A−1
1 A2, . . . , A−1

1 Am)=φ( Ã). Similarly for h= (B−1
1 , Id)∈SLn ×SLn , we have h ·B=φ(B̃).

Now, we have

A ∼L R B⇐⇒ g · A ∼L R h · B⇐⇒ φ( Ã)∼L R φ(B̃)⇐⇒ Ã ∼C B̃.

The last statement follows from Corollary 3.3. The general case for det(A1) 6= 0 follows because
the orbit closures of A and B intersect if and only if the orbit closures of λ · A = (λA1, . . . , λAm) and
λ · B = (λB1, . . . , λBm) intersect for any λ ∈ K ∗; see Lemma 2.13. �
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Lemma 3.6. For any nonzero row vector v= (v1, . . . , vm), we can construct efficiently a matrix P ∈GLm

such that the top row of the matrix P is v.

Proof. This is straightforward and left to the reader. �

Algorithm 3.7. Now we give an algorithm to reduce the orbit closure problem with witness for matrix
semi-invariants to the orbit closure problem with witness for matrix invariants.

Input: A, B ∈Matmn,n .

Step 1: Check if A or B are in the null cone by the IQS algorithm. If both of them are in the null cone,
then A ∼L R B. If precisely one of them is in the null cone, then A 6∼L R B and the IQS algorithm gives
an invariant that separates A and B. If neither are in the null cone, then we proceed to Step 2.

Step 2: Neither A nor B in the null cone. Now, for d ∈ {n − 1, n}, the IQS algorithm constructs
T (d) ∈Matmd,d such that fT (d)(A) 6= 0 in polynomial time. We denote fd := fT (d). If fd(A) 6= fd(B),
then A 6∼L R B and fd is the separating invariant. Else fd(A)= fd(B) for both choices of d ∈ {n− 1, n},
and we proceed to Step 3.

Step 3: For d ∈ {n− 1, n}, we have

fd(A)= det
(∑

i T (d)i ⊗ Ai
)

= det
(∑

i

(∑
j,k(T (d)i ) j,k E j,k

)
⊗ Ai

)
= det

(∑
i, j,k(T (d)i ) j,k(E j,k ⊗ Ai )

)
= det

(∑
i, j,k(T (d)i ) j,k(Ai ⊗ E j,k)

)
.

We can construct efficiently a matrix P ∈ Matmd2,md2 such that the first row is (T (d)i ) j,k)i, j,k by
Lemma 3.6. Consider U = P ? A[d], V = P ? B[d] ∈Matmd2

nd,nd . By construction, this has the property
that det(U1) = fd(A) 6= 0, and det(V1) = fd(B). Since we did not terminate in Step 2, we know that
det(U1) = det(V1). Let us recall that by Corollary 2.12, A ∼L R B if and only A[d] ∼L R B[d] for both
d = n− 1 and d = n. By Lemma 2.13, A[d] ∼L R B[d] if and only if U ∼L R V.

To decide whether U ∼L R V, we do the following. Let Ũ = (U−1
1 U2, . . . ,U−1

1 Umd2) and Ṽ =
(V−1

1 V2, . . . , V−1
1 Vmd2). By Proposition 3.5, we have U ∼L R V if and only if Ũ ∼C Ṽ . But this can be

seen as an instance of an orbit closure problem with witness for matrix invariants. Also note the fact if we
get an invariant separating Ũ and Ṽ , the steps can be traced back to get an invariant separating A and B.

Corollary 3.8. There is a polynomial time reduction from the orbit closure problem with witness for
matrix semi-invariants to the orbit closure problem with witness for matrix invariants.

4. A polynomial time algorithm for finding a subalgebra basis

Let {C1, . . . ,Cm} ⊆ Matn,n be a finite subset of Matn,n . Consider the (unital) subalgebra C ⊆ Matn,n
generated by C1, . . . ,Cm . In other words, C is the smallest subspace of Matn,n containing the identity
matrix Id and the matrices C1, . . . ,Cm that is closed under multiplication. For a word i1i2 . . . ib we define
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Cw = Ci1Ci2 ·Cib . We also define Cε = Id for the empty word ε. We will describe a polynomial time
algorithm for finding a basis for C. First observe that C is spanned by {Cw | w ∈ [m]?}. While this is an
infinite spanning set, we will extract a basis from this, in polynomial time. We define a total order on [m]?.

Definition 4.1. For words w1 = i1i2 . . . ib and w2 = j1 j2 . . . jc, we write w1 ≺ w2 if either

(1) l(w1) < l(w2) or

(2) l(w1)= l(w2) and for the smallest integer m for which im 6= jm , we have im < jm .

Remark 4.2. If w ≺ w′, we will say w is smaller than w′.

We call a wordw a pivot if Cw does not lie in the span of all Cu , u≺w. Otherwise, we callw a nonpivot.

Lemma 4.3. Let P = {w | w is pivot}. Then {Cw | w ∈ P} is a basis for C. We call this the pivot basis.

Definition 4.4. For words w = i1i2 . . . ib and w′ = j1 j2 . . . jc, we define the concatenation

ww′ = i1i2 . . . ib j1 j2 . . . jc.

Lemma 4.5. If w is a nonpivot, then xwy is a nonpivot for all words x, y ∈ [m]?.

Proof. If w is nonpivot, then Cw =
∑

k akCwk for wk ≺w and ak ∈ K. Then we have Cxwy =
∑

k akCxwk y .
Hence, xwy is nonpivot as well. �

Corollary 4.6. Every subword of a pivot word is a pivot.

Lemma 4.7. The length of the longest pivot is at most 2n log2(n)+ 4n− 4.

Proof. This follows from the main result of [Shitov 2019]. For a collection S ⊆Matn,n , we define l(S) as
the smallest integer k such that all the words of length ≤ k in S span the subalgebra of Matn,n generated
by S. In particular, if we take S = {C1, . . . ,Cm}, this means that any pivot word has length at most l(S).
Moreover, l(S)≤ 2n log2(n)+4n−4 is the statement of [Shitov 2019, Theorem 3] (a strong improvement
over the previous known bound from [Pappacena 1997]). Thus every pivot word has length at most
2n log2(n)+ 4n− 4 as required. �

Now, we describe an efficient algorithm to construct the set of pivots.

Algorithm 4.8 (finding a basis for a subalgebra of Matn,n).

Input: n× n matrices C1,C2, . . . ,Cm .

Step 1: Set t = 1 and P = P0 = [(ε, Id)].

Step 2: If Pt−1 = [w1, w2, . . . , ws], define

Pt = [w11, . . . , w1m, w21, . . . , w2m, . . . , ws1, . . . , wsm].

Step 3: Proceeding through the list Pt , check if an entry (w,Cw) is a pivot. This can be done in
polynomial time, as we have to simply check if Cw is a linear combination of smaller pivots. If it is
a pivot, add it to P. If it is not a pivot, then remove it from Pt . Upon completing this step, the list Pt

contains all the pivots of length t , and the list P contains all pivots of length ≤ t .

Step 4: If Pt 6= [], set t = t + 1 and go back to Step 2. Else, return P and terminate.
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Corollary 4.9. There is a polynomial time algorithm to construct the set of pivots. Further, this algorithm
also records the word associated to each pivot.

Proof. To show that the above algorithm runs in polynomial time, it suffices to show that the number of
words we consider is at most polynomial. Indeed, if there are k pivots of length d , then we only consider
km words of length d + 1. Since k ≤ n2, the number of words we consider in each degree is at most n2m.
We only consider words of length up to 2n log2(n)+ 4n− 4. Hence, the number of words considered is
polynomial (in n and m). �

5. Orbit closure problem for matrix invariants

Let A, B ∈Matmn,n with A = (A1, . . . , Am) and B = (B1, . . . , Bm). Define

Ci =

(
Ai 0
0 Bi

)
for all i . Let C be the algebra generated by C1,C2, . . . ,Cm . Let Z1, Z2, . . . , Zs be the pivot basis of C
and write

Z j =

(
X j 0
0 Y j

)
for all j.

Proposition 5.1. Suppose char(K )= 0. Then we have A ∼C B if and only if Tr(X j )= Tr(Y j ) for all j.

Proof. Two orbit closures do not intersect if and only if there is an invariant that separates them. By
Theorem 2.1, the invariant ring is generated by invariants of the form X 7→ Tr Xw for some word w in
the alphabet {1, 2, . . . ,m}. Note that C is the span of all

Cw =
(

Aw 0
0 Bw

)
,

where w is a word. Now the proposition follows by linearity of trace. �

We will appeal to a result from [Cohen et al. 1997] in order to get a version of the above proposition in
arbitrary characteristic; see also [Procesi 1974].

Theorem 5.2. We have A∼C B if and only if det(Id+ t X j )= det(Id+ tY j ) as a polynomial in t for all j.

Proof. Let Fm denote free algebra generated by m elements f1, . . . , fm . From Section 1A1, recall that
A (resp. B) gives rise to a representation VA (resp. VB) of Fm . Recall from Proposition 1.10 that the orbit
closures of A and B intersect if and only if VA and VB have the same associated semisimple representation.
It is clear that for both VA and VB , the action of Fm factors through the surjection Fm→C given by fi 7→Ci .

Thus it suffices to check whether VA and VB have the same associated semisimple representation as
C-modules; see Remark 1.12. The theorem now is just the statement of [Cohen et al. 1997, Corollary 12]
for the finite-dimensional algebra C. �
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Proof of Theorem 1.13. Given A, B ∈ Matmn,n , let Ci =
( Ai

0
0
Bi

)
. Let C be the subalgebra generated by

C1, . . . ,Cm . Construct the pivot basis Z1, . . . , Zs of C. For all j, let Z j =
( X j

0
0

Y j

)
. Further for each j,

we have Z j = Cw j for some word w j ∈ [m]?, and consequently X j = Aw j and Y j = Bw j .
If char(K )= 0, we only need to check if Tr(X j )= Tr(Y j ). If they are equal for all j, then we have

A ∼C B. Else, we have Tr(X j ) 6= Tr(Y j ) for some j, i.e., Tw j (A) 6= Tw j (B) and A 6∼C B.
For arbitrary characteristic, we need to check instead if det(Id+t X j )=det(Id+tY j ) as a polynomial in t

for each j. But this can be done efficiently. When A 6∼C B, the algorithm finds j with 1≤ j≤n andw∈[m]?

such that σ j,w(A) 6= σ j,w(B). This means that σ j,w ∈ S(n,m) is an invariant that separates A and B. �

We will now prove the bounds for separating invariants. For A, B ∈Matmn,n with A 6∼C B, we will
write Ci =

( Ai
0

0
Bi

)
and define C ⊆Mat2n,2n to be the subalgebra generated by C1, . . . ,Cm .

Proof of Theorem 1.14. Given A, B ∈Matn,n with A 6∼C B, let {C1, . . . ,Cm} ⊆Mat2n,2n be as above,
and construct the pivot basis for C. We know, by Lemma 4.7, that the length of every pivot is at most
2(2n) log2(2n)+ 4(2n)− 4= 4n log2(n)+ 12n− 4.

If char(K ) = 0, then an invariant Tw separates A and B for some pivot w. This means there is an
invariant of degree deg(Tw)= l(w)≤ 4n log2(n)+ 12n− 4 that separates them.

If char(K )>0, we must have det(Id+t Aw) 6=det(Id+t Bw) for some pivotw. Hence for some 1≤ j≤n,
σ j,w(A) 6= σ j,w(B). This gives an invariant of degree ≤ 4n2 log2(n)+ 12n2

− 4n that separates them. �

Remark 5.3. The null cone for the simultaneous conjugation action of GLn on Matmn,n is in fact defined
by invariants of degree ≤ 2n log2(n)+ 4n − 4 in characteristic 0. To see this, we will use a similar
argument as in the proof of Theorem 1.14 above. For A that is not in the null cone, simply consider the
subalgebra A ⊆Matn,n generated by A1, . . . , Am . For some pivot w, the invariant Tw does not vanish
on A. Every pivot has length at most 2n log2(n)+ 4n − 4, so this gives the bound on the null cone.
Similarly, in positive characteristic, we can get a bound of 2n2 log2(n)+ 4n2

− 4n, but better bounds are
already known; see [Derksen and Makam 2017a].

5A. Nonalgebraically closed fields. Suppose L is a subfield of (an algebraically closed field) K, and
suppose A, B ∈Matmn,n(L). Let us assume L is infinite and that we use the unit cost arithmetic model
for operations in L .

First, we observe that the entire algorithm for both matrix invariants and matrix semi-invariants
can be run using only operations in L , and is polynomial time in this unit cost arithmetic model.
However, we should point out that the algorithm does not check whether the orbit closures of A and B
for the action of GLn(L) intersect. Instead, it checks whether the orbit closures of A and B for the
action of GLn(K ) intersect.

Finally, if we take L = Q, the run times of our algorithms for matrix invariants as well as matrix
semi-invariants will be polynomial in the bit length of the inputs.

Remark 5.4. We can relax the hypothesis on L by asking for L to be sufficiently large. For fields that are
too small, the algorithms will run into issues — for example, the IQS algorithm (Theorem 2.8) requires a
sufficiently large field.
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6. Bounds for separating matrix semi-invariants

The reduction given in Section 3B is good enough for showing that the orbit closure problems for
matrix invariants and matrix semi-invariants are in the same complexity class. In this section we give a
stronger reduction with the aim of finding better bounds for the degree of separating invariants for matrix
semi-invariants. This reduction can also be made algorithmic, and can replace the reduction in Section 3B.
However, we will only focus on obtaining bounds for separating invariants.

Let T ∈Matmd,d . For X ∈Matmn,n , consider

LT (X)=
m∑

k=1

Tk ⊗ Xk =

L1,1(X) . . . L1,d(X)
...

. . .
...

Ld,1(X) . . . Ld,d(X)

,
where L i, j (X) represents an n × n block. From the definition of Kronecker product of matrices, one
can check that L i, j (X) =

∑m
k=1(Tk)i, j Xk , i.e., a linear combination of the X i . By definition fT (X) =

det
(∑m

k=1 Tk ⊗ Xk
)
= det(LT (X)). Let

MT (X)= Adj(LT (X))=

M1,1(X) . . . M1,d(X)
...

. . .
...

Md,1(X) . . . Md,d(X)

,
where Mi, j (X) represents an n × n block. The entries of MT (X) are not linear in the entries of the
matrices Xk . Instead the entries are polynomials of degree dn− 1 in the (Xk)i, j ’s. We first compute how
Mi, j change under the action of SLn ×SLn .

Lemma 6.1. Let σ = (P, Q−1) ∈ SLn ×SLn . Then we have Mi. j (σ · X)= Q−1 Mi, j (X)P−1.

Proof. First, observe that LT (σ · X)= (P⊗ Id)LT (X)(Q⊗ Id) follows because LT (X) is a block matrix
where each block is a linear combination of the X i ’s. Thus we have

MT (σ · X)= Adj(LT (σ · X))

= Adj((P ⊗ Id)LT (X)(Q⊗ Id))

= Adj(Q⊗ Id)MT (X)Adj(P ⊗ Id)

= (Q−1
⊗ Id)MT (X)(P−1

⊗ Id)

The last equality follows from Lemma 2.16 because det(P ⊗ Id) = det(Q ⊗ Id) = 1. We deduce that
Mi. j (σ · X)= Q−1 Mi, j (X)P−1. �

For X ∈Matmn,n , let us define
X i, j,k = Xk Mi, j (X),

for 1≤ k ≤ m and 1≤ i, j ≤ d.
The X i, j,k’s have been designed in such a way that the left-right action on X i ’s turns into a conjugation

action on the X i, j,k’s. Further, the entries of X i, j,k are degree dn polynomials in the entries of the Xl’s.
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Corollary 6.2. (σ · X)i, j,k = P X i, j,k P−1.

Proof. It follows from the above lemma that

(σ · X)i, j,k = (σ · X)k Mi, j (σ · X)= (P Xk Q)(Q−1 Mi, j (X)P−1)= P X i, j,k P−1. �

Consider the map ζ :Matmn,n→Matmd2

n,n given by X 7→ (X i, j,k)i, j,k . This gives a map on the coordinate
rings ζ ∗ : K [Matmd2

n,n ] → K [Matmn,n]. We note that ζ is a map of degree dn because the entries of X i, j,k

are degree dn polynomials in the entries of the Xl’s.
The above corollary can be now reformulated as:

Corollary 6.3. Let σ = (P, Q−1) ∈ SLn ×SLn . Then we have ζ(σ · X)= Pζ(X)P−1.

Proposition 6.4. The map ζ ∗ descends to a map on invariant rings ζ ∗ : S(n,md2)→ R(n,m).

Proof. Let σ = (P, Q−1)∈ SLn ×SLn . For g ∈ S(n,md2), by the above corollary, we have g(ζ(σ ·X))=
g(Pζ(X)P−1) = g(ζ(X)). Now observe that ζ ∗(g) ∈ R(n,m) since ζ ∗(g)(σ · X) = g(ζ(σ · X)) =
g(ζ(X))= ζ ∗(g)(X). �

Observe that this is a very different map from the one in Proposition 2.15. We will still be able to use
it to get separating invariants for left-right action from separating invariants for the conjugation action.
We make an obvious observation.

Corollary 6.5. Suppose we have g ∈ S(n,md2) such that ζ ∗(g)(A) 6= ζ ∗(g)(B), then A 6∼L R B.

Remark 6.6. In order for the above corollary to be useful to get separating invariants, we need to be
able to guarantee that separating invariants will arise this way. In other words, for A 6∼L R B, we want
g ∈ S(n,md2) such that ζ ∗(g) separates A and B. We will only be able to do it under certain conditions,
but that will be sufficient.

The first issue to notice is that since ζ ∗ is a map of degree dn, any homogeneous invariant of the form
ζ ∗(g) must have degree dkn for some k ∈ Z≥0. For a graded ring R = ⊕t∈Z Rt , let us define its k-th
Veronese subring νk(R) :=

⊕
t∈Z Rtk .

Lemma 6.7. We have ζ ∗ : S(n,md2)→ νdn(R(n,m)) ↪→ R(n,m).

It is certainly possible that for some d , no invariant of degree dkn separates A and B. A simple example
is given by taking any A not in the null cone, and taking B such that Bi = µd Ai , where µd is a d-th root
of unity for some d coprime to n. Hence, we may have to consider more than one choice of d .

For the following lemma, any two coprime numbers can be used in place of n− 1 and n, but this is the
smallest pair of coprime numbers larger than n− 1. The significance of n− 1 is that as long as d ≥ n− 1,
for any A not in the null cone, we can guarantee the existence of an invariant fT , with T ∈Matmd,d such
that fT (A) 6= 0; see Theorem 2.7.

Lemma 6.8. Assume A, B ∈ Matmn,n and assume A 6∼L R B. Then
⋃

d∈{n−1,n}
νdn(R(n,m)) form a set of

separating invariants.
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Proof. Since A 6∼L R B, there is a choice of S ∈ Matmk,k , for some k ≥ 1, such that fS(A) 6= fS(B).
Without loss of generality, assume fS(B) 6= 0. Hence fS(A)/ fS(B) 6= 1. Once again we must have
fS(A)d/ fS(B)d 6=1 for at least one choice of d∈{n−1, n}. In particular, for such a d , ( fS)

d
∈νdn(R(n,m))

separates A and B. �

Once we have d such νdn(R(n,m)) separates A and B, we still need to produce such an invariant that
separates A and B. Once, we restrict our attention to invariants whose degree is a multiple of dn, the
best case scenario is that there is a degree dn invariant that separates A and B. We will construct an
invariant of the form ζ ∗(g) that separates A and B when degree dn invariants fail to separate A and B.
The following lemma completes the strategy outlined in Remark 6.6.

Lemma 6.9. Let A, B ∈Matmn,n such that A 6∼L R B. Suppose we have d ≥ n− 1 such that νdn(R(n,m))
separates A and B. Then R(n,m)dn ∪ ζ

∗(S(n,md2)) will separate A and B.

Proof. Assume that R(n,m)dn fails to separate A and B. We will find g ∈ S(n,md2) such that ζ ∗(g)
separates A and B.

Since both A and B cannot be in the null cone, we can assume without loss of generality that A is
not in the null cone. By Theorem 2.7, we have T ∈Matmd,d , such that fT (A) 6= 0. Now, since degree dn
invariants fail to separate A and B, we must have fT (A)= fT (B) 6= 0.

There exists U ∈Matmdk,dk such that fU (A) 6= fU (B) since such invariants span νdn(R(n,m)), which
by assumption separates A and B. Now for X ∈Matmn,n , define L(X) :=

∑m
k=1 Uk ⊗ Xk and R(X) :=

Idk⊗MT (X). Let
N (X) := L(X)R(X)=

(∑m
k=1 Uk ⊗ Xk

)
(Idk⊗MT (X))

Let us make some observations to help understand N (X).

• The matrix L(X) =
∑m

k=1 Uk ⊗ Xk can be seen as a dk × dk block matrix, where each block has
size n× n. Further, each block is a linear combination of the Xk’s.

• The matrix R(X)= Idk⊗MT (X) can be seen as a k×k block matrix, where the off diagonal blocks
are 0, and the diagonal blocks are a copy of MT (X). Observe further that MT (X) is a d × d block
matrix, where each block Mi, j is of size n×n as shown above. Hence, we can see R(X) as a dk×dk
block matrix, where each block is of size n× n and is either Mi, j or 0.

• A product of a block from L(X) and a block from R(X) yields a linear combination of terms of the
form Xk Mi, j ’s, i.e., a linear combination of the X i, j,k’s.

• We can obtain N (X) as a dk× dk block matrix by block multiplying L(X) and R(X). Hence, we
see that each block of N (X) is a linear combination of the X i, j,k’s.

To summarize, N (X) is a dk × dk block matrix and the size of each block is n × n. Further, the
(p, q)-th block N (X)p,q is a linear combination

∑
i, j,k λ

i, j,k
p,q X i, j,k for some λi, j,k

p,q ∈ K. Now we can define
an invariant g ∈ S(n,md2). For Z = (Zi, j,k)i, j,k ∈Matmd2

n,n , we define NZ to be the dk×dk block matrix,
where the (p, q)-th block is given by

∑
i, j,k λ

i, j,k
p,q Zi, j,k . Let g(Z) = det(NZ ). This is the required g.
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The point to note here is that by construction, we have Nζ(X) = N (X). Thus ζ ∗(g)(X) = g(ζ(X)) =
det(Nζ(X))= det(N (X)).

There are two things we need to check. First that g as defined is indeed invariant under simultaneous
conjugation, and then that ζ ∗(g)(X)= det(N (X)) does separate A and B.

The function g is invariant under the simultaneous conjugation action of GLn on Matmd2

n,n because it is
given by the determinant of a block matrix whose blocks are linear combinations of matrices from the
input md2-tuple.

Observe that det(L(X))= fU (X) and det(R(X))=det(MT (X))k . Therefore we have that det(N (X))=
fU (X) det(MT (X))k . Recall that fT (X) = det(LT (X)), and that MT (X) = Adj(LT (X)). Now, since
fT (A)= fT (B) 6= 0, we have that det(MT (A))= det(MT (B)) 6= 0. In particular, since fU (A) 6= fU (B),

we have det(N (A)) 6= det(N (B)) as required.
Thus ζ ∗(g)(A)= det(N (A)) 6= det(N (B))= ζ ∗(g) showing that ζ ∗(g) indeed separates A and B. �

Now, we can finally prove Theorem 1.18.

Proof of Theorem 1.18. Suppose A, B ∈Matmn,n with A 6∼L R B. By Lemma 6.8, for at least one choice of
d ∈ {n−1, n}, we have that νdn(R(n,m)) separates A and B. Fix this d . By Lemma 6.9, either R(n,m)dn

or ζ ∗(S(n,md2)) separates A and B. In the former case, we have an invariant of degree dn ≤ n2 that
separates A and B. In the latter case, ζ ∗(S(n,md2)) separates A and B which implies that S(n,md2)

separates ζ(A) and ζ(B). Hence, we have an invariant g ∈ S(n,md2) of degree ≤ βsep(S(n,md2)) such
that g(ζ(A)) 6= g(ζ(B)).

Now, since ζ is a map of degree dn, we have ζ ∗(g) ∈ R(n,m) is a polynomial of degree deg(g)dn ≤
n2βsep(S(n,md2))≤ n2βsep(S(n,mn2)) that separates A and B. �

Remark 6.10. It is easy to see from Theorem 2.3 that the statement of Theorem 2.1 holds if we assume
char(K ) > n; see also [Zubkov 1993]. Hence, the statements in Theorem 1.14 and Corollary 1.19 that
assumed char(K )= 0 also hold under the assumption that char(K ) > n.
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