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POLYSTABILITY IN POSITIVE CHARACTERISTIC AND DEGREE

LOWER BOUNDS FOR INVARIANT RINGS

HARM DERKSEN AND VISU MAKAM

Abstract. We develop a representation theoretic technique for detecting closed orbits that
is applicable in all characteristics. Our technique is based on Kempf’s theory of optimal
subgroups and we make some improvements and simplify the theory from a computational
perspective. We exhibit our technique in many examples and in particular, give an algorithm
to decide if a symmetric polynomial in n-variables has a closed SLn-orbit.

As an important application, we prove exponential lower bounds on the maximal degree
of a system of generators of invariant rings for two actions that are important from the
perspective of Geometric Complexity Theory (GCT). The first is the action of SL(V ) on
S3(V )⊕3, the space of 3-tuples of cubic forms, and the second is the action of SL(V ) ×
SL(W ) × SL(Z) on the tensor space (V ⊗ W ⊗ Z)⊕5. In both these cases, we prove an
exponential lower degree bound for a system of invariants that generate the invariant ring
or that define the null cone.
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1. Motivation

We choose our ground field K to be an algebraically closed field of characteristic p.1 In
this paper, we focus on two important problems with particular emphasis on positive char-
acteristic – how to determine whether an orbit is closed (a.k.a. polystability) and how to

Key words and phrases. Kempf’s optimal subgroups, closed orbits, exponential lower bounds, Grosshans
principle.

1Our results will be targeted towards the case of p > 0, but many of our results are new even in the case
of p = 0.
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prove exponential degree lower bounds for invariant rings. We briefly discuss the motiva-
tion behind these problems and give context to the main contributions of this paper before
proceeding to the main content.

To begin, let us consider the following result:

Theorem 1.1. Consider the action of SL(V ) on S3(V ), the space of cubic forms, where V is
a 3-dimensional vector space over K with basis x, y, z. Consider the complete homogeneous
symmetric polynomial h3(x, y, z) ∈ S3(V ), i.e., h3(x, y, z) is the sum of all monomials of
degree 3. Then h3(x, y, z) is polystable (i.e, its SL(V ) orbit is Zariski-closed) unless p ∈
{2, 5}.

How does one go about proving such a result? What techniques do we have to determine
whether an orbit is closed or not, especially in positive characteristic? Naively, one could
try to get hold of the ideal of polynomials which vanish on the orbit and check if its zero
locus contains a point outside the orbit. However, there seems to be no reasonable way to
do this. One natural approach for this would be via generators of the invariant ring, but
that is computationally infeasible even in the seemingly simple example of h3(x, y, z) above.

In characteristic zero, one useful result is the Dadok-Kac criterion [DK85] (see [DM20b,
Section 6] for a generalization). Another approach used in literature is a criterion due
to Kempf [Kem78, Corollary 4.5], but this is again only applicable in characteristic zero.2

But even in characteristic zero, the example of h3(x, y, z) above does not fall within the
scope of either tool. Yet another tool at our disposal is the fact that any homogeneous
polynomial with a non-vanishing discriminant has a closed orbit with a finite stabilizer (this
holds in arbitrary characteristic). However, discriminants are very hard to compute, and
are very specific to the action of SL(V ) on Sd(V ) without much scope for generalizing to
other actions. To summarize, while certain techniques for proving closedness of orbits exist
in literature, they are quite limited in scope and severely lacking in their applicability in
positive characteristic.

Our motivation for investigating closed orbits in positive characteristic comes from the
problem of degree bounds in invariant theory and in particular results on exponential de-
gree lower bounds [DM20b]. The significance of degree bounds in invariant theory is best
understood through the lens of computational complexity, and in particular the Geometric
Complexity Theory (GCT) program.3 An understanding of degree bounds is a first step in
a large, extensive, and ambitious program put forth in [Mul17] that aims to connect invari-
ant theory and central problems in complexity at a fundamental level. In recent years, an
alternate approach to algorithmic invariant theory using geodesic optimization techniques
has emerged, see [BFG+19] and references therein. However, these new optimization tech-
niques are manifestly a characteristic zero approach. With no promising alternative approach
in positive characteristic, the algebraic approaches and in particular degree bounds find a
renewed importance in positive characteristic.

In a previous paper [DM20b], we proved exponential degree lower bounds for the generators
of invariant rings for cubic forms and tensor actions in characteristic zero. The technique
was based on the Grosshans principle and a major component was to prove that certain

2For example, [BI11] uses [Kem78, Corollary 4.5] to prove that the matrix multiplication and unit tensors
have closed orbits, which by the way also follows easily from the Dadok-Kac criterion.

3The GCT program is an algebro-geometric approach to the celebrated P vs NP problem.
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points (with significant symmetries) have closed orbits.4 We wanted to extend those results
to positive characteristic, which brings a few challenges. By far, the hardest challenge is the
ability to prove closedness of an orbit. The points we need for our purposes are considerably
complicated, for example:

Problem 1.2. Let V be a 3n-dimensional vector space with basis {xi, yi, zi}1≤i≤n. Consider
the action of SL(V ) on W = S3(V )⊕2. Is w = (

∑n
i=1 x

2
i zi,

∑n
i=1 y

2
i zi) ∈ W polystable?

In order to handle such cases, we develop a technique, also inspired by Kempf [Kem78],
based on his theory of optimal 1-parameter subgroups. Our technique also has its limitations,
for example, to be feasible, there needs to be significant symmetries for the point that
is being investigated (which for example, the Dadok-Kac criterion does not require). In
many situations, however, the points of interest often carry symmetries and moreover these
symmetries are often the reason for their study. A high-level perspective of our approach can
be summarized as follows – search for optimal one-parameter subgroups (defined in Section 4)
and if the search is unsuccessful, then the orbit is closed. The highly non-trivial part is to
make the search for optimal 1-parameter subgroups feasible. A significant contribution of
this paper is to develop the needed technical framework in order to utilize Kempf’s theory to
its full potential from a computational perspective. We succeed not just in our endeavor to
extend exponential degree lower bounds for invariant rings to positive characteristic (we also
improve the characteristic 0 results), but also in exhibiting the usefulness of our technique
in other contexts that are of interest to a wide mathematical audience, notably symmetric
polynomials.

We now proceed to introducing the main results of this paper rigorously.

2. Introduction and main results

First, we recall invariant theory and in particular, the notions of degree bounds, null cones
and separating invariants. Next, we briefly explain the method to prove degree lower bounds
for invariant rings via Grosshans principle and present our results on exponential degree
lower bounds. Following that, we discuss our approach to proving polystability and the
various results we are able to prove.

2.1. Invariant theory. The subject of invariant theory has had a computational nature
to its side from its very beginnings in the 19th century. The nature of computational re-
sults has evolved over the course of time in tandem with the mathematical community’s
understanding of the notions of computation and efficiency. In this century, driven by the
Geometric Complexity Theory (GCT) program, computational invariant theory has evolved
to incorporate notions of efficiency as described rigorously in the subject of computational
complexity. Moreover, fundamental connections between the computational efficiency of in-
variant theoretic algorithms and central problems in theoretical computer science such as
VP vs VNP (an algebraic analog of the celebrated P vs NP) and the polynomial identity
testing problem have been discovered and has led to some important advances in recent
times, starting with [Mul17, FS13, GGOW16, DM17b, IQS18] and followed by more works
such as [DM20a, AZGL+18, BFG+19].5

4We had used (a generalization of) the Dadok-Kac criterion.
5See also [GIM+20, MW19] for some recent negative results.
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The basic setup is as follows. Recall that our ground field K is algebraically closed. Let
G be an algebraic group over K. Let V be a rational representation of G, i.e., V is a finite
dimensional vector space, with a homomorphism of algebraic groups ρ : G → GL(V ). We
write g · v or gv for ρ(g)v. Let K[V ] denote the ring of polynomial functions on V (a.k.a.
the coordinate ring). Note that K[V ] = S(V ∗) = ⊕∞

d=1S
d(V ∗) is the symmetric algebra over

the dual V ∗ and in particular a graded K-algebra. The orbit Ov of a point v is defined as
Ov := {gv | g ∈ G}. A polynomial f ∈ K[V ] is called invariant if it is constant along orbits,
i.e., f(gv) = f(v) for all g ∈ G, v ∈ V . The collection of all invariant polynomials forms a
graded subalgebra of K[V ] which we denote by K[V ]G and call the invariant ring or ring of
invariants.

A group G is called reductive if its unipotent radical is trivial. For a rational representation
of a reductive group, the invariant ring is finitely generated, see [Hil90, Hil93, Nag63, Hab75].
A central question in computational invariant theory is to efficiently describe a set of gen-
erators (as a K-algebra) for the ring of invariants K[V ]G. The problem of degree bounds is
often a first step:

Problem 2.1 (Degree bounds). For a rational representation V of a reductive group G,
find strong bounds for the maximal degree of a set of (minimal) generators for K[V ]G, i.e,
bounds for

β(G, V ) = min{d | K[V ]G≤d is a system of generators}.

Degree bounds has been studied for several decades, see [Pop81, Pop82, Der01] and
references therein. Nevertheless, the aforementioned connections to complexity has given
the problem a new significance. For example, polynomial degree bounds for matrix semi-
invariants [DM17b]6 were crucial in obtaining a polynomial time (algebraic) algorithm for
the problem of non-commutative rational identity testing (RIT) [IQS18].7

The zero set of a collection of polynomials S ⊆ K[V ] is

V(S) = {v ∈ V | f(v) = 0 for all f ∈ S}.

Hilbert’s null cone N ⊆ V is defined by N = V(
⊕∞

d=1K[V ]Gd ).

Definition 2.2. We define σ(G, V ) to be the smallest integer D such that the non-constant
homogeneous invariants of degree ≤ D define the null cone, so

σ(G, V ) = min
{
D

∣∣∣N = V
(⊕D

d=1K[V ]Gd
)}
.

General upper bounds for σG(V ) were first given by Popov (see [Pop81, Pop82]), and
improved by the first author in [Der01]. For any system of generating invariants, its zero
locus is the null cone, so it is clear that

β(G, V ) ≥ σ(G, V ).

In characteristic zero, the first author showed that β(G, V ) and σ(G, V ) are polynomially
related [Der01]. A central problem in algorithmic invariant theory is the orbit closure inter-
section problem – given v, w ∈ V , decide if Ov ∩ Ow = ∅. This problem in various instances

6see [DM18] for extensions to quivers and [DM17a] for extension to positive characteristic. For applications
of these results, see e.g., [Dom18, GGOW18, KPV17, LQWD18, DM20c, DMW20] and references therein.

7A polynomial time analytic algorithm for RIT precedes the algebraic algorithm and does not use degree
bounds [GGOW16]. However, the analytic algorithm does not have an analog in positive characteristic,
whereas the algebraic algorithm works in all characteristics.
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captures many important problems in mathematics, computer science and physics, see e.g.,
[BFG+19] and references therein. The following result is due to Mumford and captures why
invariant polynomials are useful for the problem of orbit closure intersection.

Theorem 2.3. Let V be a rational representation of a reductive group G. Let v, w ∈ V .
Then

Ov ∩Ow 6= ∅ ⇔ f(v) = f(w) ∀ f ∈ K[V ]G.

Clearly, a system of generating invariants are sufficient for detecting orbit closure intersec-
tion. However, this approach is rarely efficient due to familiar complexity theoretic barriers
[GIM+20]. Yet, one can often get away with a smaller set of invariants. A subset S ⊆ K[V ]G

is called a separating subset if for every v, w ∈ V such that Ov ∩ Ow = ∅, there exists f ∈ S
such that f(v) 6= f(w).

Definition 2.4. We define βsep(G, V ) to be the smallest integer D such that the invariants
of degree ≤ D form a separating subset.

Clearly, we have:

(1) β(G, V ) ≥ βsep(G, V ) ≥ σ(G, V ).

Separating subsets can be much better behaved than generating subsets in positive char-
acteristic, see e.g., [DKW08]. One concrete instance in which β(G, V ) has been proven to
be strictly larger than βsep(G, V ) is the case of matrix invariants [DM20a].

We end this subsection by recalling the notions of stability:

Definition 2.5. Let ρ : G→ GL(V ) be a rational representation of a reductive group. Let
v ∈ V . We say v is:

• unstable, if 0 ∈ Ov;
• semistable, if 0 /∈ Ov;
• polystable, if v 6= 0 and Ov is closed;
• stable, if v is polystable and dim(Gv) = dim(kernel of ρ).

Note in particular that Theorem 2.3 implies that the null cone is precisely the subset of
unstable points.

2.2. Grosshans principle and exponential degree lower bounds. Constructing torus
actions with exponential degree bounds is an excursion in linear algebra, see e.g., [DM20b,
Section 3]. Indeed, the invariant theory for torus actions is much better understood (see
[Weh93]). Tori happen to be commutative reductive groups and in fact any connected
commutative reductive group is a torus. The invariant theory for non-commutative groups
is much harder and in general it is difficult to even write down invariants [GIM+20]. In
characteristic zero, we gave a surjection from the invariant rings for cubic forms and tensor
actions to the invariant ring for a torus action. This allows one to “lift” lower bounds
on invariant rings for tori to lower bounds on invariant rings for cubic forms and tensor
actions. Such a result is known as a lifting theorem in complexity theory. In numerous areas
of complexity, various lifting techniques and barriers to them have been studied, see e.g.,
[Raz90, NW96, BPR95, RM97, EGOW17, GMOW19].

In positive characteristic, the theory breaks down in a predictable way because of the exis-
tence of non-smooth reductive groups. Nevertheless, we are able to lift bounds for separating
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invariants, which we will explain below. First, we state Grosshans principle [Gro73]. We let
the group H ×G act on G by (h, g) · u = hug−1.

Theorem 2.6 (Grosshans principle). Let W be a representation of G, and let H be a closed
subgroup of G. Then we have an isomorphism

ψ : (K[G]H ⊗K[W ])G −→ K[W ]H .

From Grosshans principle, we will derive the following main technical result:

Theorem 2.7. Let V,W be rational representations of a reductive group G. Suppose v ∈ V
is such that its G-orbit is closed and let H = Gv = {g ∈ G | gv = v}. Then

β(G, V ⊕W ) ≥ βsep(G, V ⊕W ) ≥ βsep(H,W ) ≥ σ(H,W ).

It is clear that to use this method in any meaningful way, one must be able to prove that
an orbit is closed, which we discuss in the next subsection. For now, we state our results on
exponential degree lower bounds. First, our result on cubic forms:

Theorem 2.8. Assume char(K) 6= 2. Let V be a 3n-dimensional vector space, and consider
the natural action of SL(V ) on S3(V )⊕3, the space of triplets of cubic forms. Then,

β(SL(V ), S3(V )⊕3) ≥ 2
3
(4n − 1).

Our result on tensor actions:

Theorem 2.9. Let U, V,W be 3n-dimensional vector spaces. Consider the natural action of
G = SL(U)× SL(V )× SL(W ) on (U ⊗ V ⊗W )⊕5. Then

β(G, (U ⊗ V ⊗W )⊕5) ≥ 4n − 1

The importance of the above two results is best understood in the context of GCT as has
already been explained in [DM20b].

2.3. Closed orbits. The following result captures essentially our strategy for proving closed
orbits.

Theorem 2.10. Let V be a rational representation of a reductive group G. Let v ∈ V and
let Gv := {g ∈ G | gv = v} be its stabilizer. Let H ⊆ Gv be a maximal torus of Gv. Let T
be a subset of maximal tori of G such that

(1) For every parabolic P ⊇ Gv, there exists T ∈ T such that T ⊆ P ;
(2) For every T ∈ T , there is an inclusion kHk−1 ⊆ T for some k ∈ Gv (that can depend

on T ).

Then, the orbit Ov is closed if and only if T · v is closed for all T ∈ T

We state a few variants/generalizations of the above theorem in Section 4 and picking the
right variant/generalization can often make things much easier. In particular, we will mildly
strengthen some of Kempf’s statements.

Let us briefly summarize what is required to be able to use the above theorem effectively.
For any given torus T , checking whether the torus orbit T · v is closed is not so difficult, see
Section 38. Finding a collection of maximal tori that satisfy the first condition while at the
same time having computational feasibility is much harder. For example, if Gv is trivial,

8There is even a polynomial time algorithm for this [BDM+21].
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then one has to take T to be all maximal tori of G, which is computationally infeasible. A
Gv that severely restricts the potential parabolic groups containing it is needed to make the
computation tractable.

In the case whenG = SL(V ) (or a product of SL’s), we can be a bit more explicit. Parabolic
subgroups can be seen as subgroups that fix a flag of subspaces in V . If a parabolic subgroup
contains Gv, then the corresponding flag consists of Gv-stable subspaces of V . Hence, in the
cases where there are very few Gv-subrepresentations of V , the technique is particularly
useful. Perhaps more interestingly, even in some cases where we have an infinite number
of Gv-stable subspaces, the technique can still be applied successfully and this is actually
needed for our results on exponential degree bounds!

2.4. New results on polystability for polynomials. In this paper, we take a more
detailed look at polynomials, particularly those with symmetries. We prove several results
with respect to polystability (and semistability, unstability, etc), some of which are new even
in characteristic zero. Consider the defining action of the special linear group SLn(K) on Kn.
Let x1, . . . , xn denote the standard basis for Kn, and consider the natural induced action of
SLn(K) on Sd(Kn) = K[x1, . . . , xn]d, the space of degree d polynomials in x1, . . . , xn.

Definition 2.11. We say f ∈ K[x1, . . . , xn]d is unstable (resp. semistable, polystable,
stable) if it is SLn(K)-unstable (resp. semistable, polystable, stable).

We say an exponent vector e = (e1, . . . , en) is entirely even if all the eis are even. For a
polynomial f =

∑
e cex

e ∈ K[x1, . . . , xn], we define the support supp(f) = {e ∈ Nn | ce 6=
0} ⊆ Nn ⊆ Qn ⊆ Rn. The Newton polytope of a polynomial f is the convex hull of its
support and is denoted NP(f).

Theorem 2.12. Let char(K) 6= 2. Let f =
∑

e entirely even cex
e ∈ K[x1, . . . , xn]d. Then f is

• semistable if and only if ( d
n
, d
n
, . . . , d

n
) ∈ NP(f);

• polystable if and only if ( d
n
, d
n
, . . . , d

n
) is in the relative interior of NP(f);

Remark 2.13. The above result also works if we replace entirely even exponent vectors
with entirely 0 mod d exponent vectors for any d > 2 (as long as p ∤ d). Also, observe that
in characteristic 0, such a result follows easily from the Dadok-Kac criterion [DK85]. The
argument we use in positive characteristic is far more subtle.

We now turn to symmetric polynomials. A polynomial f ∈ K[x1, . . . , xn] is called sym-
metric if it is invariant under permutations of the xi’s, i.e., f ∈ K[x1, . . . , xn]

Sn . Symmetric
polynomials have been intensely studied for over a century with diverse motivations and
serve to interconnect many disparate fields. We refer the interested reader to Macdonald’s
seminal text [Mac98]. Yet, there seems to have been relatively little work on polystability.

It turns out that Theorem 2.10 or its variants are not quite sufficient for our purposes and
we have to additionally leverage the relationship between optimal 1-parameter subgroups
and optimal parabolic subgroups. For example, let p ∤ n with no restriction on d. Then, to
decide polystability of a symmetric polynomial f of degree d in n variables, we show that one
only needs to understand the limits (at 0 and ∞) of precisely one 1-parameter subgroup, see
Lemma 8.8 for a precise statement. In particular, such results enable us to give an algorithm
to decide polystability of symmetric polynomials.

7



Theorem 2.14. Let f be a homogeneous symmetric polynomial of degree d in n variables.
Then Algorithms 8.11 and 8.13 can decide if f is unstable (resp. semistable, polystable,
stable).

We refrain from giving a complexity-theoretic analysis of Algorithms 8.11 and 8.13 as
it digresses too far from the scope of this paper. However, the complexity of most of the
individual steps in the algorithm are well known, and perhaps the non-trivial part is to
establish what is the right way to input a symmetric polynomial, etc.

Independent of the complexity of the algorithms, we are also able to prove a number of
results on polystability of symmetric polynomials. We state only here to avoid introducing
too much notation in the introduction, see Section 8 for more such results. For a partition
λ ⊢ d, let sλ(x1, . . . , xn) denote the Schur polynomial associated to λ in n variables (see
Section 8 for the definition).

Theorem 2.15. Let char(K) = 0, d ≥ 2 and λ ⊢ d. Then for any n > d, the Schur
polynomial sλ(x1, . . . , xn) is polystable.

2.5. Organization. In section 3, we recall the computational invariant theory for torus
actions. Section 4 is devoted to discussing Kempf’s theory of optimal subgroups and the
consequences of it for the purposes of determining polystability. We review the representation
theory of the special linear group and focus on the computational aspects relevant for us and
prove Theorem 2.12 in section 5. In section 6, we prove that orbits of certain points (which
are relevant for degree lower bounds) are closed. In section 7, we explain our technique
using Grosshans principle, i.e., Theorem 2.7 and prove exponential degree lower bounds for
cubic forms and tensor actions, i.e., Theorem 2.8 and Theorem 2.9. Section 8 discusses
polystability of symmetric polynomials and in particular gives an algorithm for it, i.e, we
prove Theorem 2.14. Finally, in section 9, we determine the polystability of certain classes
of interesting symmetric polynomials.

3. Invariant theory for torus actions

The invariant theory for torus actions is well studied (see [Weh93] or [DM20b, Section 3]).
We will briefly recall the important statements:

Let T = (K∗)m be an m-dimensional torus. Let X (T ) denote the set of characters or
weights (i.e., morphisms of algebraic groups T → K∗). For each λ ∈ Zm, we associate
a character, also denoted λ by abuse of notation, defined by the formula λ(t1, . . . , tm) =∏m

i=1 t
λi

i . This defines an isomorphism of abelian groups from Zm to X (T ). Now, suppose V
is a representation of T . A vector v ∈ V is called a weight vector of weight λ ∈ Zm = X (T )
if t · v = λ(t)v for all t ∈ T . We have a weight space decomposition

V = ⊕λ∈ZmVλ,

where Vλ = {v ∈ V | t · v = λ(t)v}. In particular, we have a basis consisting of weight
vectors.

Let E = (e1, . . . , en) be a basis of V consisting of weight vectors. Suppose the weight of
ei is λ

(i). Using this basis, identify V with Kn, which then allows us to identify K[V ] with
the polynomial ring K[z1, . . . , zn]. A monomial zc11 z

c2
2 . . . zcnn ∈ K[V ] is invariant if and only

if
∑

i ciλ
(i) = 0. Moreover, the invariant ring K[V ]T = K[z1, . . . , zn]

T is linearly spanned by
such invariant monomials. We refer to [DM20b, Section 3] for more details. For a vector v,

8



consider its support Supp(v) = {i | vi 6= 0}. Then, we define its weight polytope WP(v) to
be the convex hull of the points {λ(i) | i ∈ Supp(v)} thought of as a subset of Rm. Even
without coordinates with respect to an explicit basis, one can define the weight polytope.
For each v ∈ V , we can write v =

∑
λ vλ where vλ ∈ Vλ. Then, the weight polytope WP(v)

is the convex hull of the points {λ | vλ 6= 0}. We call {λ | vλ 6= 0} the weight set of v.

Lemma 3.1. Let V be an n-dimensional representation of an m-dimensional torus T =
(K∗)m, and let E = (e1, . . . , en) be a weight basis such that the weight of ei is λ(i). Let
0 6= v ∈ V . Then,

• v is semistable if and only if 0 ∈ WP(v);
• v is polystable if and only if 0 is in the relative interior of WP(v);
• v is stable if and only if 0 is in the interior of WP(v).

For concreteness, we discuss the action of STn the group of diagonal n× n matrices with
determinant 1 on Sd(Kn), the space of degree d polynomials in x1, . . . , xn. For a polynomial
f ∈ Sd(Kn), write f =

∑
e∈Nn cex

e. We define the Newton polytope

NP(f) = convex hull {e ∈ Nn |ce 6= 0}.

We think of NP(f) not as a subset of Rn, but as a subset of Ed = {(v1, . . . , vn) ∈
Rn |

∑
i vi = d}. This is necessary for the last part of the following corollary. In this

special case, the above lemma translates to the following:

Corollary 3.2. Consider the action of STn on Sd(Kn). Let 0 6= f ∈ Sd(Kn). Then

• f is semistable if and only if ( d
n
, d
n
, . . . , d

n
) ∈ NP(f);

• f is polystable if and only if ( d
n
, d
n
, . . . , d

n
) is in the relative interior of NP(f);

• f is stable if and only if ( d
n
, d
n
, . . . , d

n
) is in the interior of NP(f).

For torus actions, semistability, polystability and stability are all determined by the weight
polytopes. For polystability we draw a connection to invariant monomials.

Lemma 3.3. Let V be an n-dimensional representation of an m-dimensional torus T =
(K∗)m, and let E = (e1, . . . , en) be a weight basis such that the weight of ei is λ(i). Let
0 6= v ∈ V . Then, the following are equivalent:

• v is polystable.
• For every i ∈ Supp(v), there exists an invariant monomial

∏
j∈Supp(v)

x
cj
j such that

ci ≥ 1.

We recall the Hilbert–Mumford criterion, for which we need to understand 1-parameter
subgroups. A 1-parameter subgroup of T is a morphism of algebraic groups λ : K∗ → T .
We denote by Γ(T ), the set of 1-parameter subgroups of T . If we identity T with (K∗)m,
then any 1-parameter subgroup is of the form t 7→ (ta1 , ta2 , . . . , tam) where ai ∈ Z. There is
an abelian group structure on Γ(T ), if we take 1-parameter subgroups t 7→ (ta1 , ta2 , . . . , tam)
and t 7→ (tb1 , tb2 , . . . , tbm), we can multiply them to get another 1-parameter subgroup t 7→
(ta1+b1 , ta2+b2 , . . . , tam+bm). This allows us to also identify Γ(T ) with Zm as an abelian group.

Theorem 3.4 (Hilbert–Mumford criterion). Let V be an n-dimensional representation of
an m-dimensional torus T = (K∗)m, and let E = (e1, . . . , en) be a weight basis such that the
weight of e(i) is λ(i). Let v ∈ V and consider its orbit Ov. Let S be another closed T -stable
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subset of V . Then S ∩Ov 6= ∅ if and only if there exists a 1-parameter subgroup λ such that
limt→0 λ(t) · v ∈ S.

Definition 3.5. Let V be an n-dimensional representation of an m-dimensional torus T =
(K∗)m, and let E = (e1, . . . , en) be a weight basis such that the weight of ei is λ

(i). Let
v = (v1, . . . , vn) ∈ V , where vi are coordinates in the basis E . We say i ∈ Supp(v) is
essential if there exists a non-negative linear combination

∑
j∈Supp(v) cjλ

(j) = 0 with ci > 0.
We define

eSupp(v) = {i ∈ [n] | i is essential},

and we define ess(v) = v|eSupp(v) by

ess(v)i =

{
vi if i ∈ eSupp(v)

0 otherwise.
.

The following lemma is well-known, see e.g. [Pop09, Example 1.3]

Lemma 3.6. Let V be an n-dimensional representation of an m-dimensional torus T =
(K∗)m, and let E = (e1, . . . , en) be a weight basis such that the weight of ei is λ

(i). Let v ∈ V .
Then ess(v) is a point in the unique closed T -orbit inside OT,v.

4. Kempf’s theory of optimal subgroups

Let G be a reductive algebraic group over K. Let V be a rational representation of G.
We will recall some technical notions that we need to be able to state the known results
on optimal subgroups in a coherent fashion. We are content to only briefly recall these
notions, referring the interested reader to [Kem78] for more details. Much of these technical
notions are only required to prove our main results in this section, but are not needed in
their statements or anywhere else in this paper.

A 1-parameter subgroup of G is a morphism of algebraic groups λ : K∗ → G. Let Γ(G)
denote the set of 1-parameter subgroups of G. A length function || || on Γ(G) is a non-
negative real valued function such that

• ||g · λ|| = ||λ|| for any g ∈ G and λ ∈ Γ(G);
• For any maximal torus T of G, there is a positive-definite integral valued bilinear
form ( , ) on Γ(T ) such that (λ, λ) = ||λ||2 for any λ ∈ Γ(T ).

Recall that Γ(T ) represents the set of 1-parameter subgroups of T . It is a free abelian
group of rank equal to the dimension of T . The existence of a length function is not obvious
but not very involved either. Pick a maximal torus T , pick a positive-definite integral valued
bilinear form ( , ) on Γ(T ) which is invariant under the Weyl group. Thus, for any λ ∈ Γ(G),
we view it in Γ(gTg−1) for some g ∈ G (since all maximal tori are conjugate and any 1-
parameter subgroup lies in a maximal torus) and we define ||λ|| = (g−1λg, g−1λg). Note that
g−1λg ∈ Γ(T ). That such a length function is well-defined is a consequence of the invariance
of the bilinear form under the Weyl group.

Let v ∈ V . Let S ⊆ V be a closed G-subscheme. Let |S, v| denote the set of all 1-parameter
subgroups λ of G such that the limt→0 λ(t) · v exists in S. The set |S, v| is non-empty if and
only if S ∩ Ov 6= ∅, see [Kem78, Theorem 1.4]. For λ ∈ |S, v|, let M(λ) : A1 → V be the
unique morphism defined by M(λ)(t) = λ(t) · v for t 6= 0 (where A1 denote the 1-dimensional
affine space). Let S denote a subscheme of V that is closed under the action of G. Then,

10



let aS,v(λ) denote the degree of the divisor M(λ)−1S (which is an effective divisor on A1). If
|S, v| 6= ∅, the function λ 7→ aS,v(λ)/||λ|| takes a maximum value BS,v on |S, v|.

A 1-parameter subgroup λ is called divisible if there exists another 1-parameter subgroup
µ and a postive integer r ≥ 2 such that λ(t) = µ(t)r for all t ∈ K∗. A 1-parameter subgroup
that is not divisible is called indivisible. When |S, v| 6= ∅, an indivisible 1-parameter subgroup
λ ∈ |S, v| is called optimal if aS,v(λ)/||λ|| = BS,v. We denote by Λ(S, v) the set of optimal
1-parameter subgroups.

For a 1-parameter subgroup λ, we define the associated parabolic subgroup P (λ) = {g ∈
G | limt→0 λ(t)gλ(t

−1) ∈ G}.
We summarize the main technical results from [Kem78, Section 3]).

Theorem 4.1. Let V be a rational representation of a reductive group G. Let v ∈ V such
that Ov is not closed. Let S be a closed G-stable subscheme such that Ov ∩ S = ∅ and
Ov ∩ S 6= ∅. Fix a choice of length function || || on Γ(G). Let Gv denote the stabilizer of v.

(1) The set Λ(S, v) of optimal 1-parameter subgroups is non-empty.
(2) There is a parabolic subgroup PS.v such that P (λ) = PS,v for all λ ∈ Λ(S, v). We call

PS,v the optimal parabolic subgroup;
(3) Any maximal torus of PS,v contains a unique member of Λ(S, v);
(4) Gv ⊆ PS,v.

4.1. Results on polystability. Using Theorem 4.1, we give a proof of Theorem 2.10.

Proof of Theorem 2.10. Suppose the orbit Ov is closed. Then, we claim that for any torus
T ⊇ H , the T -orbit OT,v is closed. To see this, consider the action of T on Ov. For any
g ∈ G, the T -stabilizer at w = gv ∈ Ov is given by T ∩ gGvg

−1. Thus, the dim(Tw) ≤
rank of any maximal torus in gGvg

−1 = rank of H . Thus, dim(T · v) ≤ dim(T · w) for any
w ∈ Ov. For the action of any reductive group on a variety, an orbit of the smallest possible
dimension must always be closed (since the boundary of an orbit, if non-trivial, contains
orbits of smaller dimension). In particular, for the action of T on Ov, this means that T · v
is closed.

Conversely, suppose Ov is not closed. Then let S = Ov \ Ov. Then, let P := PS,v be the
optimal parabolic subgroup as in Theorem 4.1. Since P ⊇ Gv by Theorem 4.1, there exists
T ∈ T such that T is a maximal torus of P . Further, Theorem 4.1 says that there is an
optimal 1-parameter subgroup in T , which in the limit drives v out of its G-orbit (and hence
out of its T -orbit). Thus, the T -orbit of v is not closed for this particular T . �

To use Theorem 2.10, one must be able to compute Gv or at least a maximal torus of it.
Such a computation may not always be possible. In that case, one can use:

Theorem 4.2. Let V be a rational representation of a reductive group G. Let v ∈ V and let
Gv = {g ∈ G | gv = v}. Let T be a subset of maximal tori of G such that for every parabolic
P ⊇ Gv, there exists T ∈ T such that T ⊆ P . Then,

OG,v is closed ⇐⇒ OT,v ⊆ OG,v ∀T ∈ T .

Proof. If OG,v is closed, then clearly OT,v ⊆ OG,v ∀T ∈ T . Now, suppose OG,v is not closed.
Then, consider PS,v where S = Ov \Ov. Then PS,v ⊇ Gv by part (4) of Theorem 4.1. Thus,
there exists T ∈ T such that T ⊆ PS,v. Hence, by part (3) of Theorem 4.1, there must
be a 1-parameter subgroup λ of T which is optimal, so limt→0 λ(t)v = w /∈ OG,v. Hence
w ∈ OT,v \OG,v as required. �
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The obvious issue here is that we have to be able to tell when the closure of OT,v is
contained in OG,v. It would be simplest if OT,v is itself closed. If that is not the case, then
the following is one way to test whether OT,v ⊆ OG,v

Lemma 4.3. Let V be a representation of G and let T be a maximal torus. Let E =
(e1, . . . , en) be a weight basis for the action of T on V such that T acts on ei by a weight
λ(i). Then, let v = (v1, . . . , vn) be the coordinates of V in the basis E . Let w = ess(v). Then,

OT,v ⊆ OG,v ⇐⇒ dim(Gw) = dim(Gv).

Proof. Suppose OT,v ⊆ OG,v, then clearly w ∈ OG,v, so dim(Gw) = dim(Gv) since Gw and
Gv are conjugate subgroups. On the other hand, suppose OT,v * OG,v. Let Y = OG,v.

Now A = OT,v is a Zariski-closed subset of Y and B = OG,v is a Zariski-open subset of Y
and its complement Bc = Y \ B is a Zariski-closed subset. Thus A ∩ Bc is a Zariski-closed
subset of Y which is T -stable (i.e., a union of T -orbits). In particular, this means that
w = ess(v) ∈ A ∩ Bc since any Zariski-closed T -stable subset of OT,v contains w. Since
w ∈ OG,v \OG,v, we get that dim(Gw) > dim(Gv).

�

It is another matter that it may be quite hard to compute Gw or Gv completely. Yet, one
can decide if dim(Gw) = dim(Gv). In characteristic 0, a Lie algebra computation will suffice
and in characteristic p > 0, one can use Gröbner basis techniques, see for example [CLO15,
Chapter 9].

4.2. Results on semistability. To detect polystability, we used Theorem 4.1 with S =
Ov \ Ov. To detect semistability, one has to take S = {0} instead. Unlike the case of
polystability, there is no need for variants, we state the most general version possible. The
proofs are very similar to the previous subsection, so we leave the details to the reader.

Theorem 4.4. Let V be a rational representation of a reductive group G. Let v ∈ V and
define Gv := {g ∈ G | gv = v}. Let T be a subset of maximal tori of G such that for every
parabolic P ⊇ Gv, there exists T ∈ T such that T ⊆ P . Then we have

v is G-semistable ⇐⇒ v is T -semistable for all T ∈ T .

4.3. Improvements. In the case when the action of G on V extends to a larger group G̃
containing G as a normal subgroup, we can make certain improvements to Theorem 4.2 and
Theorem 4.4. These improvements are very handy in computations, especially in the case

where G is the special linear group and G̃ is the general linear group.
First, we prove the following result that generalizes part (4) of Theorem 4.1.

Proposition 4.5. Let G̃ be an algebraic group and let G be a reductive normal subgroup.
Let V be a rational representation of G̃ and hence of G as well. Suppose that v ∈ V and let
S = OG,v̂ be the unique closed G-orbit in OG,v. Fix a choice of length function || || on Γ(G)
and let PS,v be the optimal parabolic subgroup. Then

hPS,vh
−1 = PS,v for all h ∈ G̃v.

Proof. For h ∈ G̃ and λ ∈ Γ(G), we define h∗λ by h∗λ(t) = hλ(t)h−1 which is a 1-parameter

subgroup of G because G is normal in G̃. Clearly, |hS, hv| = h ∗ |S, v|.
12



Now, suppose h ∈ G̃v. Then we get |hS, v| = |hS, hv| = h ∗ |S, v| 6= ∅. Moreover, observe

that hS = hOG,v̂ = OG,hv̂ since G is normal in G̃. In particular, this means that hS is a

closed G-orbit. Since |hS, v| is not empty, hS must be the unique closed orbit in OG,v, so
hS = S. This means |S, v| = h ∗ |S, v| which implies immediately that hPS,vh

−1 = PS,v. �

By using the above proposition instead of part (4) of Theorem 4.1, we get the following
improvement of Theorem 4.2 and Theorem 4.4:

Theorem 4.6. Let G̃ be an algebraic group and let G be a reductive normal subgroup.

Let V be a rational representation of G̃ and hence of G as well. Let v ∈ V and define
G̃v := {g ∈ G̃ | gv = v}. Let T be a set of maximal tori of G such that for every parabolic

P with gPg−1 = P for all g ∈ G̃, there exists T ∈ T such that T ⊆ P . Then we have

(1) v is G-polystable ⇐⇒ OT,v ⊆ OG,v for all T ∈ T ;
(2) v is G-semistable ⇐⇒ v is T -semistable for all T ∈ T .

Proof. Let us first prove part (1). The =⇒ implication is clear. We now prove the backwards
implication by proving the contrapositive. Suppose v is not G-polystable. Let S = OG,w be
the unique closed orbit in OG,v. Then consider PS,v, which satisfies gPS,vg

−1 = PS,v for all

g ∈ G̃v by Proposition 4.5. Thus, there exists T ∈ T such that T ⊆ PS,v. Hence, for some
one-parameter subgroup λ of T we have limt→0 λ(t)v /∈ OG,v. Thus, limt→0 λ(t)v ∈ OT,v\OG,v,

so we get OT,v * OG,v.
The second part is analogous, where you take instead S = {0} which is indeed the unique

closed orbit in OG,v if v is not semistable.
�

5. Representations of (products) of special linear groups

In this section, we collect a few results that will help with explicit computations when
the acting group is a special linear group or a product of special linear groups. We first
recall briefly the connection between parabolic subgroups of SL(V ) and flags in V . Then, we
discuss flags of H-stable subspaces of V for a special class of subgroups H ⊆ SL(V ) for which
V is a semisimple H-module. This will be very useful for computations. Finally, we give a
quick proof of Theorem 2.12 on the semistability/polystability of entirely even polynomials.

5.1. Parabolic subgroups of SL(V ). The results in the above section warrant a brief
discussion about parabolic subgroups and their maximal tori so that one can use them for
computational purposes. We state results without proof referring the reader to standard
texts [Ful97, FH13, Wey03] for details.

Let V be an n-dimensional vector space. A flag F is a sequence of subspaces 0 = F0 ⊆
F1 ⊆ F2 ⊆ · · · ⊆ Fk = V . We do not restrict the dimensions of Fi, the inclusions force
them to be an increasing sequence. Associated to a flag is a parabolic subgroup PF of SL(V )
defined by

PF = {g ∈ SL(V ) | gFi = Fi ∀ i ∈ [k]}.

To each basis B = (b1, . . . , bn) of V , we define a maximal torus TB of V consisting of all
g ∈ SL(V ) such that each bi is an eigenvector when viewing g as a linear transformation
from V to V . Clearly, permuting the basis does not change TB. Using the basis B, one
can identify V with Kn and consequently SL(V ) with SLn. Under this identification, TB
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is just the standard diagonal torus, i.e., the subgroup of all diagonal n × n matrices (with
determinant 1).

A basis B = (b1, . . . , bn) is called compatible with the parabolic PF if each Fi is a coordinate
subspace in the basis B, i.e., it is spanned by a subset of the basis. In this case, we will also
say B is compatible with the flag F . For a basis B that is compatible with a parabolic PF ,
the maximal torus TB ⊆ PF . Further, all maximal tori of PF arise from a compatible basis.

If G = SL(V1)×SL(V2)×· · ·×SL(Vk), then any parabolic subgroup P of G is of the form
P = P (1) × P (2) × · · · × P (k) where each P (i) is a parabolic subgroup of SL(Vi). Thus, a
collection of flags F = (F (1), . . . ,F (k)) defines a parabolic subgroup for G. A maximal torus
T of PF is a product of maximal tori T = T (1) × · · · × T (k) where each T (i) is a maximal
torus for Vi. Thus a collection of compatible basis B = (B(1), . . . ,B(k)), where each B(i) is a
basis of Vi, defines a maximal torus of PF .

5.2. Complete reducibility. In order to use the results in the previous section, we often
want to investigate parabolic subgroups containing the isotropy subgroup of a point. If the
group acting is GL(V ) or SL(V ), this amounts to investigating flags of subspaces stable under
the isotropy subgroup. Hence, in this section, we collect a few results on flags of H-stable
subspaces in V for some subgroup H ⊆ GL(V ) in the special case where V is a semisimple
H-module, i.e., V is completely reducible as a H-module.

Remark 5.1. Then notion of G-complete reducibility was introduced by Serre [Ser05]. For
a reductive group G, a (closed) subgroup H is called G-completely reducible (G-cr for short)
if for every parabolic subgroup P of G that contains H , there exists a Levi subgroup of P
that contains H . For G = GL(V ), a subgroup H is G-cr if and only if V is a semisimple
H-module. In particular, if H is linearly reductive (for e.g., a torus or a finite group whose
order is not a multiple of the characteristic), then it is automatically G-cr for G = GL(V ).

For this section, let G = GL(V ) and let H be a G-cr subgroup of G, i.e., V is a semisimple
H-module. We have a decomposition into isotypic components

V = E1 ⊕E2 ⊕ · · · ⊕ Er.

where each Ei
∼= V mi

i for some irreducible representation Vi of H (where Vi and Vj are
non-isomorphic for i 6= j). Let dim(Vi) = ni. For each Ei, fix an isomorphism that allows us
to identify Ei = Vi ⊗Kmi .

Definition 5.2. Let W1, . . . ,Wr be vector spaces and let U = ⊕iWi. For a collections of

flags F (i) of Wi, we define their direct sum F = ⊕F (i), a flag of U by setting Fj = ⊕iF
(i)
j

for all j.

Lemma 5.3. Let F = 0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ft = V be a flag of H-stable subspaces. For
each i, the restricted flag F|Ei

:= 0 ⊆ F1 ∩ Ei ⊆ F2 ∩ Ei ⊆ · · · ⊆ Ft ∩ Ei = Ei is a flag of
H-stable subspaces of Ei. Further, F = ⊕iF|Ei

.

Proof. This follows from the fact that any subrepresentation W of V has the property that
W = ⊕i(W ∩ Ei) (which follows from complete reducibility). �

The crucial point that comes from the above lemma is that to understand flags of H-stable
subspaces of V , we can study each isotypic component separately and the following corollary
is immediate.
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Corollary 5.4. Let F = 0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ft = V be a flag of H-stable subspaces. For
each i, let Bi be a compatible basis for each F|Ei

. Then ∪iBi is a compatible basis for F .

The following lemma investigates compatible bases for a single isotypic component. Let
Im ⊆ GLm(K) be a collection of invertible m ×m matrices with the property that for any
linearly independent collection l1, . . . , lm−1 of vectors in Km, there exists A ∈ Im such that
every li appears as some column of A up to a non-zero scaling. For an m×m matrix A, we
denote by ai ∈ Km its ith column vector.

Lemma 5.5. Let W be an irreducible representation of H, and let E =W ⊗Km. Let F be
a flag of H-stable subspaces of E. Let w1, . . . , wp be a basis of W . Then, for some A ∈ Im,
the basis B(A) := {wi ⊗ aj | 1 ≤ i ≤ p, 1 ≤ j ≤ m} is a compatible basis for F .

Proof. Every H-stable subspaces of E is of the form W ⊗ C for some subspace C ⊆ Km.
Thus, F = W ⊗ F ′ for some flag F ′ of Km. Now, pick a compatible basis for F ′ step by
step, i.e., pick a basis for F ′

1, extend to a basis of F ′
2 and so on until F ′

t−1, where t is such
that F ′

t−1 ( F ′
t = Km. Note that dim(F ′

t−1) = q ≤ m−1, and suppose l1, l2, ..., lq is the basis
of F ′

t−1 that was picked so far. Now, there exists A ∈ Im such that li is a column of A for all
i (up to a non-zero scaling). For such an A, it is clear that B(A) is compatible basis for F .

�

Remark 5.6. One can take the set

{(
1 0
a 1

)
| a ∈ K

}
for I2. This is a simple but crucial

observation that is needed in our computations for proving polystability of points required
for exponential degree lower bounds.

5.3. Polystability for polynomials. In this section, we give a quick proof of Theorem 2.12.

Proof of Theorem 2.12. Recall that char(K) 6= 2. Let x1, . . . , xn denote the standard basis
of Kn. Let f ∈ W = Sd(Kn) be an entirely even polynomial. We want to apply Theo-

rem 4.6 for polystability and Theorem 4.4 for semistability. Let G = SLn and G̃ = {A ∈
Matn,n | det(A) = ±1} ⊆ GLn acting on W in the natural way. Consider the action of the
group {±1}n (i.e., (Z/2)n) on Kn given by (t1, . . . , tn) · (v1, . . . , vn) = (t1v1, . . . , tnvn). This

action is given a map (Z/2)n → G̃. Let the image of this map be H . It is easy to see that

H ⊆ G̃f .
We want to apply Theorem 4.6. So, now we claim that T = {STn} satisfies the hypothesis

of Theorem 4.6. Indeed, observe that if P = PF is a parabolic such that gPg−1 = p for all

g ∈ G̃f , then we have gPg−1 = P for all g ∈ H , which means that F is a flag of H-stable
subspaces. Now, observe that H-stable subspaces are precisely coordinate subspaces.9 Thus,
F is a flag of coordinate subspaces, which means that the standard basis is compatible with
it, so STn ⊆ P = PF .

Thus, we apply Theorem 4.6 to get that f is G-polystable if and only if f is STn-polystable
and that f is G-semistable if and only if f is STn-semistable. The Theorem now follows
from Corollary 3.2. �

6. Closed orbits for degree lower bound purposes

Before we go into the computational details, we need one quick observation.

9This requires char(K) 6= 2. Note that if char(K) = 2, then H is the trivial subgroup.
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Remark 6.1. Let W be a rational representation of a reductive group G and let T be a
maximal torus. Let w ∈ W . Then w is gTg−1 polystable/semistable/stable if and only if
g−1w is T -polystable/semistable/stable.

Let G = SL(V ) with a preferred basis E = {e1, . . . , en}. For any basis B = (b1, . . . , bn),
we associate a maximal torus TB consisting of all matrices which are diagonal with respect
to this basis. Equivalently TB = {g ∈ SL(V ) | ∀i, bi is an eigenvector for g}. We denote
by T , the maximal torus TE . Let LB be the linear transformation that sends ei 7→ bi.
Then TB = LBTL

−1
B . Finally for some representation W of SL(V ), we have that w is TB

polystable/semistable/stable if and only if L−1
B w is TE polystable/semistable/stable.

6.1. Closed orbit for cubic forms. Let E = {xi, yi, zi}1≤i≤n be the preferred basis for a
3n-dimensional vector space V . Let W = S3(V )⊕2 with the natural action of G = SL(V ).
Let w = (

∑
i x

2
i zi,

∑
i y

2
i zi) ∈ W .

Proposition 6.2. The point w ∈ W is SL(V )-polystable.

Consider the action on an n-dimensional torus (K∗)n on V given by (t1, . . . , tn) ·xi = tixi,
(t1, . . . , tn)·yi = tiyi, (t1, . . . , tn)·zi = t−2

i zi. There is also an action of Sn on V that permutes
the xi, yi and zi, i.e, σ · xi = xσ(i), σ · yi = yσ(i) and σ · zi = zσ(i). Combining the two actions,
we get a map ρ : (K∗)n ⋊ Sn → SL(V ) ⊆ GL(V ). Let H := ρ((K∗)n ⋊ Sn) ⊆ GL(V ).

Let X = span{xi : i ∈ [n]}, Y = span{yi : i ∈ [n]} and Z = span{zi : i ∈ [n]}.

Lemma 6.3. V is a semisimple H-module.

Proof. All we need to do is to write V as a direct sum of irreducible H-modules. Clearly
X ⊕ Y ⊕ Z = V , so it suffices to show that each of X, Y and Z are irreducible H-modules.
Let us do this for X . The others are similar. Suppose 0 6= U ( X was a H-submodule. So,
U must be stable under the action of the torus (K∗)n (which is linearly reductive), which
means that U must be span{xi : i ∈ I} for some ∅ 6= I ( [n]. But then, U must also
be stable under the action of Sn, which is not possible. Thus, no such U exists and X is
irreducible. �

In the above proof, observe that X and Y are isomorphic H-modules, so we conclude the
following:

Corollary 6.4. Let P = span{xi, yi : i ∈ [n]} and Q = span{zi : i ∈ [n]}. Then V = P ⊕Q
is the isotypic decomposition of V with respect to H.

We now turn to finding compatible basis for flags of H-stable subspaces. First, for a ∈ K,
let us define Ba := {xi + ayi, yi, zi : 1 ≤ i ≤ n}.

Lemma 6.5. Let F be a flag of H-stable subspaces of V . Then there exists a ∈ K such that
Ba is a compatible basis for F .

Proof. By Corollary 5.4, to find a compatible basis for F , it suffices to find a compatible
basis for F|P and F|Q separately. Since Q itself is irreducible, the flag F|Q must be trivial
and any basis will do. We pick {z1, . . . , zn}.

The isotypic component P ∼= X⊕2. So, by Lemma 5.5 and the choice of I2 in Remark 5.6,
we deduce that there is an a ∈ K such that {xi + ayi, yi : i ∈ [n]} is a compatible basis. For
this choice of a, we conclude that Ba = {xi + ayi, yi, zi : i ∈ [n]} is a compatible basis by
Corollary 5.4. �
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Lemma 6.6. w is TE-polystable.

Proof. Write w = (w1, w2). Then w1 =
∑

i x
2
i zi and w2 =

∑
i y

2
i zi are both weight decompo-

sitions. Further, it’s an easy check to see that the sum of weights
∑

i wt(x
2
i zi)+wt(y2i zi) = 0,

which means that 0 is in the relative interior of the weight polytope, and so w is TE -
polystable. �

Lemma 6.7. For all a ∈ K, w is TBa
-polystable.

Proof. Let La be the linear transformation that takes xi 7→ xi+ayi and keeps yi, zi invariant
for all i. It suffices to prove that L−1

a (w) = L−a(w) is TE -polystable by Remark 6.1. Observe
that L−a sends x2i zi 7→ x2i zi − 2axiyizi + a2y2i zi and y

2
i zi 7→ y2i zi. Observe that wt(xiyizi) =

1
2
wt(x2i zi) +

1
2
wt(y2i zi). This means that the weight polytope of L−a(w) is the same as the

weight polytope of w (even though the weights occuring in their weight decompositions
may not be the same). Since weight polytopes determine polystability, see Lemma 3.3, we
conclude that L−a(w) is TE -polystable since w is TE -polystable. �

Now, we combine all the results to prove Proposition 6.2

Proof of Proposition 6.2. We want to use Theorem 4.6. Take G = SL(V ) and G̃ = GL(V ).

Then clearly we have H ⊆ G̃v where H is defined as in the beginning of this section. Now,

suppose we have a parabolic PF that is fixed by all elements of G̃v. In particular, it is
fixed by all elements of H , so F must be a flag of H-stable subspaces. Hence, for some a,
the basis Ba is compatible with F by Lemma 6.5. In short this means that the collection
T = {TBa

| a ∈ K} satisfies the hypothesis of Theorem 4.6. Since w is TBa
-polystable for all

a ∈ K by Lemma 6.7, we get that OT,w = OT,w ⊆ OG,w for all T ∈ T . Thus, by Theorem 4.6,
we conclude that w is G-polystable. �

6.2. Closed orbits for tensor actions. The idea is very much similar to the one on cubic
forms, but the computations get a little bit cumbersome. Yet, spotting certain patterns
will make the computation much easier. For this section, let U, V,W be a 3n-dimensional

spaces with basis {u(k)i | 1 ≤ i ≤ 3, 1 ≤ k ≤ n}, {v(k)i | 1 ≤ i ≤ 3, 1 ≤ k ≤ n}, and

{w(k)
i | 1 ≤ i ≤ 3, 1 ≤ k ≤ n} respectively. Consider the action of SL(U)× SL(V )× SL(W )

on (U ⊗ V ⊗W )⊕4. Let F = (F1, F2, F3, F4) ∈ (U ⊗ V ⊗W )⊕4, where

F1 =

n∑

k=1

u
(k)
1 v

(k)
2 w

(k)
3 + u

(k)
2 v

(k)
3 w

(k)
1 + u

(k)
3 v

(k)
1 w

(k)
2

F2 =

n∑

k=1

u
(k)
2 v

(k)
1 w

(k)
3 + u

(k)
1 v

(k)
3 w

(k)
2 + u

(k)
3 v

(k)
2 w

(k)
1

F3 =

n∑

k=1

u
(k)
1 v

(k)
1 w

(k)
3 + u

(k)
2 v

(k)
3 w

(k)
2 + u

(k)
3 v

(k)
1 w

(k)
1

F4 =

n∑

k=1

u
(k)
2 v

(k)
2 w

(k)
3 + u

(k)
1 v

(k)
3 w

(k)
1 + u

(k)
3 v

(k)
2 w

(k)
2

Proposition 6.8. The point F ∈ (U ⊗ V ⊗W )⊕4 is SL(U)× SL(V )× SL(W )-polystable.
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Let us define a map φU : ((C∗)3)n → GL(U). To define such a map it suffices to understand
the action of t = (p1, q1, r1, p2, q2, r2, . . . , pn, qn, rn) on each basis vector b ∈ Bu. The map φU

is defined by

φU(t)u
(k)
1 = pku

(k)
1 , φU(t)u

(k)
2 = pku

(k)
2 and φU(t)u

(k)
3 = (qkrk)

−1u
(k)
3 .

Similarly define φV : ((C∗)3)n → GL(V ) by

φV (t)v
(k)
1 = qkv

(k)
1 , φV (t)v

(k)
2 = qkv

(k)
2 and φV (t)v

(k)
3 = (pkrk)

−1v
(k)
3 .

Finally, define φW : ((C∗)3)n → GL(W ) by

φW (t)w
(k)
1 = rkw

(k)
1 , φW (t)w

(k)
2 = rkw

(k)
2 and φW (t)w

(k)
3 = (pkqk)

−1w
(k)
3 .

Let φ = (φU , φV , φW ) : ((C∗)3)n → GL(U) × GL(V ) × GL(W ). There is also an action

of Sn on U, V and W defined by σ(u
(k)
i ) = u

(σ(k))
i , σ(v

(k)
i ) = v

(σ(k))
i , and σ(w

(k)
i ) = w

(σ(k))
i

respectively. That action gives a map ψ : Sn → GL(U) × GL(V ) × GL(W ). Put together,
we get a map φ⋊ ψ : ((C∗)3)n ⋊ Sn → GL(U)×GL(V )×GL(W ). Let H denote the image
of φ⋊ ψ.

Lemma 6.9. U, V,W are all semisimple H-modules.

Proof. We will only prove this for U , the others are similar. For i = 1, 2, 3, let Xi =

span(u
(k)
i : k ∈ [n]). Then, Xi is an irreducible representation of H , which can be seen by

an argument similar to the one in the proof of Lemma 6.3. Clearly X1 ⊕ X2 ⊕X3 = U , so
U is semisimple. �

Moreover, observe that in the proof of the above lemma, X1
∼= X2 ≇ X3. In particular,

the isotypic decomposition of U = P ⊕X3 where P = X1 ⊕X2. For a ∈ K, define the basis

BU,a = {u(k)1 + au
(k)
2 , u

(k)
2 , u

(k)
3 | k ∈ [n]} of U . In studying flags of H-stable subspaces of U ,

the situation is similar to that of Lemma 6.5. Hence, we can conclude that for any flag of
H-stable subspaces of U , there is a compatible basis of the form BU,a for some a ∈ K. Similar
arguments hold for V and W where BV,b and BW,c for b, c ∈ K are defined analogously. We
define Ba,b,c = BU,a ⊗ BV,b ⊗ BW,c = {z ⊗ z′ ⊗ z′′ |z ∈ BU,a, z

′ ∈ BV,b, z
′′ ∈ BW,c}.

From the above discussion, we conclude:

Lemma 6.10. Suppose (F1,F2,F3) is a 3-tuple of H-stable of flags of U, V and W respec-
tively. Then, there exists a compatible basis of the form Ba,b,c

Let La
U be the linear transformation that sends u

(k)
1 7→ u

(k)
1 +au

(k)
2 and leaves u

(k)
2 and u

(k)
3

invariant. Note that (La
U)

−1 = L−a
U . Similarly, define Lb

V and Lc
W . For a, b, c ∈ K, define:

La,b,c = La
U ⊗ Lb

V ⊗ Lc
W : U ⊗ V ⊗W → U ⊗ V ⊗W.

For S = (S1, . . . , Sr) ∈ (U ⊗ V ⊗ W )⊕r, write each Si =
∑
d(i)ka,kb,kca,b,c u

(ka)
a v

(kb)
b w

(kc)
c .

Define the support supp(Si) := {u(ka)a v
(kb)
b w

(kc)
c |d(i)ka,kb,kca,b,c 6= 0} and define the total support

tsupp(S) = ∪isupp(Si).
Now, consider F = (F1, F2, F3, F4) ∈ (U ⊗ V ⊗W )⊕4.

Lemma 6.11. Fix a, b, c ∈ K, let L = La,b,c and let F ′ = L(F ). Then we have tsupp(F ) =
tsupp(F ′).
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Proof. One way to prove this lemma is by brute force computation, for example, with the
use of a computer. However, we will give a proof by spotting key patterns. Let

C1,k = {u(k)1 v
(k)
2 w

(k)
3 , u

(k)
2 v

(k)
1 w

(k)
3 , u

(k)
1 v

(k)
1 w

(k)
3 , u

(k)
2 v

(k)
2 w

(k)
3 } = {u(k)i v

(k)
j w

(k)
3 | i, j ∈ {1, 2}},

C2,k = {u(k)i v
(k)
3 w

(k)
j | i, j ∈ {1, 2}}, and

C3,k = {u(k)3 v
(k)
i w

(k)
j | i, j ∈ {1, 2}}.

Observe that each Fi is a sum of monomials, exactly one from each Ci,k. In particular,
tsupp(F ) = ∪i,kCi,k. Also, observe that L keeps the span of each Ci,k invariant. Moreover,
observe that for a monomial m ∈ Ci,k, we have L(m) = m+

∑
n∈Ci,k\{m} λnn for some scalars

λn ∈ K. Now, suppose m occurs in Fj, then as observed above, none of the monomials in
Ci,k \ {m} occur in Fj. This means that supp(Fj) ⊆ supp(L(Fj)) ⊆ tsupp(F ). Since this
holds for arbitrary j, we have tsupp(L(F )) = tsupp(F ) as required. �

Lemma 6.12. The point F is TE-polystable.

Proof. The argument is similar to the one in the proof of Lemma 6.6 since a convex com-
bination of weights in the weight space decomposition is 0, see e.g., the computation in the
proof of [DM20b, Proposition 8.1]. �

Lemma 6.13. The point F is TBa,b,c
-polystable for all a, b, c ∈ K.

Proof. To check that F is TBa,b,c
-polystable, it suffices to check that L(F ) is TE -polystable,

where L = L−a,−b,−c. Lemma 6.11 shows that both F and L(F ) have the same weight sets
and hence the same weight polytopes, so L(F ) is TE -polystable since F is by the above
lemma. �

Proof of Proposition 6.8. This is very similar to the proof of Proposition 6.2. Using similar
arguments, we see that the collection T = {TBa,b,c

: a, b, c ∈ K} satisfies the hypothesis of
Theorem 4.6 and so by Lemma 6.13, we conclude that F is G-polystable. We leave the
details to the reader. �

7. Degree lower bounds via Grosshans principle

In this section, we discuss our method to prove lower bounds, in particular we give a proof
of Theorem 2.7. Then, using Theorem 2.7 along with the results on polystability from the
previous section, we give a proof of Theorems 2.8 and 2.9.

The following lemma is crucial for our purposes, see [BGM19, Lemma 3.3].

Lemma 7.1. Let V be a rational representation of a reductive group G and let v ∈ V and
let H = Gv := {g ∈ G | gv = v}.

• The natural map G/H → G ·v is a homeomorphism, and an isomorphism of varieties
if and only if the orbit map G→ Ov is separable.

• Ov is affine if and only if G/H is affine if and only if H is reductive.

Moreover, observe that when G/H is affine, it is clearly a categorical quotient and hence
its coordinate ring is equal to K[G]H .

Let V,W be rational representations of a reductive group G. Let v ∈ V such that Ov

is closed. Let H = Gv. Since the orbit of v is closed, H is a closed reductive subgroup.
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Consider the following three morphisms of affine varieties. The first map is

ι : W →֒ G/H ×W

w 7→ (eH,w)

The second map is

π : G/H ×W → Ov ×W

(gH,w) 7→ (gv, w)

The last map is just the closed embedding

j : Ov ×W →֒ V ×W

Composing the three maps, we get φ := j ◦ π ◦ ι : W → V ×W given by w 7→ (v, w).
For any morphism ψ between affine varieties, we denote by ψ∗ the corresponding map on
coordinate rings in the other direction.

Lemma 7.2. The map φ∗ is degree non-increasing, i.e., if f ∈ K[V ×W ], then deg(f) ≥
deg(φ∗(f)).

Proof. This is straightforward. �

Proposition 7.3. The map φ∗ restricts to a map on invariant rings K[V ×W ]G → K[W ]H .

Proof. For h ∈ H and w ∈ W , we see that φ(hw) = (v, hw) and φ(w) = (v, w) are in the
same G-orbit because h · (v, w) = (hv, hw) = (v, hw), which follows because H = Gv. Thus
φ maps H-orbits into G-orbits. Hence, any G-invariant function pulls back under φ∗ to a
H-invariant function.

�

Proposition 7.4. Let {fi : i ∈ I} be a separating subset of invariants for the action of G
on V ×W . Then {φ∗(fi) : i ∈ I} is a separating subset of invariants for the action of H on
W .

Proof. Observe that φ∗ = ι∗◦π∗◦j∗. First, j is just the restriction to a closed G-stable subset
and π is a homeomorphism, so {π∗ ◦ j∗(fi) : i ∈ I} is a separating subset for the action of G

on G/H×W . But now, Grosshans principle gives us an isomorphism ι∗ : K[G/H ×W ]G
∼
−→

K[W ]H , which means that the categorical quotients (G/H×W )//G ∼= W//H , so a separating
subset for the action of G on G/H ×W gives a separating subset for the action of H on W
via the map ι∗. �

Proof of Theorem 2.7. From Lemma 7.2 and Proposition 7.4, we get βsep(G, V × W ) ≥
βsep(H,W ). The other two inequalities are straightforward, see Equation 1. �

7.1. Null cone bounds for non-connected reductive groups. In order to prove degree
lower bounds for one action, our strategy is essentially to reduce it to bounds for invariants
defining the null cone of a related action. However, for this strategy to work, we need to start
somewhere, i.e., be able to prove exponential lower bounds for invariants defining the null
cone for some action. As mentioned in the introduction, it is relatively easier to prove null
cone bounds for torus actions. Hence, we want to look for a point with a closed orbit whose
stabilizer is a torus. On the other hand, having a significant finite group in the stabilizer can
greatly simplify and ease the computations needed to prove that the point in question has
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a closed orbit. Thus, we find points with closed orbits whose stabilizers are not a torus, but
the extension of a torus by a finite group. However, this brings a new problem, i.e., we now
need to understand null cone bounds for groups that are a little more general than tori. In
this subsection, we will show that the finite group part does not affect the null cone bound
adversely.

Proposition 7.5. Let V be a rational representation of a reductive group G. Let G◦ denote
the identity component of G. Then σ(G, V ) ≥ σ(G◦, V ).

Proof. The Hilbert–Mumford criterion, (see e.g., [MFK94] or [DK15, Theorem 2.5.3]) can be
formulated in the following way – the null cone for the action of a reductive group is the union
of null cones for all of its maximal tori. Since maximal tori for G are precisely the maximal
tori for G◦, we conclude that the null cone for the action of G and G◦ on V are the same. Let
N := N (G, V ) = N (G◦, V ). By definition of σ(G, V ), there exist f1, . . . , fr ∈ K[V ]G such
that V(f1, . . . , fr) = N with max{deg(fi)} = σ(G, V ). This means that f1, . . . , fr are G◦-
invariant functions that cut out the null cone N (G◦, V ). Thus, σ(G◦, V ) ≤ max{deg(fi)} =
σ(G, V ). �

7.2. Cubic forms. Assume char(K) 6= 2 for this subsection. Let V be a 3n-dimensional
vector space with preferred basis E = {xi, yi, zi}1≤i≤n. Consider the action of G = SL(V ) on
S3(V ), and the diagonal action of SL(V ) onW = S3(V )⊕2. Consider w = (

∑
i x

2
i zi,

∑
i y

2
i zi) ∈

W⊕2. Then, by Proposition 6.2, we know that Ow is closed. So, in order to use Theorem 2.7,
we need to compute Gw. Consider the action of the n-dimensional torus on V as follows.
For t = (t1, . . . , tn) ∈ (C∗)n, we have txi = tixi, tyi = tiyi, and tzi = t−2

i zi. This action gives
a map ψ : (C∗)n → SL(V ). Let L := ψ((C∗)n).

Lemma 7.6. Let g ∈ Gw. Then gxi = cixσ(i), gyi = ±ciyσ(i) and gzi = c−2
i zσ(i) for some

scalars ci ∈ K and σ ∈ Sn.

Proof. The proof is the same as [DM20b, Corollary 7.11], the proof of which uses [DM20b,
Lemma 7.8] (a result which holds precisely when characteristic 6= 2 as can be easily seen
from the proof). �

Corollary 7.7. We have G◦
w = L.

Proof. The above lemma associates a permutation σ to each g ∈ Gw. That gives a map which
can easily be seen to be a group homomorphism, which we call φ : Gw → Sn. The kernel
of φ is precisely all the elements of Gw that keep xi, yi, zi invariant up to scalars. Moreover,
by the previous lemma, for g ∈ ker(φ), the action is given by gxi = cixi, gyi = ±ciyi and
gzi = c−2

i zi for some scalars ci ∈ K. Now, it is easy to see that ker(φ) contains L and
the quotient is a finite group (indeed just a subgroup of (Z/2)n). Since L is connected, we
conclude that ker(φ)◦ = L. Clearly, since Gw is a finite extension of ker(φ), we deduce that
G◦

w = L. �

Proof of Theorem 2.8. Since w = (
∑

i x
2
i zi,

∑
i y

2
i zi) has a closed SL(V )-orbit, by Theo-

rem 2.7, we get that
β(SL(V ), S3(V )⊕3) ≥ σ(Gw, S

3(V )).

But now, since G◦
w = L, we get that σ(Gw, S

3(V )) ≥ σ(L, S3(V )) by Proposition 7.5. Since
L is a torus, the degree bound on generators as well as the bound on the degree of invariants
defining the null cone only depend on the weight set (and in particular is oblivious to the
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characteristic). The computation one needs to do to obtain a lower bound on σ(L, S3(V )) is
already done, see [DM20b, Corollary 7.4] (where L for us is denoted H). Thus, we conclude

β(SL(V ), S3(V )⊕3) ≥ σ(Gw, S
3(V )) ≥ σ(L, S3(V )) ≥

2

3
(4n − 1).

�

7.3. Tensor actions. Let U, V,W be 3n-dimensional spaces with a preferred basis {u(k)i }, {v(k)i },

and {w(k)
i } respectively as in Section 6.2. Consider the action of G = SL(U)×SL(V )×SL(W )

on (U ⊗ V ⊗W )⊕4. Let F = (F1, F2, F3, F4) ∈ (U ⊗ V ⊗W )⊕4 as in Section 6.2, which has
a closed G-orbit.

We consider a slightly different group

J := {(g1, g2, g3) ∈ GL(U)×GL(V )×GL(W ) | det(g1) det(g2) det(g3) = 1}.

Both G and J are subgroups of GL(U)×GL(V )×GL(W ) and act naturally on (U ⊗V ⊗
W )⊕r for r ∈ Z>0. As shown in [DM20b, Section 8], the orbits with respect to both groups
are precisely the same and hence so are the invariant rings. Moreover, J is a reductive group
by Matsushima’s criterion.

Now, we turn to computing the stabilizer JF , or rather its identity component. Recall the
map φ defined in Section 6.2. Let L := φ(((C∗)3)n).

Lemma 7.8. The subgroup H = J◦
F , the identity component of the stabilizer of F .

Proof. By Kruskal’s uniqueness theorem [Kru77] (see also [Lan09]), any g ∈ JF permutes
the terms in each of the Fi’s. By a similar argument to the one in the case of cubic forms,
the subgroup of JF that fixes all monomials is of finite index in JF . But this is precisely
L by the same arguments in [DM20b, Lemma 8.11]. Since L is connected, we must have
J◦
F = L. �

Proof of Theorem 2.9. This is similar to the proof of Theorem 2.8. We have

β(G, (U ⊗ V ⊗W )⊕5) = β(J, (U ⊗ V ⊗W )⊕5)

≥ σ(JF , U ⊗ V ⊗W )

≥ σ(L, U ⊗ V ⊗W )

≥ 4n − 1

The first equality follows from the fact that G-orbits and J-orbits are the same, so the
corresponding invariant rings are also the same. The first inequality follows from applying
Theorem 2.7 to the fact that F has a closed orbit (by Proposition 6.8). The second in-
equality follows from Proposition 7.5. The last follows from the computation in [DM20b,
Corollary 8.5] (where L for us is denoted H). �

8. Polystability for symmetric polynomials

In this section, we discuss stability notions for symmetric polynomials, in particular we
give an algorithm to determine whether a symmetric polynomial is unstable, semistable,
polystable, or stable. The techniques in this section go beyond the results stated in Section 4.
Roughly speaking, in Section 4, the high-level idea was to check polystability (or similar)
for a collection of maximal tori that covers all possible optimal parabolic subgroups. In this
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section, we will take a closer look at the parabolic itself and leverage that for a parabolic
subgroup to be optimal, the associated optimal one-parameter subgroup must take a very
specific form. So, we first discuss some generalities on one-parameter subgroups and their
associated parabolics and then proceed to study the case of symmetric polynomials.

Let λ : K∗ → SL(V ) be a 1-parameter subgroup. Such a 1-parameter subgroup is diago-
nalizable, i.e., we have a basis v1, . . . , vn of V (say V is n-dimensional) such that λ(t)vi = tβivi
for some βi ∈ Z. Without loss of generality, we can take β1 ≥ β2 ≥ · · · ≥ βn. Of course, some
of the inequalities can be equalities. So, we must have 1 = k0 < k1 < k2 < · · · < kr = n + 1
such that βi = βj for all i, j ∈ {ka−1, ka−1 + 1, . . . , ka − 1} for any a ∈ {1, . . . , r}. Let Fa

denote the linear span of v1, v2, . . . , vka−1. Let F = 0 ⊆ F1 ⊂ F2 ⊂ · · · ⊂ Fr = V . Then, the
parabolic associated to λ is P (λ) = PF . An illustrative example is the following:

Example 8.1. Let x1, x2, x3 denote the standard basis of K3. Consider the one-parameter

subgroup λ of SL3 given by λ(t) =



t3 0 0
0 t3 0
0 0 t−6


. Consider the flag F = 0 ⊆ span{x1, x2} ⊆

K3. Then P (λ) = PF =




∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 ⊆ SL3.

Definition 8.2. Let F = (0 = F0) ⊆ F1 ⊆ · · · ⊆ (Fr = V ) be a flag. We call a tuple
of subspaces G = (G1, . . . , Gr) a splitting of F if Fi−1 ⊕ Gi = Fi for all i. Observe that
⊕iGi = V . Denote by SF the set of splittings of F .

Further, let c ∈ Zr be such that
∑

i ci dim(Gi) = 0. Then, we call (G, c) a decorated
splitting of F . We call c a decoration for the splitting G.

Finally, for a decorated splitting (G, c), we define an associated 1-parameter subgroup
λ = λ(G,c) by λ(t)v = tciv for v ∈ Gi.

Lemma 8.3. Let F be a flag in V . Suppose λ is a 1-parameter subgroup such that P (λ) =
PF . Then, there is a decorated splitting (G, c) of F such that λ = λ(G,c).

Proof. Take a basis v1, . . . , vn of V such that λ(t)vi = tβivi for some βi ∈ Z and assume
w.l.o.g. that β1 ≥ β2 ≥ · · · ≥ βn. Let 1 = k0 < k1 < k2 < · · · < kr = n+ 1 such that βi = βj
for all i, j ∈ {ka−1, ka−1+1, . . . , ka− 1} for any a ∈ {1, . . . , r}. Then P (λ) = PF means that
Fa is the linear span of v1, v2, . . . , vka−1 as explained above (just before Example 8.1.

So, now let Ga to be the linear span of vka−1
, vka−1+1, . . . , vka−1 and let ca = βka−1

=
βka−1+1 = · · · = βka−1. It is now straightforward to check that λ = λ(G,c). �

Perhaps the most important result for this section is the following lemma.

Lemma 8.4. Suppose W is a representation of G = SL(V ) and w ∈ W such that Ow is not
closed. Let S be a closed G-stable subset such that S ∩ Ow = ∅ and S ∩ Ow 6= ∅. Let F be
a flag of V such that the optimal parabolic subgroup PS,w = PF . Then, there exists unique
indivisible c = (c1, . . . , cr) ∈ Zr with

∑
i ci dim(Fi/Fi−1) = 0 and c1 ≥ c2 ≥ · · · ≥ cr such

that the map

SF −→ Λ(S, v)

G 7−→ λ(G,c)

is a bijection between splittings and optimal 1-parameter subgroups.
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Proof. Let G be a splitting. Then, take a basis B such that each Gi is a coordinate subspace
(i.e., span of a subset in B). Then, by Theorem 4.1, part (3), there is an optimal 1-parameter
subgroup contained in TB. Let us call that λ. Fix 1 ≤ i ≤ r. Let A : Gi → Gi be a linear
transformation with determinant 1. Let L(A) : W → W be the linear transformation that
is identity on Gj for j 6= i and agrees with Ai on Gi. It is easy to see that L(A)λL(A)−1

is also an optimal 1-parameter subgroup in TB. Thus, we must have L(A)λL(A)−1 = λ
for all A ∈ SL(Gi). It is straightforward to argue that this means there is ci ∈ Z such
that λ(t)v = tciv for all v ∈ Gi. In particular, this means that λ does not depend on the
choice of B or TB but on just G itself. Thus, to each splitting G, we can associate a unique
λ = λG,c ∈ Λ(S, w) (where apriori c depends on G). Note that c is indivisible simply because
λ is optimal.

To show that c does not depend on the choice of G, we note that for any other splitting
G′, we have p ∈ PS,w such that pG = G′. This means that pλG,cp

−1 = λG′,c ∈ Λ(S, w). This
means that the choice of c is independent of the choice of G.

To summarize, we have shown that the existence of the map SF → Λ(S, v). Injectivity is
clear because you can recover Gi from λ uniquely as the subspace of V on which λ(t) acts
by tci. To show surjectivity is to show that any optimal 1-parameter subgroup λ ∈ Λ(S, w)
arises as λG,c for some splitting G and c. But this follows from Lemma 8.3.

�

Remark 8.5. Suppose F is a 2-step flag, i.e., F = 0 ⊆ F1 ⊆ F2 = V and let c be as
in Lemma 8.4 above. Then c must be the indivisible integral vector that is a multiple of
(dim(V )− dim(F1),− dim(F1)).

Lemma 8.6. Assume n ≥ 2. Let x1, . . . , xn denote the standard basis for Kn and consider
the natural action of Sn on Kn by permutation of x1, . . . , xn. Then L = span(x1+x2+· · ·+xn)
and M = {

∑
i αixi |

∑
i αi = 0} are the only non-trivial Sn-stable subspaces of Kn.

Proof. We will prove it by contradiction. Suppose W is a non-trivial Sn-stable subspace that
is neither L nor M . Take α = (α1, . . . , αn) ∈ W such that it is not a multiple of (1, 1, . . . , 1)
(such an α exists because W 6= L). Without loss of generality, we can assume α1 6= α2, so
α− (12)α = (d,−d, 0, . . . , 0) where d = α1 −α2 6= 0. This means that (1,−1, 0, . . . , 0) ∈ W .
It is easy to see then that M ⊆W . Since M has codimension 1 and W 6=M , we must have
W = Kn, which is a contradiction since we assumed W is non-trivial. �

Corollary 8.7. Assume n ≥ 2. Let char(K) = p. Let x1, . . . , xn denote the standard basis
for Kn and consider the natural action of Sn on Kn by permutation of x1, . . . , xn. Let F be
a flag of Sn stable subspaces. If p ∤ n, then F must be one of:

• 0 ⊂ Kn;
• 0 ⊂ L ⊂ Kn;
• 0 ⊂M ⊂ Kn.

If p | n, then F must be one of:

• 0 ⊂ Kn;
• 0 ⊂ L ⊂ Kn;
• 0 ⊂M ⊂ Kn;
• 0 ⊂ L ⊂M ⊂ Kn.
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Note that when char(K) = p = 2 and n = 2, then L = M . So, in this case, we only have
two possible flags instead of four.

It is quite crucial to realize that Corollary 8.7 is key to giving an algorithm for detecting
polystability. Indeed, this shows that one has very few choices for an optimal parabolic
subgroup, which narrows the search for an optimal one-parameter subgroup (if it exists).
The rest of this section is devoted to discussing the algorithm to detect polystability of
symmetric polynomials.

8.1. The case p ∤ n. Assume n ≥ 2 for this subsection. Let L,M ⊆ Kn be the two non-
trivial Sn-stable subspaces as defined above. Then, it is easy to see that since p ∤ n, we
have L ⊕M = Kn. In particular, this means that for the flag 0 ⊂ L ⊂ Kn, a splitting is
(L,M) and for the flag 0 ⊂ M ⊂ Kn, a splitting is (M,L). Since both are 2-step flags, the
decoration is uniquely determined, it is (n− 1,−1) in the first instance and (1,−(n− 1)) in
the second instance. Let λcan be the 1-parameter subgroup of SLn defined by

(2) λcan(t) · v =

{
tn−1v if v ∈ L

t−1v if v ∈M

We call λcan the canonical 1-parameter subgroup for symmetric polynomials (in the case
p ∤ n).

Lemma 8.8. Let char(K) = p ∤ n. Let f ∈ K[x1, . . . , xn]
Sn

d be a degree d symmetric
polynomial. Then, f is not polystable if and only if one of the two conditions hold:

• limt→0 λcan(t) · f exists and is not in Of ;
• limt→∞ λcan(t) · f exists and is not in Of ;

Further, f is unstable if and only if limt→0 λcan(t) · f = 0 or limt→∞ λcan(t) · f = 0.

Proof. Clearly if f is polystable, then the two limits either do not exist or must be in Of .
Now, suppose f is not polystable, let S = Of \ Of . Consider the optimal parabolic

subgroup PS,v. First, we claim that PS,v is not all of SLn. This is because then PS,v = PF

where F = 0 ⊆ Kn. Hence, the only possible splitting is G = (G1) = (V ) (i.e., SF is a
singleton set). Now, consider an optimal one-parameter subgroup λ = λ(G,c) as in Lemma 8.4.
We must have c = (c1) = 0 because 0 =

∑
i ci dimGi = c1 · n, so λ(t) is the trivial one-

parameter subgroup, i.e., λ(t) is the identity matrix for all t. Thus limt→0 λ(t) ·f = f , which
contradicts the assumption that f is not polystable and λ is optimal.

Thus PS,v = PF where F is either 0 ⊂ L ⊂ Kn or 0 ⊂ M ⊂ Kn by Corollary 8.7. In
the former case (L,M) is a splitting and by Remark 8.5, we see that λcan is an optimal
one-parameter subgroup. In the latter case, (M,L) is a splitting and by Remark 8.5, λ−1

can is
an optimal one-parameter subgroup. Thus, one of these two one-parameter subgroups must
drive f out of its orbit in the limit, as required.

The argument for unstable is analogous, where you replace S = Of \Of with S = {0}. �

Suppose that p ∤ n. For f ∈ K[x1, . . . , xn]
Sn

d , we can rewrite f as a polynomial in l =
∑

i xi
and b1, . . . , bn−1 where bi = xi − xi+1. In other words, we have

(3) f =
d∑

i=0

lipi,
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where pi is a polynomial in b1, b2, . . . , bn−1.

Remark 8.9. We point out to the reader that we use p for characteristic and pi to denote
polynomials obtained by decomposing f in a specific way as indicated above. These poly-
nomials always come with a subscript which indicates their degree, so there is no scope for
confusion.

Theorem 8.10. Let char(K) = p ∤ n. Let f ∈ K[x1, . . . , xn]
Sn

d . Write f =
∑

i l
ipi as

described above. Then, f is unstable if and only if either l⌊d/n⌋+1 | f or f =
∑⌈d/n⌉−1

i=0 lipi.
Further, if f is not unstable, then it is polystable unless the following conditions hold:

• n | d;
• ld/nfd/n /∈ Of ;

• ld/n | f or f =
∑d/n

i=0 l
ipi

Proof. Write f =
∑

i l
ipi as in Equation 3. f is unstable precisely when limt→0 λcan(t)f = 0

or limt→∞ λcan(t)f = 0
Observe that λcan(t)f =

∑
i t

(n−1)i−(d−i)lipi =
∑

i t
ni−dlipi. This limit as t → 0 is 0 if and

only if ni − d > 0 for all i such that pi 6= 0. In other words, pi 6= 0 =⇒ i > d/n, i.e.,
i ≥ ⌊d/n⌋+ 1 since i must be an integer. Thus l⌊d/n⌋+1 | f . Similarly, the limit as t→ ∞ is

0 if and only if f =
∑⌈d/n⌉−1

i=0 lipi.
If f is not unstable, then it is semistable. Suppose f is not polystable, then one of

limt→0 λcan(t)f and limt→∞ λcan(t)f exists and is not in Of .
Let’s first suppose limt→0 λcan(t)f exists and is not in Of . If n ∤ d, for any i, we must

have ni − d < 0 or ni − d > 0. For limt→0 λcan(t)f to exist, we must have pi = 0 whenever
ni− d < 0. Further, if ni− d > 0, then tni−dlipi will go to 0 in the limit, i.e., 0 ∈ Of , so f is
unstable, which is a contradiction. Hence, we must have n | d and that ld/n | f (since pi = 0
whenever ni− d < 0). Further, in this case, the limit is precisely ld/nfd/n.

The case limt→∞ λcan(t)f exists and is not in Of is similar except we replace ld/n | f by

f =
∑d/n

i=0 l
ipi. �

The above results translate into the following algorithm:

Algorithm 8.11. Now we give an algorithm that decides whether a symmetric polynomial
is unstable/semistable/polystable/stable in the case p ∤ n.
Input: f ∈ K[x1, . . . , xn]d

Step 1: Write f =
∑

i l
ipi.

Step 2: If l⌊d/n⌋+1 | f or f =
∑⌈d/n⌉−1

i=0 lipi, then f is unstable. Else, proceed to Step 3.

Step 3: If n ∤ d, then f is polystable. Further, in this case, if dim(SL(V )f) = 0, then
f is stable. If n | d, proceed to Step 4.

Step 4: Check if ld/n | f or f =
∑d/n

i=0 l
ipi. If neither holds, then f is polystable.

Further, in this case, if dim(SL(V )f) = 0, then f is stable. If one of ld/n | f or

f =
∑d/n

i=0 l
ipi hold, then go to Step 5.

Step 5: Let f ′ = ld/nfd/n. If dim(SL(V )f ′) = dim(SL(V )f), then f is polystable and
in this case if dim(SL(V )f) = 0, then f is stable. If dim(SL(V )f ′) 6= dim(SL(V )f),
then f is semistable, but not polystable.
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Most of the steps in the above algorithm are fairly straightforward from an algorithmic
perspective, especially since we do not worry about complexity issues. The only non-trivial
step is the computation of dim(SL(V )f) and dim(SL(V )f ′). These can be computed by
Gröbner basis techniques, see [CLO15, Chapter 9]. In chacteristic 0, these can actually be
computed by computing the dimensions of their Lie algebras, which is a linear algebraic
computation.

8.2. The case p | n: Recall from Corollary 8.7 that there are essentially four possible flags
of Sn-stable subspaces. It is easy to observe that 0 ⊂ L ⊂ M ⊂ Kn refines all such flags. We
can take advantage of this fact to reduce the problem of testing polystability for a symmetric
polynomial to a problem on a 2-dimensional torus (and a computation of the stabilizer).

Lemma 8.12. Suppose that char(K) = p | n. Let 0 6= f ∈ V = K[x1, . . . , xn]
Sn

d . Let
B = (l, b1, b2, . . . , bn−2, c) be a basis of Kn, where l = x1 + · · · + xn, let bi = xi − xi+1 for
i = 1, 2, . . . , n − 2 and let c = xn. Let T2 = (K∗)2 denote the two-dimensional torus acting

on Kn by t · l = t1l, t · bi = t2bi for all i and t · c = t−1
1 t

−(n−2)
2 c. Let w = ess(f) denote a

point in the unique closed orbit of OT2,f . Then

• f is polystable if and only if dim((SLn)f) = dim((SLn)w);
• f is semistable if and only if w 6= 0.

Proof. Let S be a non-empty closed SLn-stable subset of V such that S ∩ OSLn,f = ∅ and
S ∩OSLn,f 6= ∅. Then, let PS,f be the optimal parabolic subgroup. Now PS,f = PF for some
flag F of Sn-stable subspaces of Kn. By Corollary 8.7, there are four possibilities:

• 0 ⊂ Kn;
• 0 ⊂ L ⊂ Kn;
• 0 ⊂M ⊂ Kn;
• 0 ⊂ L ⊂M ⊂ Kn.

The first is ruled out by the same argument as in Lemma 8.8. For the second flag, a
splitting of Kn is given by G = (L,B ⊕ C), where L is the span of l, B is the span of bi for
1 ≤ i ≤ n− 2 and C is the span of c. Let λ be the optimal 1-parameter subgroup associated
to the splitting G. Then λ(t)v = tc1v for v ∈ L and λ(t)v = tc2v for v ∈ B ⊕ C such that
c1 + (n − 1)c2 = 0. In particular, λ ∈ T2, so this means that S ∩ OT2,f 6= ∅. A similar
argument holds for the other two possibilities of flags. Hence, in any case, we must have
S ∩OT2,f 6= ∅.

To summarize, suppose we have a closed SLn-stable subset S such that S ∩ OSLn,f = ∅
and S ∩ OSLn,f 6= ∅, then S ∩OT2,f 6= ∅. Now, since T2 is a torus, we get that S ∩ OT2,f 6= ∅
if and only if w ∈ S.

Now, take S = OSLn,f \ OSLn,f . Thus, S 6= ∅ ⇔ w ∈ S. Clearly, w ∈ OSLn,f , so
dim((SLn)f) ≥ dim((SLn)w). Thus w ∈ S ⇔ dim((SLn)f) > dim((SLn)w) ⇔ dim((SLn)f ) 6=
dim((SLn)w). Thus f is polystable ⇔ S = ∅ ⇔ dim((SLn)f ) = dim((SLn)w).

The argument for semistability is analogous where you take S = {0} instead of OSLn,f \
OSLn,f .

�

Algorithm 8.13. Now we give an algorithm that decides whether a symmetric polynomial
is unstable/semistable/polystable/stable in the case p | n.
Input: f ∈ K[x1, . . . , xn]d
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Step 1: Compute w = ess(f) as in Lemma 8.12. If w = 0, then f is unstable. Else,
proceed to Step 2

Step 2: If dim((SLn)f ) 6= dim((SLn)w), then f is semistable, not polystable. Else f is
polystable. Moreover, in the case that f is polystable, dim(SLn)f = 0 if and only if
f is stable.

Proof of Theorem 2.14. Thus follows from Algorithms 8.11 and 8.13. �

9. Polystability for interesting classes of symmetric polynomials

We first briefly recall important results on symmetric polynomials, using the opportunity
to introduce notation. While symmetric polynomials in characteristic zero is widely studied,
the case of positive characteristic receives far less attention, so we will be particularly careful
about characteristic assumptions.

First, we define elementary symmetric functions. For each 1 ≤ k ≤ n, we define the kth

elementary symmetric polynomial

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik

We also define the kth homogeneous symmetric polynomial

hk(x1, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik

Let Λ(n) = K[x1, . . . , xn]
Sn denote the ring of symmetric polynomials. The collection

{ek(x1, . . . , xn) | 1 ≤ k ≤ n} forms an algebraically independent set of generators for Λ(n) as
does the collection {hk(x1, . . . , xn) | 1 ≤ k ≤ n}. In characteristic zero {pk(x1, . . . , xn) | 1 ≤
k ≤ n} forms an algebraically independent set of generators as well where pk denotes the
power sum symmetric polynomial

pk(x1, . . . , xn) = xk1 + xk2 + · · ·+ xkn.

However, power sum symmetric polynomials do not form a generating set if char(K) < n.
For each partition λ = (λ1, . . . , λl) ⊢ d, we define

eλ = eλ1
eλ2

· · · eλl

hλ = hλ1
hλ2

· · ·hλl

pλ = pλ1
pλ2

· · · pλl

The collection {eλ(x1, . . . , xn) |λ ⊢ d} forms a linear basis for Λ(n)d, the space of de-
gree d symmetric polynomials as does {hλ(x1, . . . , xn) |λ ⊢ d} and in characteristic 0
{pλ(x1, . . . , xn) |λ ⊢ d} forms a basis as well. In particular, dimK(Λ(n)d) is equal to the
number of partitions of d. A very straightforward way to see this is to define monomial
symmetric functions. We say an exponent vector e = (e1, . . . , en) is of type λ if it is a
permutation of (λ1, . . . , λn) where we add trailing zeros to λ if it does not have sufficient
parts.

mλ(x1, . . . , xn) =
∑

e=(e1,...,en) of type λ

xe.

It is entirely obvious that {mλ | λ ⊢ d} is a linear basis of Λ(n)d.
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Another interesting collection of symmetric polynomials are the Schur polynomials whose
importance comes from the representation theory of the symmetric group (or equivalently
the general linear group). For λ = (λ1, . . . , λl) ⊢ d, we define the Schur polynomial

sλ(x1, . . . , xn) = det




hλ1
hλ1+1 . . . . . . hλ1+l−1

hλ2−1 hλ2
hλ2+1 . . . hλ2+l−2

. . .
...

. . .
...

. . . hλl−1 hλl



,

where hd = 0 for d < 0 and h0 = 1. In particular, s(1d)(x1, . . . , xn) = ed(x1, . . . , xn) and
sd(x1, . . . , xn) = hd(x1, . . . , xn). There are other equivalent definitions of Schur functions
and we will recall them as and when we need them.

Recall that f ∈ K[x1, . . . , xn]
Sn

d , we write f as a polynomial in l =
∑

i xi and b1, . . . , bn−1

where bi = xi − xi+1. In other words, we have f =
∑d

i=0 l
ipi, where pi is a polynomial in

b1, b2, . . . , bn−1. Let D =
∑

i
∂
∂xi

for this section.

Lemma 9.1. Assume p ∤ n. Let f ∈ K[x1, . . . , xn]d. Then f ∈ K[b1, . . . , bn−1]d if and only

if Dk

k!
f = 0 for all k ∈ Z>0.

Proof. Suppose f ∈ K[b1, . . . , bn−1]d, then Dbi = 0, so Dk

k!
f = 0 for all k ∈ Z>0. Conversely,

suppose f /∈ K[b1, . . . , bn−1]d. Then, write f =
∑

i l
ipi, and there exists j > 0 is such that

pj 6= 0. Then, clearly Dj

j!
f 6= 0. �

Remark 9.2. In the above lemma, dividing by k! may not make sense in characteristic p if

k is large enough. Yet, the differential operator Dk

k!
is well-defined. This is standard and we

leave the details to the reader.

In characteristic zero, we have a stronger statement.

Lemma 9.3. Let char(K) = 0. Let f ∈ K[x1, . . . , xn]d. Then f ∈ K[b1, . . . , bn−1]d if and
only if Df = 0.

Proof. This is similar to Lemma 9.1 and we leave it to the reader. �

Lemma 9.4. We have

• Dek(x1, . . . , xn) = (n+ 1− k)ek−1(x1, . . . , xn);
• Dhk(x1, . . . , xn) = (n+ k − 1)hk−1(x1, . . . , xn);
• Dpk(x1, . . . , xn) = kpk−1(x1, . . . , xn).

Proof. This is a straightforward computation and is left to the reader. �

9.1. Elementary, homogeneous and power sum symmetric polynomials. We first
state a lemma

Lemma 9.5. Suppose char(K) = 0, λ ⊢ d and d < n. Let f ∈ K[x1, . . . , xn]
Sn

d . Then f is
either unstable or polystable. Further, f is polystable if and only if l ∤ f and Df 6= 0.

Proof. Follows from Theorem 8.10 and Lemma 9.3. �
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Proposition 9.6. Let λ ⊢ d be a partition and let d < n. Assume char(K) = 0. Then
eλ(x1, . . . , xn), hλ(x1, . . . , xn) and pλ(x1, . . . , xn) are either polystable or unstable. Further,
they are polystable if and only if all non-zero parts of λ are ≥ 2.

Proof. First, let us consider eλ’s. We see that eλ = eλ1
eλ2

· · · eλl
. Thus l divides eλ if and

only if l divides eλi
for some i. But now, we see that l = e1, e2, . . . , en are algebraically

independent, so l = e1 divides eλi
if and only if λi = 1. A similar argument holds for hλ and

pλ. Thus, to summarize, we conclude that l does not divide eλ/hλ/pλ if and only if every
non-zero part of λ is at least 2.

Now, consider the action of D on eλ = eλ1
eλ2

· · · eλl
. We see that Deλ =

∑l
i=1(n + 1 −

λi)eλ1
· · · eλi−1 · · · eλl

6= 0. since n+1−λi > 0 for all λi since λi ≤ d < n. Similarly, Dhλ 6= 0
and Dpλ 6= 0.

Now, the proposition follows by applying Lemma 9.5.
�

Lemma 9.7. Suppose char(K) = p > 0, p ∤ n, λ ⊢ d and d < n. Let f ∈ K[x1, . . . , xn]
Sn

d .

Then f is polystable if and only if l ∤ f and Dk

k!
f 6= 0 for some k ∈ Z>0.

Proof. Follows from Theorem 8.10 and Lemma 9.1. �

Proposition 9.8. Assume char(K) = p ∤ n. Let λ = ka11 k
a2
2 . . . kall ⊢ d be a partition and let

d < n. Then eλ(x1, . . . , xn) is polystable if the following conditions hold:

• Every non-zero part of λ is ≥ 2;
• p ∤ (n+ 1− ki)ai for some i.

Proof. As in the proof of Proposition 9.6, we can show that l ∤ eλ(x1, . . . , xn) if and only
if every non-zero part of λ is ≥ 2 (since e1, . . . , en are algebraically independent even in
positive characteristic). The condition p ∤ (n+ 1− ki)ai for some i ensures that Deλ 6= 0 by
the same computation as in the proof of Proposition 9.6. The proposition then follows from
Lemma 9.7. �

Proposition 9.9. Assume char(K) = p ∤ n. Let λ = ka11 k
a2
2 . . . kall ⊢ d be a partition and let

d < n. Then hλ(x1, . . . , xn) is polystable if the following conditions hold:

• Every non-zero part of λ is ≥ 2;
• p ∤ (n+ ki − 1)ai for some i.

Proof. Similar to Proposition 9.8 and left to the reader. �

Proposition 9.10. Assume char(K) = p ∤ n. Let λ = ka11 k
a2
2 . . . kall ⊢ d be a partition and

let d < n. Then pλ(x1, . . . , xn) is polystable if the following conditions hold:

• No part of λ is of equal to pc for some c ∈ Z≥0;
• p ∤ aiki for some i.

Proof. This is also similar to Proposition 9.8. The only difference is that for k ∈ Z>0 such
that k ≤ d < n, we have l | pk(x1, . . . , xn) if and only if k = pc for some c, which one sees by
the following brief argument.

First, if n = 2, then d = k = 1 is the only case to check. In this case k = p0 = 1 and
l = p1(x1, . . . , xn), so clearly l | p1(x1, . . . , xn). Now, we assume n ≥ 3. Clearly if k = pc,
then l | pk(x1, . . . , xn). On the other hand, suppose l = x1 + · · ·+ xn | pk(x1, . . . , xn). Then,
we have x1 + x2 + x3 | pk(x1, x2, x3) by setting x4 = x5 = · · · = xn = 0 (this step requires
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n ≥ 3). Since setting x3 = −(x1 + x2) kills a divisor of pk(x1, x2, x3), namely x1 + x2 + x3,
we conclude that pk(x1, x2,−(x1+x2)) = 0. This means that xk1 +xk2 +(−1)k(x1+x2)

k = 0.
Now, suppose k is not a power of p, then there exists 1 ≤ i ≤ k − 1 such that

(
k
i

)
6= 0,10 so

this means that when you expand out xk1 + xk2 + (−1)k(x1 + x2)
k as a sum of monomials, we

have the non-zero term (−1)k
(
k
i

)
xk1x

k−i
2 , which contradicts xk1 + xk2 + (−1)k(x1 + x2)

k = 0.
Hence k is a power of p. �

Remark 9.11. Since we know how to compute Df when f = eλ, hλ and pλ, we can always
compute Dr

r!
f and check if it is non-zero for some r.

9.2. Schur polynomials. The case of Schur polynomials is a little more tricky. We need a
few preparatory lemmas.

Lemma 9.12. Let char(K) = p ∤ n, let λ ⊢ d, and suppose 1 < d < n. Then, we have l ∤ sλ.

Proof. Recall that l = sµ where µ = (1). For t, let us denote by Pt the collection of all
partitions of size t. Then, for t < n, one checks that {sλ | λ ⊢ t} is a basis for K[x1, . . . , xn]

Sn

t

as follows. First, it is clear that {hλ | λ ⊢ t} is a basis. Now, by the definition of Schur
polynomials, one sees that sλ = hλ +

∑
µ≻λ cµ,λhµ for some constants cµ,λ. Here ≻ denotes

the lexicographic order. Thus, the linear transformation that sends hλ 7→ sλ is unipotent
and hence invertible. Thus, we conclude {sλ | λ ⊢ t} is also a basis.

Now, if l | sλ, then sλ = l · f where f ∈ K[x1, . . . , xn]
Sn

d−1. Thus, we can write f =∑
ν⊢d−1 aνsν . But then we can compute l · f by the Pieri rule. We know that l · sν =∑
µ=ν∪ one box sµ. Now, let S = {ν | aν 6= 0}. Then, under the dominance order, let ν̃

be a maximal element and ν be a minimal element in S. Then, when we write l · f as a
linear combination of Schur polynomials, we see by the Pieri rule that that the coefficient of
sν̃+(1,0,...,0) is aν̃ 6= 0 and that the coefficent of s(ν1,ν2,...,νr ,1) is aν 6= 0 (where r is the number
of non-zero parts of ν). Thus l ·f when written as a linear combination of Schur polynomials
contains at least two terms, so we cannot have l · f = sλ. Thus l ∤ sλ.

�

We point out that in the above argument, it is crucial that d− 1 > 0, since otherwise, we
would have ν = ν̃ = ∅ and ν̃ + (1, 0, . . . , 0) = (ν1, ν2, . . . , νr, 1) = (1), so we would not be
able to get a contradiction. This is perfectly reasonable since if d = 1, we have sλ = s(1) = l,
so of course l | sλ. We also point out that if d > n, then some of the sλ’s will be zero, so
{sλ | λ ⊢ t} will not be a linearly independent set anymore.

The next computation we need is to understand the action of the differential operator D
on sλ. For a partition λ, we identify it with its Young diagram, where the boxes are indexed
with matrix coordinates. Thus, we have (i, j) ∈ λ if the ith row of λ is at least j, i.e., λi ≥ j.
For (i, j) ∈ λ, we write d(i,j) = j − i. When λ, µ are two partitions such that λ is obtained
from µ by adding a box in position (i, j), then we write dλ\µ = d(i,j) = j − i.

Proposition 9.13. Let λ ⊢ d be a partition, and let d < n. Then

D(sλ(x1, . . . , xn)) =
∑

λ=µ∪ one box

(n + dλ\µ)sµ(x1, . . . , xn),

10Indeed, if we write k = dpe where d ≥ 2 is coprime to p, then
(
k

pe

)
6= 0 in characteristic p.
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Proof. For α = (α1, . . . , αn), we define aα = det(x
αj+n−j
i )1≤i,j≤n. Let δ = (n − 1, n −

2, . . . , 1, 0). Then, it is well known that

sλ =
aλ+δ

aδ
.

One easily checks that Daα =
∑

i αiaα−1i
where 1i is a vector with a 1 in it’s ith spot and

0’s everywhere else. Moreover, one observes that aβ = 0 if and only if βi = βj for some i 6= j.
With these two observations, we compute

Daλ+δ =
∑

λ=µ∪ one box

(n + dλ\µ)aµ+δ.

We also observe that Daδ = 0. These two computations, along with the formula for sλ
yield

Dsλ =
∑

λ=µ∪ one box

(n + dλ\µ)sµ.

�

If µ ⊆ λ, we define M(λ \ µ, n) =
∏

(i,j)∈λ\µ(n + j − i). Further, let fλ\µ denote the

number of standard Young tableau of skew shape λ \ µ. Then, from the above proposition,
one deduces:

Corollary 9.14. Let λ ⊢ d be a partition and d < n. Then

Dk

k!
(sλ(x1, . . . , xn)) =

∑

µ⊂λ,|λ\µ|=k

M(λ \ µ)

k!
· fλ\µ · sµ(x1, . . . , xn).

We can now prove Theorem 2.15.

Proof of Theorem 2.15. We have l ∤ sλ by Lemma 9.12 and Dsλ 6= 0 by Proposition 9.13.
Hence, the corollary follows from Lemma 9.5. �

Finally, we note that in positive characteristic, we need to be able to check when Dk

k!
sλ 6= 0.

This is equivalent to checking if M(λ\µ,n)
k!

·fλ\µ 6= 0 for some µ ⊆ λ. We know how to compute

M(λ \ µ, n), so it suffices to know how to compute fλ\µ. A formula for that was given by
Aitken [Ait43] (rediscovered by Feit [Fei53]]), see also [Sta99, Corollary 7.16.3].

Theorem 9.15 (Aitken, Feit). Let µ ⊆ λ be partitions and suppose l(λ) ≤ N . Then,

fλ\µ = N ! · det

[
1

(λi − µj − i+ j)!

]N

i,j=1

Thus, even in positive characteristic, for any specific λ, using these techniques one should
be able to determine whether sλ is polystable or not in the case p ∤ n and d < n.

Remark 9.16. In this section, we presented a series of results on polystability of various
interesting families of symmetric polynomials, in particular demonstrating the effectiveness
of our approach for proving polystability. Our approach provides a systematic approach
to proving many more such results, some of which might require interesting combinatorial
results to establish.
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[Pop82] Vladimir L Popov. The constructive theory of invariants. Mathematics of the USSR-Izvestiya,

19(2):359, 1982.
[Pop09] Vladimir L Popov. Two orbits: When is one in the closure of the other? Proceedings of the

Steklov Institute of Mathematics, 264(1):146–158, 2009.
[Raz90] Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in com-

putational complexity. Combinatorica, 10(1):81–93, 1990.
[RM97] Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. In Proceedings 38th

Annual Symposium on Foundations of Computer Science, pages 234–243. IEEE, 1997.
[Ser05] Jean-Pierre Serre. Complète réductibilité. Number 299, pages Exp. No. 932, viii, 195–217. 2005.
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Appendix A. Proof of Theorem 1.1

We now prove Theorem 1.1. One can simply implement the algorithms outlined in this
paper on a computer to verify this result (although it needs a little bit more effort than naively
implementing the algorithm because we want to determine polystability for all primes, which
is apriori an infinite set of computations). However, we will not directly appeal to the
algorithms and instead give an explicit argument. This has a few advantages. First, it
demonstrates the flexibility we actually have in using the ideas developed in this paper.
Second, we want to make the computations as manageable as possible, i.e., even though we
omit many of the computational details, we intend for it to be hand checkable by the reader
with sufficient (but not unearthly) patience. Indeed, we did these computations by hand.
Finally, we want to illustrate the flavor of combinatorial computations one encounters, and we
hope that a deeper analysis of the combinatorics involved can lead to a better understanding
of polystability for interesting classes of symmetric polynomials, beyond what we discussed
in Section 9.

Proof of Theorem 1.1. First, recall that h3(x, y, z) is the sum of all degree 3 monomials in
x, y and z, so

h3(x, y, z) = x3 + y3 + z3 + x2y + x2z + xy2 + xz2 + yz2 + y2z + xyz.

• Case 1: p ∤ (3 = n), i.e., p 6= 3:
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Suppose h3(x, y, z) is not polystable. Then, the optimal parabolic subgroup must
either be F = 0 ⊆ L ⊆ K3 or G = 0 ⊆ M ⊆ K3, where L = span(x + y + z) and
M = span(x− y, y − z) by Corollary 8.7.
Suppose F is the optimal parabolic. Then, a compatible basis is B = (t, q, r),

where t = x + y + z, q = y, r = z. Let TB be the corresponding torus. We compute
the change of basis:

h3(x, y, z) = h3(t− q − r, q, r) = t3 − 2t2q − 2t2r + 2tq2 + 3tqr + 2tr2 − q2r − qr2.

Recall that we are in the case p 6= 3. When p 6= 2, the Newton polytope for h3(x, y, z)
with respect to the torus Tt,q,r is:

•

✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹

• •

•

✹✹
✹✹

✹✹ • •

✡✡
✡✡
✡✡

• • • •

t3

t2q t2r

tq2 tqr tr2

q3 q2r qr2 r3

The picture on the right gives the dictionary between the monomials and their
weights. Note that the weight of a monomial is just its exponent vector, so weight
of t3 is (3, 0, 0), weight of tr2 is (1, 0, 2), etc. Now, by Corollary 3.2, we conclude
that h3(x, y, z) is TB-polystable since (1, 1, 1) is in the relative interior of the Newton
polytope.
When p = 2, the above simplifies to:

h3(x, y, z) = h3(t− q − r, q, r) = t3 + tqr + q2r + qr2.

Now, the Newton polytope is a convex hull of 4 points, and it is easily seen that
(1, 1, 1) is again in the interior of the Newton polytope, picture below:

•

✘✘
✘✘
✘✘
✘✘
✘✘
✘✘
✘✘
✘✘
✘

✫✫
✫✫
✫✫
✫✫
✫✫
✫✫
✫✫
✫✫
✫

• •

• • •

• • • •

Hence, we get that the TB orbit of h3(x, y, z) is closed. Thus for all p such that
p ∤ n, h3(x, y, z) is TB-polystable, so F cannot be an optimal parabolic subgroup by
Theorem 4.1.
Now, suppose G is the optimal parabolic subgroup. Then, a compatible basis is

t = x− y, q = y − z and r = z. Write B = (t, q, r) and let TB be the corresponding
torus. We compute the change of basis:

h3(x, y, z) = h3(t+ q + r, q + r, r)

= t3 + 4t2q + 5t2r + 6tq2 + 15tqr + 10tr2 + 4q3 + 15q2r + 20qr2 + 10r3.
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Unless p = 2 or p = 5, it is easy to conclude that h3(x, y, z) is polystable with
respect to TB by computing its Newton polytope and we leave the details to the
reader. On the other hand, when p = 2, we have:

h3(x, y, z) = t3 + t2r + tqr + q2r.

The Newton polyope is:

•

✘✘
✘✘
✘✘
✘✘
✘✘
✘✘
✘✘
✘✘
✘

✹✹
✹✹

✹✹

• •

• • •

• •

✡✡✡✡✡✡✡✡✡✡✡✡✡ • •

As is evident, the point (1, 1, 1) is not in the relative interior, so h3(x, y, z) is not TB-
polystable. Thus, it suffices to check if w = ess(h3(x, y, z)) (with respect to TB) is in
the SL3-orbit of h3(x, y, z). One easily computes w = t2r+ tqr+ q2r = r(t2+ tq+ q2),
which is reducible. But h3(x, y, z) = t3 + t2r + tqr + q2r is irreducible – think of
it as a polynomial in the variable t with coefficients in the PID K(q)[r] and apply
Eisenstein’s criterion with the prime r. Thus h3(x, y, z) and w are not in the same
orbit.
Thus, to summarize, for p = 2, h3(x, y, z) is not SL3 polystable, G is an optimal

parabolic subgroup and w = t2r+tqr+q2r = r(t2+tq+q2) is a point in the boundary
of the SL3 orbit of h3(x, y, z).
Now, the case of p = 5. In this case, we have

h3(x, y, z) = t3 + 4t2q + 6tq2 + 4q3.

We omit the details, but one can check by a similar analysis as above that t3 +
4t2q+6tq2+4q3 is actually unstable with respect to TB. So, h3(x, y, z) is SL3 unstable
(and in particular not polystable) when p = 5!

• Case 2: The case p = 3: We will be brief with this case. Suppose h3(x, y, z) is not
polystable, then there are three possible choices for optimal parabolic. However, the
basis t = x+y+z, q = y−z, r = z is compatible with all possible optimal parabolics.
Thus, if we check that h3(x, y, z) is TB polystable, where B = (t, q, r), then we get a
contradiction, so h3(x, y, z) must be polystable.
We compute the change of basis

h3(x, y, z) = h3(t + 2q + r, q + r, r)

= t3 + 7t2q + 5t2r + 17tq2 + 25tqr + 10tr2 + 15q3 + 35qr2 + 30qr2 + 10r3

= t3 + t2q + 2t2r + 2tq2 + tqr + tr2 + 2qr2 + r3.

We leave it to the reader to check that h3(x, y, z) is TB-polystable by drawing the
Newton polytope.
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Thus, we conclude that h3(x, y, z) is SL3 polystable unless p = 2 or p = 5. When p = 2,
it is SL3 semistable, not SL3 polystable and perhaps most surpisingly, when p = 5, it is SL3

unstable! �
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